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Abstract

The objective of this paper is to express a matrix of any dimension in unit vector notation. This is accomplished

by first solving the two and three dimensional cases before solving the general n-dimensional case. The fact that

matrices can be represented as a (non-linear) combination of standard basis unit vectors shows that matrices are not

simply abstract entities used just for representing data, but also have a geometric interpretation. This paper then

defines the natural product and explains its applications in matrix calculus, before relating it to the outer product of

real vectors, a special case of the tensor product. We then conclude that the space is the intersection of the exterior

space and the newly defined natural space.
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1. Introduction

Representing vectors in unit vector notation evolved from Sir William Rowan Hamiltons discovery of quaternions,

which he published in various books, one of which was the Elements of Quaternions (Hamilton, 1866). The

unit quaternions, i, j and k act as a basis for all quaternions. However, at the turn of the 20th century, vector

analysis began to gain prominence, through works by various mathematicians including Gibbs (1913). Gradually,

the work which used to be represented in terms of quaternions began being represented in terms of unit vectors

of the standard basis. Initially, they were represented using ι̂, ĵ, k̂ but soon, in the realms of Mathematics and

Theoretical Physics, the notation ê1, ê2, ê3, ... was adopted, since it is consistent with any dimension, whereas the

ı̂, ĵ, k̂ notation was retained in Engineering, where objects are considered in no more than 3 dimensions. Latyshev

(2005) generalised the standard basis to any linear space over any field. However, representing matrices in unit

vectors never gained prominence among the academic community and has been assumed to be not generally

possible. This paper challenges this assumption and makes an attempt to express a matrix of any dimension in unit

vector notation. Finding an equation which expresses a matrix of any dimension in unit vector notation is important

as it allows a geometric interpretation of matrices and also has applications in matrix calculus as discussed later.

2. 2 × 2 Matrices in Unit Vector Notation

Let matrix A be defined as follows:

A =
[
α β
γ δ

]

Taking the transpose,

A =
[
α γ
β δ

]T

Writing each column in unit vector notation,

A =
[
αι̂ + β ĵ γι̂ + δ ĵ

]T
Taking the transpose again,

A =
⎡⎢⎢⎢⎢⎣αι̂ + β ĵ
γι̂ + δ ĵ

⎤⎥⎥⎥⎥⎦
Finally,

A = αι̂2 + β ĵι̂ + γι̂ ĵ + δ ĵ2
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As required, we have expressed a 2 by 2 matrix as a nonlinear combination of the first two standard basis unit

vectors. It is to be noted that �a�b is not the geometric product of the vectors �a and �b here.

3. 3 × 3 Matrices in Unit Vector Notation

Let matrix B be defined as follows:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Repeating the same process we did in Section 2,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11 b21 b31

b12 b22 b32

b13 b23 b33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

B =
[

b11ê1 + b12ê2 + b13ê3 b21ê1 + b22ê2 + b23ê3 b31ê1 + b32ê2 + b33ê3

]T

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11ê1 + b12ê2 + b13ê3

b21ê1 + b22ê2 + b23ê3

b31ê1 + b32ê2 + b33ê3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B = b11ê2

1 + b12ê2ê1 + b13ê3ê1 + b21ê1ê2 + b22ê2
2 + b23ê3ê2 + b31ê1ê3 + b32ê2ê3 + b33ê2

3

As required, we have expressed a 3 by 3 matrix as a nonlinear combination of the first three standard basis unit

vectors.

4. 4 × 4 Matrices in Unit Vector Notation

Let matrix C be defined as follows:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a b c d
e f g h
m n p q
r s t u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Once again repeating the process in Sections 2 and 3,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a e m r
b f n s
c g p t
d h q u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

C =
[

aê1 + bê2 + cê3 + dê4 eê1 + f ê2 + gê3 + hê4 mê1 + nê2 + pê3 + qê4 rê1 + sê2 + tê3 + uê4

]T

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
aê1 + bê2 + cê3 + dê4

eê1 + f ê2 + gê3 + hê4

mê1 + nê2 + pê3 + qê4

rê1 + sê2 + tê3 + uê4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C = aê2

1+bê2ê1+cê3ê1+dê4ê1+eê1ê2+ f ê2
2+gê3ê2+hê4ê2+mê1ê3+nê2ê3+ pê2

3+qê4ê3+rê1ê4+ sê2ê4+tê3ê4+uê2
4

As required, we have expressed a 4 by 4 matrix as a nonlinear combination of the first four standard basis unit

vectors.

5. m × n Matrices in Unit Vector Notation

Let matrix A be defined as follows:

A
m×n
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 . . . a1n
...
. . .

...
am1 · · · amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Repeating the process in Sections 2, 3 and 4,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 . . . am1

...
. . .

...
a1n · · · amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

A =

⎡⎢⎢⎢⎢⎢⎢⎣
n∑

j=1

a1 jê j · · ·
n∑

k=1

amkêk

⎤⎥⎥⎥⎥⎥⎥⎦
T

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1 jê j

...
n∑

k=1

amkêk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

a1 jê j

⎞⎟⎟⎟⎟⎟⎟⎠ ê1 + ... +

⎛⎜⎜⎜⎜⎜⎝
n∑

k=1

amkêk

⎞⎟⎟⎟⎟⎟⎠ êm

A =
n∑

j=1

a1 jê jê1 + ... +

n∑
k=1

amkêkêm

A =
m∑

k=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

ak jê jêk

⎞⎟⎟⎟⎟⎟⎟⎠
And thus,

A
m×n
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 . . . a1n
...
. . .

...
am1 · · · amn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
m∑

k=1

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

ak jê jêk

⎞⎟⎟⎟⎟⎟⎟⎠
As required.

6. m × n × p Matrices in Unit Vector Notation

First of all, in order to express three dimensional matrices in unit vector notation, we must make the following

definition about the transpose of a three dimensional matrix:

If there exist two three dimensional matrices A and B such that if A =
[
ai jk

]
and B =

[
bκλμ
]

then ai jk = b jki. Then,

B is said to be the transpose of A and this is written as B = ATm

Now, let B be defined as follows:

B
m×n×p

=
[
bi jk

]

Here, i, j and vary between 1 and m, 1 and n and 1 and p respectively. Then, we can manipulate B as shown below:

B =
([

b jki

]Tm
)Tm

B =
[
bki j

]Tm

The matrix
[
bki j

]
is a p by m by n matrix and its top view is an m by n matrix. So each layer of this matrix parallel

to the ground beneath this matrix is an m by n matrix. The rth layer is the m by n matrix
[
bri j

]
where r is fixed and

i and j vary between 1 and m and 1 and n respectively.

[
bri j

]
=

m∑
k=1

n∑
j=1

brk jê jêk
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The matrix
[
bki j

]
is an array of this expression in the third dimension as r varies from 1 to p, i.e.

B
m×n×p

=
[
bki j

]Tm
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

n∑
j=1

b1k jê jêk

m∑
k=1

n∑
j=1

b2k jê jêk

...
m∑

k=1

n∑
j=1

bpk jê jêk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Finally,

B =
[
bi jk

]
=

p∑
i=1

m∑
k=1

n∑
j=1

bik jê jêkêi

7. A Formula for the Expression of a Matrix of Any Dimension in Unit Vector Notation

We must make the following definition about the transpose of a matrix of any dimension: If there exist two r
dimensional matrices A and B such that if A =

[
a j1 j2 j3... jr

]
and B =

[
bκ1κ2κ3...κr

]
, then . Then, B is said to be the

transpose of A and this is written as B = ATm.

Then, applying the same method as in Section 6, we obtain:

A
p1×p2×...×pn

=
∑

x1,x2,x3,...xr

⎛⎜⎜⎜⎜⎜⎝ax1,xr ,xr−1,...x2

⎛⎜⎜⎜⎜⎜⎝
r∏

n=2

ên

⎞⎟⎟⎟⎟⎟⎠ ê1

⎞⎟⎟⎟⎟⎟⎠
8. The Natural Product

We define the natural product as a mapping which satisfies the following properties:

1) The natural product is associative.

2) The natural product is distributive.

Here, M represents the set of all matrices of any dimension and × represents the Cartesian Product. The specific

type of natural product êm℘ên is represented simply as êmên. In the previous sections, ên1
ên2
...ênk also refers to the

natural product.

As an example, let us say the following natural product is to be evaluated:

⎡⎢⎢⎢⎢⎣ ab
⎤⎥⎥⎥⎥⎦℘
⎡⎢⎢⎢⎢⎣ x

y

⎤⎥⎥⎥⎥⎦
First, we express each in unit vector notation:

(aê1 + bê2)℘ (xê1 + yê2)

Then we compute the natural product:

(aê1 + bê2)℘ (xê1 + yê2) = axê2
1 + bxê2ê1 + ayê1ê2 + byê2

2

This is simply equal to the matrix: ⎡⎢⎢⎢⎢⎣ ab
⎤⎥⎥⎥⎥⎦℘
⎡⎢⎢⎢⎢⎣ x

y

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣ ax by

ay bx

⎤⎥⎥⎥⎥⎦
We can do this for any n-dimensional matrix or vector. For example,

[
p q
r s

]
℘

⎡⎢⎢⎢⎢⎣ ab
⎤⎥⎥⎥⎥⎦ = (pê2

1 + qê2ê1 + rê2ê1 + sê2
2

)
℘ (aê1 + bê2)
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= apê3
1 + bpê2

1ê2 + aqê2ê2
1 + bqê2ê1ê2 + arê1ê2ê1 + asê2

2ê1 + bsê3
2

The answer is a three dimensional matrix.

9. An Application of the Natural Product in Matrix Calculus

The divergence of a vector field can be considered to be the dot product of the Del operator and the vector field. The

curl of a vector field can be considered to be the cross product of the Del operator and the vector field. A natural

question would be, what about the natural product of the Del operator and the vector field?In this section, we shall

not yet make any attempt of finding out what it geometrically means but we shall go through the mechanics of

doing so for a vector field with two components.

∇℘f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂

∂x
∂

∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦℘
⎡⎢⎢⎢⎢⎣ P(x, y)

Q(x, y)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

⎤⎥⎥⎥⎥⎦

This is essentially just a Jacobian matrix.

10. Relationship to Tensor Products

If two vectors, u and v are given such that u ∈ Rn, v ∈ Rn and

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

...

um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

...

vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Then the tensor product of the 2 real vectors, u ⊗ v, which is really their outer product, is defined as

u ⊗ v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn
...

...
. . .

...
umv1 umv2 · · · umvn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This is the same as

u ⊗ v = (u℘v)T

So the natural product of two vectors is essentially the transpose of their tensor product. However, it is to be noted

that this is generally true only for real vectors and no other matrix or clif, including complex vectors.

11. A Geometrical Interpretation of Matrices

From what this paper has shown, matrices can be written as a nonlinear combination of the standard basis unit

vectors. We postulate the existence of the natural space, denoted by M. Matrices live in the natural space. Anything

that can be written as a linear or nonlinear combination of the standard basis unit vectors lives in the natural space.

So, Cn ⊆M. The natural space is not to be confused with the exterior space of Clifford Algebra.

Then, n dimensional matrices have n directions and an n-dimensional hypervolume. However, this is not to be

confused with tensors like bivectors, trivectors etc. Additionally, it is known from Clifford Algebra that Cn ⊆ E

where E is the Exterior Space.

Since C
n is the largest space which is a subset of both the natural space and the exterior space (i.e. if there exists

some set S such that S ⊆ E and then S ⊆M), the conclusion is drawn that Cn =M ∩ E.
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