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Abstract

We apply second, third, fourth, fifth and sixth order velocity profiles to discuss laminar boundary layer flow over

a flat plate. Inclusion of these velocity profiles in Von Karman-Pohlhausen (1921) momentum integral equa-

tion enables us to determine the approximate values of the parameters namely, (i) boundary layer thickness, (ii)

displacement thickness, (iii) momentum thickness, (iv) thickness ratio, (v) skin friction coefficient, (vi) drag coef-

ficient and (vii) the shear rate relation on the plate. Comparison of the approximate values with the exact Blasius

(1908) values leads to the determination of the percentage error for each of the above parameters for the different

velocity profiles. From the sixth order velocity profile we can predict that higher order velocity profiles will yield

greater percentage errors and hence worse and worse results for these parameters except displacement thickness.

Keywords: exact values, approximate values, laminar, boundary layer flow, parameters in the flow, velocity pro-

files

1. Introduction

Boundary layer is formed whenever there is relative fluid motion between the solid boundary and the fluid. The

velocity within the boundary layer increases from zero at the boundary surface to the velocity of the main stream

asymptotically. Therefore the thickness of the boundary layer is arbitrary defined as that distance from the bound-

ary in which the velocity reaches 99 percent of the velocity of the free stream, Schlichting (1968). Boundary layer

flow has been a topic of intensive research by various researchers since the development of the concept by Prandtl

(1925).

Craft and Lowell (2009) investigated two aspects of oceanic hydrothermal heat flux that are not well understood

namely, the relative partitioning of heat flux between high-temperature and low-temperature flows at oceanic

spreading ridges and next the hydrothermal behaviour of the near-axis region, where seismic data suggest that

a zone of partial melt extends quasi-vertically into the low crust at the East Pacific Rise. They applied steady

state boundary layer theory to each system by assuming circulation occurs near a hot isothermal wall that laterally

transfers heat to and induces convection within an adjacent fluid-filled medium. In their analysis, they showed that,

for the near-axis model, heat transfer in the hydrothermal boundary layer is greater than the input from steady state

generation of the oceanic crust by seaflow spreading.

Dorfman (2011) presented a review of universal functions widely used in different areas of boundary layer theory

for many years up to the present. Thus, he considered different kinds of universal functions, from simple equa-

tions of dimensionless numbers in similarity theory to universal parametric boundary layer equations. Finally, he

adopted various universal solutions from almost 100 articles published since the famous Howarth study of Blasius

series in 1935 to show the breadth of universal aproaches with application in laminar, turbulent and transition

boundary layers in solving non-isothermal and conjugate heat transfer problems as well as in planetary boundary

layer problems in meteorology.
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Habib et al. (2009) carried out transient calculation of the boundary layer flow over spills. They presented results

of numerical simulations and experimental investigations of the mass flow from evaporating liquid pools. They

validated their results of the simulation against experimental data from the open air experiments and also made the

comparison of the simulation results with empirical prediction models.

Kim and Changhoon (2009) studied large-eddy simulation of urban boundary layer flow over complex topologies.

They used wind tunnel experiment and large eddy simulation to investigate (i) boundary layer flow over arrays of

regularly distributed obstacles and (ii) scaled real urban area in which various wind directions were considered.

They found that the parameters for the arrays, composed of slender rectangular cylinders whose characteristics

were similar to a real urban area rather than cube arrays, were highly sensitive to the wind direction. They also

observed that velocity profile along the street canyon with which a wind direction aligned was close to a linear

profile rather than a constant or exponential distribution.

Mahmoudian and Scales (2012) investigated irregularity generation associated with dust cloud expansion through

a background plasma along a magnetic field. Because of the dust charging process, a boundary layer was produced.

Theoretical and computational models were used to study the evolution of relevant plasma instabilities thought to

play a dominant role in irregularity production. The relevance of these results to past experimental observations

in space and the laboratory for applications to the expansion of naturally or artificially created dust clouds was

discussed.

Swan (2012) discussed the universal velocity profile which provides a description of the mean velocity within a

turbulent boundary layer. Using dimensional analysis, he suggested that immediately above the viscous sublayer

the velocity within the so-called inner region (or wall layer) is given by

u
uτ
= f
(yuτ
ν

)

where uτ is the friction velocity or shear velocity defined by uτ =
(
τ
ρ

) 1
2

where τ is the shear stress, ρ the fluid density

and ν the fluid kinematic viscosity. Based on this assumption, and using several different approaches (momentum

transport theory, similarity theory, and dimensional analysis), he proposed that the appropriate form of the function

f is logarithmic and hence
u
uτ
= Alog10

(yuτ
ν

)
+ B

where A and B are constants which are typically given values of 5.75 and 5.5 respectively.

Wu and Christensen (2010) discussed spatial structure of a turbulent boundary layer with irregular surface rough-

ness. In doing this they performed particle image velocimetry experiments to study the impact of realistic rough-

ness on the spatial structure of wall turbulence at moderate Reynolds number. The spatial structure of flow over this

rough surface near the outer edge of the roghness sublayer was contrasted with that of smooth-wall flow to identify

any structural modifications due to roughness. In their analysis they observed hairpin vortex packets in the outer

layer of the rough-wall and these were found to contribute heavily to the Reynolds shear stress, consistent with

smooth-wall flow. While similar qualitative consistency was observed in comparisons of smooth-and rough-wall

two-point correlations,some quantitative differences were also apparent.

Other contributors in the field of boundary layer flow include, notably, Schlichting (1968), Olsson and Turkdogan

(1966), Noor Afzal (1983), Huguera (1994), Bohr et al. (1993), etc.

Our objective in this work is to compare the exact and approximate values of certain parameters in laminar bound-

ary layer flow by use of some velocity profiles and show how these profiles vary with the percentage errors of these

parameters. In doing this, we employ Karman-Pohlhausen momentum integral equation and the analysis reveals

that higher order velocity profiles yield worse result.

2. Blasius Solution of Two Dimensional Laminar Boundary Layer Equations

Let x, y be the horizontal and vertical rectangular coordinates respectively and u, v the corresponding velocity

components, then the equations for laminar flow are

∂u
∂x
+
∂v
∂y
= 0 (1)

u
∂u
∂x
+ v
∂u
∂y
= ν
∂2u
∂y2

(2)
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u = v = 0 at y = 0 (3)

∂u
∂y = 0 at y = h(x)

u→ U as y→ ∞
}

(4)

where U is the free stream velocity and u is the velocity at a distance y above the plate.

A solution of the equation can be found (Blasius, 1908) based on Blasius type of velocity profile given by

u = U f ′1(η), η =
(U
νx

) 1
2

y (5)

The equation

f1 f ′′1 + 2 f ′′′1 = 0 (0 < η < ∞) (6)

is the Blasius equation with boundary conditions

f1 = f ′1 = 0 at η = 0

f ′1 = 1 at η = ∞
}

(7)

[Here ′ denotes differentiation with respect to η].

Thus the velocity distribution has the Blasius flat-plate profile, and the boundary layer thickness δ is 0
(
νx
U

)
. The

exact solution of the boundary layer equations (1) - (4) was found by Blasius (1908) through numerical method.

Thus for laminar boundary layer flow on a flat plate at a point x from the leading edge of the plate, Blasius obtained

the following results:

(i) Shear rate relation on the plate f ′′1 (0)

[
νx
U0

] 1
2 1

U0

[
∂u
∂y

]
y=0

= f ′′1 (0) = 0.332 (8)

(ii) The boundary layer thickness δ is
δ

x
=

5√
Rex

(9)

(iii) The displacement thickness δ1 is
δ1
x
=

1.7208√
Rex

(10)

(iv) The momentum thickness δ2 is
δ2
x
=

0.664√
Rex

(11)

so that (v) The thickness ratio H∗ is

H∗ =
δ1
δ2
= 2.5915 (12)

(vi) Drag coefficient for the plate over one surface CD is

CD =
1.328√

Rex
(13)

(vii) Skin friction coefficient C f is

C f =
0.664√

Rex
(14)

3. Second Order Velocity Profile

We take the velocity profile in the form

u = U(x) f (η), η =
y
δ(x)

(15)

where

f (η) = 2η − η2 (16)
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and such that f (η) satisfies the following conditions:

f (η) = 0, η = 0

f (η) = 1, η = 1

f ′(η) = 0, η = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (17)

Karman-Pohlhausen Momentum Integral Equation

This integral equation for two dimensional laminar flow (Pohlhausen, 1921) is given by

d
dx

∫ δ
0

(Uu − u2)dy = ν
(
∂u
∂y

)
y=0

(18)

From (15) and (16) we find

u = U(2η − η2), η =
y
δ

(19)

so that (
∂u
∂y

)
y=0

=
∂u
∂η

∂η

∂y

∣∣∣∣∣
η=0

=
2U
δ

(20)

Hence, the shear stress on the plate becomes

τ0 = μ

(
∂u
∂y

)
y=0

=
2μU
δ

(21)

Shear Rate Relation on the Plate f ′′(0)

Now ∫ δ
0

Uudy = U2δ

∫ 1

0

(2η − η2)dη = U2δ · 2

3
(22)

∫ δ
0

u2dy = U2δ

∫ 1

0

(2η − η2)2dη = U2δ · 8

15
(23)

Substituting (21), (22) and (23) in (18) we have

2

15
U2 d

dx
δ = νU · 2

δ
(24)

giving on integration

δ2 = 30
νx
U
+C (25)

where C is a constant of integration. If (25) were to remain valid as x→ 0, then C = 0. Consequently,

δ2 = 30
νx
U

(26)

or

δ =

[
νx
U

1
2

] 1
2

× (30)
1
2 (27)

Hence
d
dx
δ =

1

2

[
νx
U

] 1
2 ν

U
× (30)

1
2 (28)

Comparing (28) with (24) we get

νU.
2

δ
.

1

U2

[
15

2

]
=

1

2

[
νx
U

]− 1
2 ν

U
× (30)

1
2

i.e. [
νx
U

] 1
2 1

U

[
∂u
∂y

]
y=0

= f ′′(0) =
1

2

[
2

15

]
× (30)

1
2 (29)
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or

f ′′(0) = 0.36514 (30)

which is the required shear rate relation on the plate.

Boundary Layer Thickness δ

Using (27), we find

δ =
[
νx
U

] 1
2 × 5.477225 (31)

which can be expressed as

δ =
x[

Ux
ν

] 1
2

× 5.477225 (32)

or
δ

x
=

5.477225√
Rex

(33)

Displacement Thickness δ1
From Karman-Pohlhausen (1921),

δ1 =

∫ δ
0

(
1 − u

U

)
dy (34)

Again, substituting (15) and (16) into (34) we find

δ1 = δ

∫ 1

0

[
1 − (2η − η2)

]
dη =

1

3
δ (35)

Applying (33) in (35), we obtain
δ1
x
=

1.82574√
Rex

(36)

Momentum Thickness δ2
Again, from Karman-Pohlansen (1921),

δ2 =

∫ δ
0

u
U

(
1 − u

U

)
dy (37)

Substituting (15) and (16) into (37) gives

δ2 = δ

∫ 1

0

(2η − η2)[1 − (2η − η2)]dη

which on integration and simplification yields

δ2 =
2

15
δ (38)

Using (33) in (38) leads to
δ2
x
=

0.73029√
Rex

(39)

Thickness Ratio (or Shape Factor) H∗

Here, using (36) and (39) we find

H∗ =
δ1
δ2
= 2.50 (40)

Skin Friction Coefficient C f

Substituting (33) into (21), the shear stress on the plate τ0 becomes

τ0 =
(2μU)(

5.477225×x√
Rex

) (41)
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or

τ0 =
2μU

5.477225
×
√

Rex

x
(42)

But from Schlichting (1968), skin friction coefficient is given by

C f =
τ0

1
2
ρU2

(43)

so that substituting (42) in (43) we find

C f =
0.73029√

Rex
(44)

Drag Coefficient CD

The drag force FD on one side of the plate of width B and length L (Schlichting, 1968), is

FD =

∫ L

0

τ0 × Bdx (45)

Substituting (42) into (45) we have

FD =
2μUB

5.477225

∫ L

0

√
Rex

x
dx (46)

i.e.

FD =
2μUB

5.477225

∫ L

0

√
ρUx
μ
.
1

x
dx (47)

or

FD =
2
√
μUB

√
ρU

5.477225

∫ L

0

x−
1
2 dx (48)

After integration and simplification (48) gives

FD =
4
√
μUB

√
ρUL

5.477225
(49)

The drag coefficient becomes (Schlichting, 1968)

CD =
FD

1
2
ρAU2

=
FD

1
2
ρU2 × B × L

(where A = B × L) (50)

so that using (49) in (50) and simplifying we obtain

CD =
8

5.477225
×
√
μ√
ρuL

(51)

or

CD =
1.460593√

ReL
(52)

4. Third Order Velocity Profile

The form of the velocity profile here is

u = U(x) f (η) (53)

where

f (η) =
3

2
η − 1

2
η3 (54)

i.e

u = U
(

3

2
η − 1

2
η3

)
, η =

y
δ

(55)

so that (
∂u
∂y

)
y=0

=
3U
2δ

(56)
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Hence

τ0 =
3μU
2δ

(57)

Shear Rate Relation on the Plate f ′′(0)

Now ∫ δ
0

Uudy = U2δ

∫ 1

0

(
3

2
η − 1

2
η3

)
dη = U2δ · 5

8
(58)

∫ δ
0

u2dy = U2δ

∫ 1

0

(
3

2
η − 1

2
η3

)2
dη = U2δ · 17

35
(59)

Substituting (56), (58) and (59) iinto (18) we find

39

280
U2 d

dx
δ = νU · 3

2δ
(60)

which leads to

δ2 =
840

39
· νx

U
(61)

as in (26).

Thus

δ =

[
840

39

] 1
2

·
[
νx
U

] 1
2

(62)

and

d
dx
δ =

1

2

[
840

39

] 1
2 ν

U

[
νx
U

]− 1
2

(63)

Comparing (63) and (60) we have

νU.
3

2δ
.

1

U2

[
280

39

]
=

1

2

[
840

39

] 1
2 ν

U

[
νx
U

]− 1
2

resulting in [
νx
U

] 1
2 1

U

[
∂u
∂y

]
y=0

= f ′′(0) =
1

2

[
840

39

] 1
2
[

39

280

]
(64)

Thus

f ′′(0) = 0.323209 (65)

Boundary Layer Thickness δ

From (62),

δ =
[
νx
U

] 1
2 × 4.6409548 (66)

or
δ

x
=

4.6409548√
Rex

(67)

Dispacement Thickness δ1
Substituting (53) and (54) into (34) we obtain

δ1 = δ

∫ 1

0

[
1 −
(

3

2
η − 1

2
η3

)]
dη =

3

8
δ (68)

which on using (67) in (68) yields
δ1
x
=

1.740358√
Rex

(69)

Momentum Thickness δ2

23



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 5; 2012

Using (53) and (54) in (37) gives

δ2 = δ

∫ 1

0

(
3

2
η − 1

2
η3

) [
1 −
(

3

2
η − 1

2
η3

)]
dη =

39

280
δ (70)

Applying (67) in (70) we find
δ2
x
=

0.6464187√
Rex

(71)

Thickness Ratio H∗

Using (68) and (70) we have

H∗ = 2.69230769 (72)

Skin Friction Coefficient C f

Substituting (67) into (57) leads to (
3μU

2

)
(

4.6409548√
Rex

× x
) (73)

i.e

τ0 =
3μU

9.2819096
×
√

Rex

x
(74)

Further substitution of (74) into (43) yields

C f =
0.6464187√

Rex
(75)

Drag Coefficient CD

Substituting (74) into (45) we find

FD =
3μUB

9.2819096

∫ L

0

√
Rex

x
dx (76)

i.e

FD =
3
√
μUB

√
ρU

9.2819096

∫ L

0

x−
1
2 dx (77)

or

FD =
6
√
μUB

√
ρUL

9.2819096
(78)

Substituting (78) in (50) we have after simplification

CD =
12

9.2819096
×
√
μ√
μUL

(79)

whence

CD =
1.2928374√

ReL
(80)

5. Fourth Order Velocity Profile

Here the profile is taken as

u = U(x) f (η) (81)

with

f (η) = 2η − 2η3 + η4 (82)

or

u = U(2η − 2η3 + η4) (83)

Now (
∂u
∂y

)
y=0

=
2U
δ

(84)
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so that

τ0 =
2μU
δ

(85)

Shear Rate Relation on the Plate f ′′(0)∫ δ
0

Uudy = U2δ

∫ 1

0

(2η − 2η3 + η4) dη = U2δ
7

10
(86)

∫ δ
δ

u2dy = U2δ

∫ 1

0

(2η − 2η3 + η4)2 dη = U2δ
367

630
(87)

Using (84), (86) and (87) in (18) we have
37

315
U2 d

dx
δ = νU

2

δ
(88)

which on integration gives

δ2 =
1260

37
· νx

U
(89)

Hence

δ =

[
1260

37

] 1
2 [νx

U

] 1
2

(90)

and

d
dx
δ =

1

2

[
1260

37

] 1
2 ν

U

[
νx
U

]− 1
2

(91)

Comparing (91) and (88) we find

νU.
2

δ
.

1

U2

[
315

37

]
=

1

2

[
1260

37

] 1
2 ν

U

[
νx
U

]− 1
2

yielding [
νx
U

] 1
2 1

U

[
∂u
∂y

]
y=0

= f ′′(0) =
1

2

[
1260

37

] 1
2
[

37

315

]
(92)

Thus

f ′′(0) = 0.34272484 (93)

Boundary Layer Thickness δ

From (90),

δ =
[
νx
U

] 1
2 × 5.835585 (94)

whence
δ

x
=

5.835585√
Rex

(95)

Displacement Thicknessn δ1
Sustituting (81) and (82) into (34) we find

δ1 = δ

∫ 1

0

[1 − (2η − 2η3 + η4)]dη =
3

10
δ (96)

Using (95) in (96), we obtain
δ1
x
=

1.7506755√
Rex

(97)

Momentum Thickness δ2
Substituting (81) and (82) into (37) gives

δ2 = δ

∫ 1

0

(2η − 2η3 + η4)[1 − (2η − 2η3 + η4)]dη =
37

315
δ (98)

25



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 5; 2012

Applying (95) in (98) results in
δ2
x
=

0.685449666√
Rex

(99)

Thickness Ratio H∗

From (96) and (98) we get

H∗ = 2.554054 (100)

Skin Friction Coefficient

Substituting (95) into (85) we find

τ0 =
(2μU)(

5.835585√
Rex
× x
) (101)

or

τ0 =
2μU

5.835585
×
√

Rex

x
(102)

Using (102) in (43) gives

C f =
0.6854497√

Rex
(103)

Drag Coefficient CD

Substituting (102) into (45) we get

FD =
2μUB

5.835585

∫ L

0

√
Rex

x
dx (104)

which on integration gives

FD =
4
√
μUB

√
ρUL

5.835585
(105)

Using (105) in (50) we obtain after simplification

CD =
8

5.835585
×
√
μ√
ρUL

(106)

or

CD =
1.3708994√

Rex
(107)

Application of Fifth and Sixth Order Velocity Profiles

Similar analyis using fifth and sixth order velocity profiles yields the following results:

6. Fifth Order Velocity Profile

The form of this profile is

u = U(x) f (η) (108)

with

f (η) =
5

3
η − 5

3
η4 + η5, η =

y
δ

(109)

or

u = U
(

5

3
η − 5

3
η4 + η5

)
(110)

Result:

Boundary layer thickness δ
δ

x
=

5.17936√
Rex

(111)

Dispacement thickness δ1
δ1
x
=

1.72645√
Rex

(112)
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Momentum thickness δ2
δ2
x
=

0.64357√
Rex

(113)

Thickness ratio H∗
H∗ = 2.68258 (114)

Skin friction coefficient C f

C f =
0.64357√

Rex
(115)

Drag coefficient CD

CD =
1.28715√

ReL
(116)

Shear Rate Relation on the Plate f ′′(0)

f ′′(0) = 0.32178 (117)

7. Sixth Order Velocity Profile

The profile is taken as

u = U(x) f (η) (118)

where

f (η) = 2η − 2η4 + η6 (119)

or

u = U(2η − 2η4 + η6) (120)

Result:

Boundary layer thickness δ
δ

x
=

6.85486√
Rex

(121)

Displacement thickness δ1
δ1
x
=

1.76267√
Rex

(122)

Momentum thickness δ2
δ2
x
=

0.58352√
Rex

(123)

Thickness ratio H∗
H∗ = 3.02073 (124)

Skin friction coefficient C f

C f =
0.58352√

Rex
(125)

Drag coefficient CD

CD =
1.16705√

ReL
(126)

Shear rate relation on the plate f ′′(0)

f ′′(0) = 0.29176 (127)

8. Final Result

The final result for the parameters δ, δ1, δ2,H∗,C f ,CD and f ′′(0) with respect to the second, third, fourth, fifth and

sixth order velocity profiles together with the exact Blasius solution is shown in Table 1, while the percentage error

of these parameters is displayed in Table 2.
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Table 1. Approximate values of the parameters with exact values shown at the bottom of the table

Velocity profile δ
x

δ1
x

δ2
x H∗ = δ1

δ2
C f CD f ′′(0)

u = U(2η − η2) 5.4772√
Rex

1.8257√
Rex

0.7302√
Rex

2.50 0.7302√
Rex

1.4605√
ReL

0.3651

u = U
(

3
2
η − 1

2
η3
)

4.6409√
Rex

1.7403√
Rex

0.6464√
Rex

2.6923 0.6464√
Rex

1.2928√
ReL

0.3232

u = U(2η − 2η3 + η4) 5.8355√
Rex

1.7506√
Rex

0.6854√
Rex

2.5540 0.6854√
Rex

1.3708√
ReL

0.3427

u = U
(

5
3
η − 5

3
η4 + η5

)
5.1793√

Rex

1.7264√
Rex

0.6435√
Rex

2.6825 0.6435√
Rex

1.2871√
ReL

0.3217

u = U(2η − 2η4 + η6) 6.8548√
Rex

1.7627√
Rex

0.5835√
Rex

3.0207 0.5835√
Rex

1.16705√
ReL

0.2917

Blasius Exact Solution 5√
Rex

1.7208√
Rex

0.664√
Rex

2.5915 0.664√
Rex

1.328√
Rex

0.332

Table 2. Percentage errors of the parameters

Percentage error of the parameters

Velocity profile δ
x

δ1
x

δ2
x H∗ = δ1

δ2
C f CD f ′′(0)

u = U(2η − η2) 9.54 6.09 9.96 3.53 9.96 9.97 9.96

u = U
(

3
2
η − 1

2
η3
)

7.18 1.13 2.65 3.88 2.65 2.65 2.65

u = U(2η − 2η3 + η4) 16.71 1.73 3.22 1.44 3.22 3.22 3.22

u = U
(

5
3
η − 5

3
η4 + η5

)
3.58 0.32 3.08 3.51 3.08 3.07 3.10

u = U(2η − 2η4 + η6) 37.09 2.43 12.12 16.56 12.12 12.11 12.13

9. Discussion and Conclusion

Table 1 shows the approximate values of the parameters for each of the profile together with the exact Blasius

solution shown at the bottom of the table, while Table 2 shows the percentage error of these parameters for each

profile. In Table 2, it is observed that the percentage error with respect to the boundary layer thickness δ increases

as the even order of the velocity profile increases (or decreases as the odd order of the velocity profile increases).

This trend is also illustrated graphically below. Table 2 also reveals that the percentage errors for the displacement

thickness δ1 are smaller than those of the momentum thickness δ2. Hence the graph for displacement thickness

falls below that of the monentum thickness.

Furthermore, Table 2 shows that the parameters C f ,CD and f ′′(0) have very nearly the same percentage error

as that of δ2 for each of the velocity profile, and hence their graphs will closely be like that of the momentum

thickness δ2. From the result of the sixth order profile we can conclude generally that the higher the order of the

velocity profile the worse the results for the parameters. Finally, the velocity profiles considered in this work show

that the flow is attached (i.e not separated) as the profiles satisfy the conditions (17) of this work. Also, it should

be mentioned that the first order profile is not applicable here because the flow in this case is not attached.
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Figure 1. Graph of percentage error versus velocity profile order
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