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Abstract

We establish strict inequality bounds for the binomial sums )7, (’f)% and prove the asymptotic result:

< (n) (=1 \ﬁ 1
Z = ~ ————, asn — 0o,
i\ 2i+1 2\ +1
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1. Introduction
We are interested in studying the sums )" (;‘)(—l)iﬁ foralln e N.

The sums are shown to be positive and strictly decreasing with n, having limit zero as n tends to infinity. The main
results are bounds for these sums as well as their asymptotic behaviour.

2. Main Results

Denote a, = )i, (7)% We use the notations exp(x) = ¢* and x"y = x” in order to make some formulas easier to
be read.

Proposition 1 Foralln e N, Y7, (’:)% > 0.
1

Proof. Yne N, 0 < 0”/2

2i+1

cos?*! xdx = fol(l —u?)'du = ¥, (ril)(_l)igi“

0
Proposition 2 Vn € N, a,, > a,1.

/2 /2
Proof. VneN, a, = X cos?*! xdx > b cos?™*! xcos? xdx = a,,.
Proposition 3 lim,,_,, @, = 0.

Proof. Ym > 1,3dn € N, (COS( 1 ))an <41

m m’

1/m /2 1 1
a1 bid
an = f cos?*! xdx+f cos? xdx < — + — (— - —) <=
0 1 m

m m m
and the result follows from Propositions 1 and 2.

Theorem 1 Let € R and n € N such that 0 < u < V(2n + 1)In2. Then the following inequality
1 1 1 |/ 1,
_ eV dv+ —— (——z) 1--z
V2n+1 vVIn2 Jo 2n+2[\2 2
= (n 1 [ex 1 (/2 — 1)>"*2
< -1y < Al— +
;(i)( )2i+1 11 v +1 2n+2

is valid, where 7 = u/ V2n + 1) In 2.
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Proof. From Taylor’s formula

_1 x2 x4<1 2 X
cosx = _E"'(COSP)E— Tt m
for some p € [0, x] and
cosx <1 x2+x2 1 o
X - —+—=1-—x
2! 4! 24

for all x € [0, 1] with strict inequality on (0,1).
Remember that In(1 — u) = — 32, “7' for all u € [0, 1), so that Vx € (0, 1)

11 11
2n+1 _ 2 _ 2
0s x<exp((2n+l)ln(1 T ))<exp( (2n+1)24x).

Summing the following inequalities

2n+1 —2n+1)i 2 —? _
d APy < | d ,/—
fcos x“f ars 11(2n+1)f VEANTI2n+

2n+2
/2 o /2 2n+1 (——1
e [ (Eo e B
fl x“f, 2 7Y YT T,

we establish the upper bound. We have used the famous formula fooo edy =
Nicholas and Yates (1950).

g to obtain the first inequality. See

Again, from Taylor’s formula, for all x € (0,7/2), cosx > 1 — x and we have for all x € (0, 1)

os?x > expl@n+1Dn 1—12 =exp|-(2 +1)i(%x2)i
X pl(Zn 2x = exp n ;

i=1

o) l i
> exp (—(2n +1) [Z (%)] xz] =exp (—(2n + 1)(In 2)x2) )

i=1

Since z < 1 we write

2n+1
: (1), ~(1-37)
a, > fexp(—(2n+1)(ln2)x2)dx+f (1—§Z2)+—(x—z) dx
0

2

H 1
—_— f Vvt —— 2L
V2n+1)In2 Jo 2n+2(1_%zz)
and the proof is complete.

For sequences x, and y, we write x, ~ y, when lim 2 =

n—oo Yn

Denote £, and u, the lower and upper bounds given in Theorem 1. Now, letting n — oo we have their asymptotic
behaviour:

Clearly u,, ~ 6” \/17 and, choosing for example u = V(2n + 1)In2 — 1/n, we have

; 1 fﬂ gy (n )(1 1 2)2””
= == | e vt ——||5 2|1 -5z
f kS 1
\/211 +1 VIn2 V2n +1
Define b, by a, = b, ﬁ We have shown that

1 6
3 %Sliminfbnslimsupbns 1_71r
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We can improve these bounds as it is shown by the following theorems and propositions:

Theorem 2 Yn e N, Ym > 1,

> | f’:' lznz*l( _ﬁ) _Vzd ﬂ( ( 1 ))2n+1
a, < eVdv+ = |cos|—
1= (1/12m*) \2n+1 Jo 2 m
Fis 1 bis
<

1
1 2n+1
2—(1/6m®) \on a1 2 (COS(E)) '

Proof. For0 < x < 1/m,m > 1,

2 (1Y 1 1 2
COSX<1_Z+E(E) :1—5(1—12’”2))6,

1/m /2 1 2n+1
f cos?*! xdx+f (COS(—)) dx
0 1/m m
1/m 1 1 T 1 2n+1
-@n+1)=|(1- 2)dx + = —
I e R e o )

2 frh e e 24 +7r 1\
Qn+ D1 = 1/12m2) J, RN S P8

and the result follows from fooo edv = \/75

A

Ay

A

Proposition 4 limsupb, < /3.

m

i 1 [2n+1 ! 1
m — - | =
n—oo m 2 12m2

3

1 Y
lim ¢, = lim y3 (cos (—)) =0,
n—oo y—)OO y

2n+1
Proof. Letting m = V2n+1landc, = 5 (cos( 1 )) ! (2n + 1) we have

and

since, for sufficiently large y,

1 oy 1 VAR 1
cos 1] 0. (sn )} 120 > 5 ana (1= 200 {_W(%)]ﬂ

so that

3

1\ VAR 1 ! o1 Al (1Y
o< eon(1) :f[(]_mz(g)) [ﬁ]] [z (L)) < prair <o

2y

2 1 +r 1
a, < —_— t+Cc—,
(1- =) V2n+1 2 2n+1
b, < ;\/E+c;—>\/E as n — oo
TN =) V2 Ve 2 '

Note that the upper bounds given in Theorem 2 or in the proof of Proposition 4 may not improve the approximation
of a,, relative to that of Theorem 1, for small n.

asy — oo.

Now, from Theorem 2,

from which
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Theorem 3 Let M e R, M > 1, u € Rand n € N such that 0 < u < —\/(2n+ 1){% e (1n2—%)}. Then we

have
T 122n+l
(E_Z)(l_iz) }<

1 fﬂ e dv+ 1
V2n + 1 \/m 0 2n+2
where 2 = uf (5 [@n+ D{E + 5 (n2 - 1))

Proof. Observe that for all x,0 < x <

) 1.2 o 1
1 1 o
cos™l x> exp[ @n+1)) (3~ )]>exp[—(zn+1){z = Ez () }]

i=1 i=

> exp [—(Zn + l){% + % [izz (1/1_2)1 ]} xz] = exp (—(2n +1) {% + # (ln2 - %)} xz).

Noting that 0 < z < 1, follow the steps at the end of theorem’s 1 proof.

Proposition 5 liminf b, > /7.

Proof. Let M = \2n + 1 and pu = %\/(2n+1){%+#(ln2—%)}—%.Theny~ \Ex/42n+1—>ooasn—>oo.

Now, from Theorem 3,

liminf b,

[\

1 '
lim V2n + 1( f eVdv+
)} 0 2n+2

e W\/ 4 (In2-1

\/Ef e dy = \/E
0 2

Propositions 4 and 5 tell us that there exists the limit lim b, and that it is equal to /2.

n—oo

Theorem 4 (asymptotic behaviour)

i (n) (- fﬂ/z il \/7
. . - COoS as n — oo,
—i\i)2i+1 0 2o+l

Proof. Propositions 4 and 5.

3. Final Remarks

We observe that the bounds can be improved by dividing the interval (0,7/2) in more than two pieces as we
have done here and the most direct approach seems to be piecewise linearly approximating the cosine function
both from above and bellow except at a neighborhood of the origin where it is approximated by Taylor’s formula.
Although this procedure will improve the bounds for small n, of course it will not change the asymptotic result.
‘We remark that from the bounds for a,, obtained in this work we can derive bounds for Catalan’s numbers and from
the asymptotic result we can derive Wallis product formula. See (Bustoz & Ismail, 1986; Everett, 1970; Paule &
Pillwein, 2010) and references therein.
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