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Abstract

In this paper, we propose and analyze a new predictor-corrector method for solving a nonlinear system of equations

using the weight combination of mid-point, Trapezoidal and quadrature formulas. A new algorithm based on this

method has been presented. The proposed method has been tested on a series of examples published in the literature

and shows good results. Comparison with other similar methods is given.

Keywords: system of non-linear equations, predictor-corrector methods, quadrature formulas

Recently, several iterative methods have been developed to solve nonlinear equations and the system of nonlinear

equations. These methods have been improved using Taylor interpolating polynomials quadrature formula, ho-

motopy perturbation method and decomposition techniques (Abbasbandy, 2005; Jafari & Gejji, 2006; He, 1999;

Awawdeh, 2009; Vahidi et al., 2012). Noor et al. (2006) have considered an alternative decomposition technique

which does not involve the derivative of the domain polynomial. Furthermore, by improving Newton method,

Chun (2006) has presented a new iterative method to solve nonlinear equations. By using Adomain decomposi-

tion, Darvishi et al. (2007a; b) have constructed new methods, and Golbabai & Javidi (2007) have applied the

homotopy perturbation method to build a new family of Newton-like iterative methods for solving system of non-

linear equations. Ozel (2010) has considered a new decomposition method for solving the system of nonlinear

equations. Hafiz & Bahgat (2012) modified Householder iterative method for solving system of nonlinear equa-

tions. He also show that this new method includes famous two step Newton method as a special case. Soheili et al.

(2008) have developed a new iterative method by using the weight combination of the midpoint, and Trapezoidal

quadrature formulas to solve nonlinear equation. In this paper, we aim to generalize and apply this method to solve

a system of nonlinear equations. Finally, some numerical examples have fulfilled with Maple software to demon-

strate our method and comparison of our results with those derived from previous methods. All test problems

reveal accuracy and fast convergence of our method.

2. Iterative Method

The general form of a system of non-linear equations is

f1(x1, x2, · · · , xn) = 0, f2(x1, x2, · · · , xn) = 0, ... , fn(x1, x2, · · · , xn) = 0, (1)

Where each function fi can be thought of as mapping a vector x = (x1, x2, . . . , xn) of the n-dimensional space Rn,

into the real line R. The system can alternatively be represented by defining a functional F, mapping Rn into Rn

by:

F(x1, x2, . . . , xn) = ( f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))T

Using vector notation to represent the variables x1, x2, . . . , xn, a system (1) then assumes the form:

F(x) = 0 (2)

The functions f1, f2, . . . , fn are called the coordinate functions of F.
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Before discussing the numerical solution of a system given in the form (1) or (2), we need to consider some results

concerning continuity, differentiability and limits of functions from Rn to Rn, see (Burden & Farires, 1985).

Definition 1 Let F be a function from D ⊂ Rn into Rn and suppose F has the representation

F(x1, x2, . . . , xn) = ( f1(x), f2(x), . . . , fn(x))T

Where fi for each i is a mapping from Rn into R, we define

lim
x→x0

F(x) = L = (L1, L2, . . . , Ln)T

If and only if lim
x→x0

fi(x) = Li for each i = 1, 2, . . . , n.

Definition 2 Let F be a function from D ⊂ Rn into Rn with the representation F(x) = ( f1(x), f2(x), . . . , fn(x))T .

The function F is said to be continuous at x0 ∈ D provided lim
x→x0

F(x) exists and lim
x→x0

F(x) = F(x0). F is said to be

continuous on the set D if F is continuous at each x into D.

Definition 3 Let F be a function from D ⊂ Rn into R and x0 ∈ D. If constants δ > 0 and K > 0 exist with
∣∣∣∣ ∂ f (x)

∂x j

∣∣∣∣ ≤ K
for each j = 1, 2, . . . , n whenever ‖x − x0‖ < δ and x ∈ D, then f is continuous at x0.

3. Two-step Iterative Algorithm Description

Suppose that x be the simple zero of sufficiently differentiable functions and consider the numerical solution of the

system of equations F(x) = 0, where F : D ⊆ Rn → Rn is a smooth mapping that has continuous second order par-

tial derivatives on a convex open set D, and that has a locally unique root x in D, F(x) = ( f1(x), f2(x), . . . , fn(x))T ,

x = (x1, x2, . . . , xn)T and fi : Rn → R is a nonlinear function, then,

F(x) = F(xi) +

∫ x

xi

F′(T )dT, (3)

The matrix of partial derivatives appearing in equation (3) is the Jacobian J where
∫ x

xi
F′(t)dt is multiple integrals

as follows ∫ x

xi

F′(t)dt =
∫ x1

xi,1

∫ x
2

xi,2

...

∫ xn

xi,n

F′(x1, x2, ..., xn)dxndxn−1...dx1.

The most obvious approach is to treat the multiple integral as a nested sequence of one-dimensional integrals, and

to use one-dimensional quadrature with respect to each argument in turn. So we can approximate
∫ x

xi
F′(t)dt with

average of midpoint and Simpson quadrature formulas then we have

∫ x

xi

F′(t)dt = (
x − xi

2
)F′(

xi + x
2

) +
x − xi

12
[F′(xi) + 4F′(

xi + x
2

) + F′(x)] (4)

From (3) and (4), we have,

F(x) = F(xi) + (
x − xi

2
)F′(

xi + x
2

) +
x − xi

12
[F′(xi) + 4F′(

xi + x
2

) + F′(x)]

Since, F(x) = 0 then

x = xi − 12 [J(xi) + 10J(wi) + J(x)]−1 [F(x)]

where

wi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1

w2

...
wn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,i + x1

x2,i + x2

...
xn,i + xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,i

x2,i
...
xN,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, J(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2
· · · ∂ f1
∂xn

...
∂ fn
∂x1

∂ fn
∂x2
· · · ∂ fn
∂xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

which is an implicit method, since xn+1 occurs on both sides of the equation. To implement this implicit method,

one has to compute the approximate solution implicitly, which is itself a difficult problem. To overcome this

drawback, one usually uses the prediction and correction technique. With the formulation (5) and with selecting

Predictor-Corrector of Newton method we will have followed a two-step iterative method for solving the system

of nonlinear equation (2) as follows
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Algorithm 1 For a given x0, compute the approximate solutionxi+1 by iterative scheme.

yi = xi − J−1(xi)F(xi), (6)

xi+1 = xi − 12
[
J(xi) + 10J(wi) + J(yi)

]−1 F(xi) (7)

4. Convergence Analysis

In this section, we consider the convergence of our algorithm for nonlinear equations, In similar way, one can

prove the convergence of a system of nonlinear equations.

Theorem 1 Let r be a sample zero of sufficient differentiable function f :⊆ R → R for an open interval I. If x0 is
sufficiently close to r, then the two step method defined by our algorithm (5) has convergence is at least of order 3.

Proof. Consider to

yn = xn − f (xn)

f ′(xn)
, (8)

xn+1 = xn − 12 f (xn)

f ′(xn) + 10 f ′( xn+yn
2

) + f ′(yn)
. (9)

Let r be a simple zero of f . Since f is sufficiently differentiable, by expanding f (xn) and f ′(xn) about r, we get

f (xn) = f (r) + (xn − r) f ′(r) +
(xn − r)2

2!
f (2)(r) +

(xn − r)3

3!
f (3)(r) +

(xn − r)4

4!
f (4)(r) + · · · ,

then

f (xn) = f ′(r)[en + c2e2
n + c3e3

n + c4e4
n + · · · ], (10)

and

f ′(xn) = f ′(r)[1 + 2c2en + 3c3e2
n + 4c4e3

n + 5c5e4
n + · · · ], (11)

where ck =
1
k!

f (k)(r)

f ′(r)
, k = 1, 2, 3, . . . and en = xn − r.

Now from (10) and (11), we have

f (xn)

f ′(xn)
= en − c2e2

n + 2(c2
2 − c3)e3

n + (7c2c3 − 4c3
2 − 3c4)e4

n + · · · , (12)

From (8) and (12), we get

yn = r + c2e2
n + 2(c3 − c2

2)e3
n + (−7c2c3 + 4c3

2 + 3c4)e4
n + · · · , (13)

From (13), we get,

f (yn) = f ′(r)[(yn − r) + c2(yn − r)2 + c3(yn − r)3 + c4(yn − r)4 + · · · ]
and

f ′(yn) = f ′(r)[1 + 2c2(yn − r) + 3c3(yn − r)2 + 4c4(yn − r)3 + 5c5(yn − r)4 + · · · ]
= f ′(r)[1 + 2c2

2e2
n + 4(c2c3 − c3

2)e3
n + (−11c2

2c3 + 8c4
2 + 6c2c4)e4

n + · · · ]

Expanding f ′( xn+yn
2

) about r, we get

f ′(
xn + yn

2
) = f ′(r)[1 + 2c2(

xn + yn

2
− r) + 3c3(

xn + yn

2
− r)2 + 4c4(

xn + yn

2
− r)3 + · · · ],

= f ′(r)[1 + c2en + (c2
2 +

3

4
c3)e2

n + (
7

2
c2c3 − 2c3

2 +
1

2
c4)e3

n

+ (
9

2
c2c4 − 29

4
c2

2c3 +
5

16
c5 + 4c4

2 + 3c2
3)e4

n + · · · ],

then

f ′(xn) + 10 f ′(
xn + yn

2
) + f ′(yn)
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= f ′(r)[12+12c2en+ (12c2
2+

21

2
c3)e2

n+ (39c2c3−24c3
2+9c4)e3

n+ (48c4
2+30c2

3+51c2c4− 129

2
c2

2c3+
65

8
c5)e4

n+ · · · ]

= 12 f ′(r)[1 + c2en + (
7

8
c3 + c2

2)e2
n + (

13

4
c2c3 +

3

4
c4 − 2c3

2)e3
n + (

5

2
c2

3 −
53

8
c2

2c3 +
17

4
c2c4 +

65

96
c5 + 4c4

2)e4
n + · · · ]

From (9), en+1 = xn+1 − r and en = xn − r

en+1 = en − 12 f (xn)

f ′(xn) + 10 f ′( xn+yn
2

) + f ′(yn)
.

Then we will have

en+1 = en − [en − (c2
2 −

1

8
c3)e3

n − (
27

8
c2c3 − 1

4
c4 − 3c3

2)e4
n + · · · ]

Finally

en+1 = (c2
2 −

1

8
c3)e3

n + (
27

8
c2c3 − 1

4
c4 − 3c3

2)e4
n + · · ·

lim
n→∞

en+1

e3
n
= c2

2 −
1

8
c3 =

1

4

(
f ′′(r)

f ′(r)

)2

− 1

48

f ′′′(r)

f ′(r)
.

which shows that Algorithm 1 is at least a third order convergent method, the required result.

Since asymptotic convergence of Newton method is c2 and from Theorem 1, we deduce that the convergence rate

of our algorithm is better than the Newton method. And the cubic convergent method is vastly superior to the

linear and the quadratically convergent methods.

5. Numerical Examples

In all of our examples, the maximum number of iteration is N = 200 and our examples are tested with precision

ε = 10−15. The following stopping criteria is used for computer programs: ‖xn+1 − xn‖ < ε or ‖F(xn)‖ < ε. The

comparisons with Homotopy perturbation method (HPM) and Newton-Raphson method (NM) are based on the

number of iterations n which are presented in Tables. The following table contains the test functions used to test

the performance of both methods. Here, the numerical computations listed in tables were performed on a computer

algebra system called Maple 13 with 20 digits.

5.1 Small Systems of Nonlinear Equations

Example 1 Consider the following system of nonlinear equations (Golbabai & Javidi, 2007), which have an exact

solution at (1, 1) using initial approximation x0 = [0.8, 0.8]T .

F1 (X) =

{
f1(x, y) = x2 − 10x + y2 + 8 = 0

f2(x, y) = xy2 + x − 10y + 8 = 0.

Table 1. Numerical results for Example 1

F1 Newton-Raphson HPM Present method

NI x y x y X y

1 .987766198459447 .985772541912097 0.998270352547736 0.997314611742872 .99909530066340 .99880312274025

2 .999935603124850 .999916479630138 0.999999995819455 0.999999993343152 .99999999980016 .99999999972169

3 .999999997926065 .999999997265203 0.999999999999999 1.000000000000000 1.0000000000000 1.0000000000000

Example 2 Consider the following system of nonlinear equations (Ozel, 2010) which have an exact solution at

(1, 1) using initial approximation x0 = [0.5, 0.5]T

F2 (X) =

{
f1(x, y) = x2y − 1 + x − y = 0

f2(x, y) = x2 + y2 − 2 = 0,

Table 2. Numerical results for Example 2

F2 Newton-Raphson HPM Present method

NI x y x y X y

1 1.388888888888888 1.111111111111111 0.584019204389574 0.752400548696844 0.855913518714005 1.013756564266330

2 1.069355784167179 .9869163809021366 0.905274466918989 0.954281702145681 0.999461132799700 1.000043296108220

3 1.000848429856370 1.001604421204614 0.999532744494716 0.999814121537017 0.999999999974393 1.000000000005090

4 1.000001146049355 1.000000499177722 0.999999999957910 0.999999999981766 1.000000000000000 1.000000000000000
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Example 3 Consider the following system of nonlinear equations (Golbabai & Javidi, 2007), which have an exact

solution at (1, 1) using initial approximation x0 = [0.8, 0.8]T

F3 (X) =

{
f1(x, y) = x4y − xy + 2x − y − 1 = 0

f2(x, y) = ye−x + x − y − e−1 = 0,

Table 3. Numerical results for Example 3

F3 Newton-Raphson HPM Present method

NI x y x Y x y

1 1.202154745465234 1.252500021237429 0.530135422051184 0.375112183418822 .915589914489711 .900999078672304

2 1.066458500832922 1.071778294601873 1.167578846210930 0.826948359050393 .995063851974896 .994094932023846

3 1.008970459700100 1.009951147648418 1.002859536677230 0.999714844009216 .999999280230771 .999999153894058

4 1.000190149835321 1.000217129214667 1.000000085472060 1.000000076036040 1.00000000000000 1.00000000000001

Example 4 Consider the following system of nonlinear equations (Hosseini & Kafash, 2010) which has a solution,

at X = (0.532370372327903, 0.351257447590883), using initial approximation x0 = [0.53, 0.35]T

F4 (X) =

{
f1(x, y) = x3 + y3 − 6x + 3 = 0

f2(x, y) = x3 − y3 − 6y − 2 = 0,

Table 4. Numerical results for Example 4

F4 Newton-Raphson HPM Present method

NI x y x y x y

1 .5323682133175740 .3512560178033324 0.532370365139782 0.351257442898170 .532370369897060 .351257446061485

2 .5323703723259607 .3512574475897934 0.532370372327903 0.351257447590883 .532370372327902 .351257447590882

3 .5323703723279030 .3512574475908831 0.532370372327903 0.351257447590883

4 .5323703723279030 .3512574475908831

Example 5 In a case three dimension, consider the following systems of nonlinear functions (Awawdeh, 2009), and

(Hosseini & Kafash, 2010) where x∗ = (1.0421496, 1.0310913, 0.92384815)T is the solution of this system, using

initial approximation x0 = [5., 4., 2.]T

F5 (X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x, y, z) = 15x + y2 − 4z − 13 = 0

f2(x, y, z) = x2 + 10y − e−z − 11 = 0

f3(x, y, z) = y3 − 25z + 22 = 0,

Table 5. Numerical results for Example 5

F5 HPM Present method

NI x y z x y z

1 0.858102935922979 0.995520909735443 -1.728542081154890 0.952626720902665 0.992732766696450 -0.851587051863595

2 0.938083254462730 1.791392442270120 1.107814211025650 1.041578243270440 1.040378737490350 0.923799502004400

3 1.046987147534600 1.030216151827310 0.940390410810817 1.042149561658460 1.031091271275050 0.923848158979542

4 1.042149563794840 1.031091242405770 0.923848150437484 1.042149560576930 1.031091271839400 0.923848154879367

5 1.042149560576930 1.031091271839400 0.923848154879367 1.042149560576930 1.031091271839400 0.923848154879367

6 1.042149560576930 1.031091271839400 0.923848154879367

Example 6 In a three dimension case, consider the following systems of nonlinear functions (Awawdeh, 2009)

where x∗ = (.5, 0,−.5235987755982)T is the solution of this system, using initial approximation x0 = [5., 4., 2.]T

F6 (X) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x, y, z) = 3x − cos(yz) − 0.5 = 0

f2(x, y, z) = x2 − 81(y + 0.1)2 + sin z + 1.06 = 0

f3(x, y, z) = e−xy + 20z + 10π−3
3
= 0,
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Table 6. Numerical results for Example 6

F6 HPM Present method

NI x y z x y z

1 41.174379524898 2.3305907045959 -0.4735987765029 0.3264837147307 1.59964685726156 0.575667883890184

2 0.8354962027095 -4.6996404543213 -0.4735987755982 0.4391032545486 0.47233538404662 -0.51724957483991

3 1.0703427923466 -1.8282755657884 -0.7967631804740 0.5008820391011 0.10621342346362 -0.52072671134879

4 0.4537241849972 -0.7521205589332 -0.5330687052474 0.5000787511491 0.00872754527967 -0.52337058806636

5 0.4968557700375 -0.3558140012447 -0.5330863345798 0.5000001340783 0.00001467555805 -0.52359839168772

6 0.4979211091684 -0.2242487141958 -0.5294699721794 0.5000000000000 0.00000000000007 -0.52359877559829

Table 7. Numerical results for Number of iterations

Number of iterations F1 F2 F3 F4 F5 F6

NR 5 7 8 4 7 15

HPM 4 5 6 3 6 10

Present method 3 4 5 3 5 8

5.2 Large Systems of Nonlinear Equations

In this subsection, we test with some sparse systems with m unknowns. For the following examples, we can see

that all NR and HPM methods with the iteration numbers in comparison with the present method.

Example 7 Consider the following system of nonlinear equations (Darvishi & Shin, 2011):

F7 : fi = exi − 1, i = 1, 2, ...,m.

The exact solution of this system is x∗ = (0, 0, ..., 0)T . To solve this system we set x0 = (0.5, 0.5, ..., 0.5) as an

initial guess. The results are presented in Table 8.

Example 8 Consider the following system of nonlinear equations:

F8 : fi = x2
i − cos(xi − 1), i = 1, 2, ...,m.

One of the exact solutions of this system is x∗ = (1, 1, ..., 1)T . To solve this system we set x0 = (2., 2., ..., 2.) as an

initial guess. The results are presented in Table 8.

Example 9 Consider the following system of nonlinear equations (Darvishi & Shin, 2011):

F9 : fi = cos xi − 1, i = 1, 2, ...,m.

One of the exact solutions of this system is x∗ = (0, 0, ..., 0). To solve this system we set x0 = (2., 2., ..., 2.) as an

initial guess. The results are presented in Table 8.

Table 8. Numerical results for Example 7, 8 and 9

Number of iterations F7 F8 F9 F7 F8 F9 F7 F8 F9

ε = 10−13 m=50 m=75 m=100

NR 5 7 21 5 7 21 5 7 21

HPM 4 5 15 4 5 15 4 5 15

Present method 3 4 14 3 4 14 3 4 14

6. Conclusions

The present two step method is generalized and applied for solving system of nonlinear algebraic equations. The

numerical results in Tables show that our method is very effective and provide highly accurate results in a less

number of iterations as compared with Newton-Raphson method and Homotopy perturbation method.
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