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Abstract

Using the properties of the table sieve, we can determine whether all given number, positive integer G, is a prime

and whether it is possible to factor it out.
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1. Introduction

The sieve of Eratosthenes was successful in filtering out composite numbers using the fact that it is easy to calculate

multiples but it was not successful to find the relationship between filtered-out composite numbers. Our approach

method has found a way to filter out all the primes using table multiplication. We could effectively find a factor of

a given composite number.

2. Generating the Composite Number of the 12n+1, 5, 7, 11 Series

Every prime number except 2 and 3 is contained in the 12n+1, 5, 7, 11 series, is sorted into 4 kinds of remainder

groups 1, 5, 7, and 11 and belongs to at least one of these 4 groups. Let us denote the set An is all elements of the

12n+1, 5, 7, 11 series (n=0, 1, 2); the set Pn is all elements of prime numbers as comprised in An; the set Cn is all

elements of composite numbers as comprised in An.

2.1 Algorithmic Description

2.1.1 All Prime Numbers but 2 and 3 Exist in Forms of 12n+1, 5, 7, 11 with a Period of 12n

Proof.

(i) All natural numbers can be represented with a period of 12.

(ii) All even numbers but 2 are not prime numbers.

- Elements of 12n+2, 4, 6, 8,10,12 are all even.(n=0, 1, 2, ..., n)

- Therefore, all 12n+2, 4, 6, 8, 10, 12’s but 2 are not prime numbers.

(iii) All 12n+3 but 3 are not prime numbers.

- 12n+3=(3·4)n+3 is a multiple of 3.

(iv) 12n+9 is not a prime number.

- 12n+9=(3·4)n+9 is a multiple of 3.

As a results, every prime number but 2 and 3 is contained in the periodic n An. So, let us denote this series as

follows:
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An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1, i f remainder ≡ 1(mod12)

A5, i f remainder ≡ 5(mod12)

A7, i f remainder ≡ 7(mod12)

A11, i f remainder ≡ 11(mod12)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In next equation, the An series are multiplied infinitely and we can find 10 basics equations which falls into one of

the 4 groups.

2.1.2 All Elements of the An × An Table Multiplication are Contained in Set n An

Proof.
(12x + α) × (12y + β)

= 144xy + 12βx + 12αy + αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αβ ∈ (1, 25, 49, 121), i f remainder ≡ 1(mod12)

αβ ∈ (5, 77), i f remainder ≡ 5(mod12)

αβ ∈ (7, 55), i f remainder ≡ 7(mod12)

αβ ∈ (11, 35), i f remainder ≡ 11(mod12)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Therefore,

αβ ∈ (1, 5, 7, 11, 25, 35, 49, 55, 77, 121) (2)

2.1.3 All Elements of the An Table Multiplication are Contained in the Set of then An × An Table Multiplication

Proof. For any element k of the set An ∈ Pn or k ∈ Cn, If k is Pn

k ∈ (12x + α) × 1 (3)

or

k ∈ 1 × (12y + β) (4)

otherwise

k is Cn (Pn × Pn, Pn × Cn, Cn × Cn )

Therefore, Cn ≥ 25. Additionally, it is possible to find all values of n Cn of the 12n+1, 5, 7, 11 series in the results

of a matrix-multiplication of An × An that are greater than 5.

<Table 1>

2.2 The Structure of a Matrix-multiplication of An × An

Unlike prime numbers, which are unpredictable, the composite numbers are formed by sixteen arithmetic progres-

sion groups. This means that composite numbers in principle are predictable because whole composite numbers

follow this rule. However, the composite numbers are made up of sixteen arithmetic progressions and it is difficult

to see the whole of the arithmetic progressions, whose number increases, without necessary computations and

information media that can store the computed results. If you can find the computed results of various arithmetic

progressions intuitively, you can predict the rule that governs the composite numbers. This immediately means

that you will be able to find the rule that governs the prime numbers. It is not a problem of whether or not the

composite numbers are predictable but a problem of human perception.

See Table 1.

2.3 Symmetric Table and Asymmetric Table

Analyzing the table of the 12n+1, 5, 7, 11 series, by the values of horizontal axis α and vertical axis β, the table

divides into a symmetric table if α=β, and into an asymmetric table if α � β. Therefore, we can find the following

results.

(i) Symmetric table, α=β
(12x + 1)(12y + 1), (x, y ≥ 1) (5)
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(12x + 5)(12y + 5) (6)

(12x + 7)(12y + 7) (7)

(12x + 11)(12y + 11) (8)

(ii) Asymmetric table, α � β
(12x + 1)(12y + 5), (x, y ≥ 1) (9)

(12x + 1)(12y + 7), (x, y ≥ 1) (10)

(12x + 1)(12y + 11), (x, y ≥ 1) (11)

(12x + 7)(12y + 11) (12)

(12x + 5)(12y + 7) (13)

(12x + 5)(12y + 11) (14)

However, the commutative law does not hold if α � β. So, depending on the orders of α and β, the results are

different for the diagonal elements. An asymmetric table has twelve cases.

3. Finding Factors from Composites in Arithmetic Progression

3.1 Substitution

We have seen that all the composite numbers but 2 and 3 can be represented in a form of (12x+α)(12y+β). Then,

how can we determine if a given positive integer, G, is prime or composite?

Let G be an arbitrary positive integer.

(i) Check if G is a multiple of 2 or 3. If G is a multiple of one of these, it is a composite number.

(ii) If G is not a multiple of 2 or 3, G’ s remainder R when divided by 12 is R ∈ 1, 5, 7, 11 and R is the a number in

the table multiplication elements, then G is a composite number. If R is not the same as any of the multiplication

elements, then G is a prime number.

If a given number, G, is not a multiple of 2 or 3, we can express it as follows.

G = (12x + α)(12y + β) = 144xy + 12βx + 12αy + αβ (15)

If we substitute xy, βx + αy with X and Y , respectively,

βx + αy = Y, xy = X (16)

The result is the following.

G = (12x + α)(12y + β) = 144XY + 12Y + αβ = 12X + Y = C (C =
G − αβ

12
) (17)

3.2 Determination of a Valid Domain

Let us apply the arithmetic mean and geometric mean to xy and βx + αy. From βx + αy=Y and xy = X,

y =
−βx + Y
α

(18)

When x = 1, X (xy) is the minimum. Therefore, the minimum of X (xy) is

X(xy) =
−β + Y
α

(19)

12X + Y = C ⇀ 12X + αX + β = C(substitution : Y = αX + β) (20)

⇀ (12 + α)X = C − β
⇀ X =

C − β
12 + α

(21)

The maximum of X (xy) is
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(i) If x + y is even, then the maximum is achieved when x = y.

12X + Y = C ⇀ 12x2 + (α + β)x −C = 0 (22)

⇀ x =
−(α + β) ± √(α + β)2 + 4 · 12C

24

⇀ X(x = y) = [
−(α + β) ± √(α + β)2 + 4 · 12C

24
]2 (23)

(ii) If x + y is odd, then the maximum is achieved when x + 1 = y.

12X + Y = C ⇀ 12x(x + 1) + βx + α(x + 1) −C = 0 (24)

⇀ 12x2 + (α + β + 12)x + α −C = 0

⇀ x =
−(α + β + 12) ± √(α + β + 12)2 + 4 · 12(C − α)

24

⇀ X(positive) = [
−(α + β + 12) ± √(α + β + 12)2 + 4 · 12(C − α)

24
]2 (25)

- If the maximum and minimum of X(xy) is not an integer, then we can make it an integer by rounding it up.

If we can determine the valid domain, we can make the following table list of (X, Y).

See Table 2.

In 12X+Y = C, X increases by 1 and Y decreases by 12. So, X and Y have properties of an arithmetic progression.

Let two arithmetic progressions, X and Y , be X = n + a and Y = −12n + b, respectively.

(X,Y) Tables pairs Is there an efficient method to find a valid set of (X, Y), which has an integer root, from (a1, b2),

(a2, b2), (a3, b3 ), (a4, b4), (a5, b5), (a6, b6),..., (an, bn).

3.3 Finding Factors: First Method

x, n, r is positive integer (x, r contatins zero), Since

X =
−βx2 + Y x
α

(26)

⇀ n + a =
−βx2 + (−12n + b)x

α
, (substitution : X = n + a,Y = −12n + b)

⇀ βx2 − (b − 12n)x + α(n + a) = 0

⇀ x =
(b − 12n) ± √(b − 12n)2 − 4αβ(n + a)

2β
(27)

Since x is zero or a positive integer, we can find integer roots (n, r) from

r2 = (b − 12n)2 − 4αβ(n + a) (28)

⇀ 36r2 = 36(12n − b)2 − 4αβ(n + a)

⇀ 36r2 = 36(144n2 − 24bn + b2 − 4αβn − 4αβa)

⇀ 36r2 = 36(144n2 − 24bn − 4αβn + b2 − 4αβa)

⇀ 36r2 = (72n − (6b + αβ))2 − (6b + αβ)2 + 36b2 − 4 · 36αβa

⇀ (72n − (6b + αβ))2 − 36r2 = (6b + αβ)2 − 36b2 + 4 · 36αβa

⇀ (72n − (6b + αβ) + 6r) · (72n − (6b + αβ) − 6r) = 12(12a + b) · αβ + (αβ)2 (29)

If an integer root, (n, r), exists, then we can find integer (x, y).
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3.4 Finding Factors: Second Method

In order to find (x, n) pairs that have integer roots, let us do the substitutions βx + αy = Y , xy = X.

x, y =
Y − βx
α

(30)

⇀ X =
−βx2 + Y x
α

⇀ n + a =
−βx2 + (−12n + b)x

α
, (substitution : X = n + a,Y = −12n + b)

⇀ (12x + α)n = −βx2 + bx − αa

⇀ n =
−βx2 + bx − αa

12x + α
(31)

In order to find an integer root pair, (x, n), many iteration is required. But, this method is inefficient because

all (X,Y) tables need to be iterated. However, from the graph of the function, we can discover the following

properties. When the value of x is small, n increases faster. However, for a certain domain, the rate at which n
increases is greatly reduced as x increases, and when n approaches its limit, n does not either increase or decrease

as x increases. Therefore, we can confirm that the values of n congregate at certain domains. So, we have come up

with the following idea to find integer root pair (x, n).

If we do the iteration in the domain 0∼ kx, on the x-axis (up to the point where nk+1-nk is greater than 1) and in the

range nk ∼nk+1, on the n-axis at the points where nk+1-nk, becomes less than 1, then we have the same effect as that

of inspecting all the whole numbers.

4. Conclusion

Using the table, we have shown it possible to significantly reduce perceptive complexity. But, the uncertainty

of the table directly reflects the irregularity of prime numbers (whether a given number is a prime number or a

composite number and what the next prime number is). We can see that, since the complexity of a table as a given

number, G, becomes larger and larger, it becomes harder to predict the next prime number. Then, is there a method

to innovativly reduce the complexity of the table? It is hard to know at this time.
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Table 1. The result list of multiplication table

Multiplication Sign Equation Remainder

A1xA1 ++ (12x+1)(12y+1) 1 (mod 12)

A5xA5 ++ (12x+5)(12y+5) 1 (mod 12)

A7xA7 ++ (12x+7)(12y+7) 1 (mod 12)

A11xA11 ++ (12x+11)(12y+11) 1 (mod 12)

A1xA5 -+ (12x+1)(12y+5) 5 (mod 12)

A7xA11 -+ (12x+7)(12y+11) 5 (mod 12)

A1xA7 – (12x+1)(12y+7) 7 (mod 12)

A5xA11 – (12x+5)(12y+11) 7 (mod 12)

A1xA11 +- (12x+1)(12y+11) 11 (mod 12)

A5xA7 +- (12x+5)(12y+7) 11 (mod 12)

Table 2. Finding integer values of x and y

X a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 ... an

Y b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 ... bn
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