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Abstract

We introduce some analytic relations on the set of partial differential equations of two variables. It relies on a

new comparison method to give rough asymptotic estimates for solutions which obey different partial differential

equations. It uses a kind of scale transform called tropical geometry which connects automata with real rational

dynamics. Two different solutions can be considered when their defining equations are transformed to the same

automata at infinity. We have a systematic way to construct related pairs of different partial differential equations,

and also construct some unrelated pairs concretely. These verify that the new relations are non trivial. We also

make numerical calculations and compare the results for both related and unrelated pairs of PDEs.

Keywords: tropical geometry, ultradiscrete systems, automata, PDE, scale transform

1. Introduction

Scaling limits play one of the central roles in discrete dynamical systems, which create another dynamics with dif-

ferent analytic aspects. Tropical geometry and ultradiscrete dynamical systems arose from very different contexts

each other, and have been developed quite separately [V], [TTMS]. However from the view point of scaling limits,

their method surprisingly coincides, which connect real rational dynamics with piece-wise linear systems.

Such scaling limit provides with an important prototype in mathematical physics. The Korteweg-de Vries (KdV)

equation us + uux + u3x = 0 is a PDE which has been derived from the discrete Lotka-Volterra equation zt+1
N+1
=

zt
N+1

(1 + zt+1
N )(1 + zt

N+2
)−1 (Hirota, 1977; Hirota & Tsujimoto, 1995). The above scaling limit changes the discrete

dynamics into the Lotka-Volterra cell automaton Ut+1
N+1
= Ut

N+1
+max(0,Ut+1

N )−max(0,Ut
N+2

). In the light of inte-

grable systems, these three dynamics share common features, like existence of soliton solutions, many conserved

quantities and so on [TTMS].

These scaling limits allow us to study analytic aspects at the same time for three categories of dynamical systems

which sit in different hierarchies mutually. The classes of dynamics which can be analyzed by these scaling limits

are rather broad beyond integrable systems. In fact it is easy to find discrete dynamical systems which are far

from integrable, but which are transformed into integrable cell automata. (see section 3.C). If we consider a

situation when two discrete dynamical systems are transformed into the same integrable cell automaton, where one

is integrable and the other is not, then it will be quite natural to try to produce some systematic method to analyze

various PDEs which include wide classes of dynamical systems as above.

Arising from a new comparison method to study rough asymptotic growth among solutions to different partial

differential equations, in this paper we introduce analytic relations on the set of partial differential equations of two

variables. As a first step in this paper we show non triviality of such relations.

Let P1(ε, u, ux, us, . . . ) and P2(ε, v, vx, vs, . . . ) be two different partial differential equations for dependent variables

u(x, s) and v(x, s) respectively. Our basic method is to compare solutions between P1 and P2 in terms of the initial

data and the distorsions of the higher derivatives of their solutions.

For small parametrization ε > 0, let:

PDE2 = {P(ε, u, ux, us, uxs, . . . , uαs) = 0 : P are polynomials with real coefficients}
be all the set of families of polynomial type partial differential equations with 2 variables parametrized by ε > 0.
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In this paper we introduce some analytic relations ∼ between elements in PDE2. They are given by uniform
asymptotic estimates for all positive solutions of different PDEs. We will focus on two aspects, where one is

growth rates of solutions and the other is the domains of solutions on the space variable. For the first we will treat

two growth cases, exponential ∼e and double-exponential ∼ee
. For the second we also treat two cases, where one

is ∼ f in which include domains of bounded space variables, and the other is ∼∞ which restricts only on infinite

domains in space. Thus in total there are four classes of the relations:

∼e
f in ≤ ∼ee

f in

|∧ |∧

∼e∞ ≤ ∼ee

∞

where ∼+∗ ≤ ∼+′∗′ means that u ∼+∗ v implies u ∼+′∗′ v for any two solutions.

In this paper we introduce two subsets:

PDE f in
2
⊂ PDE∞2 ⊂ PDE2.

There are also some stratifications (M, c,D, L;α) and (M, c, L, k,D) over both ∼+∗ and PDE∗2 with respect to some

constants respectively (2.B, 3.B).

Our main aim here is to verify non triviality of the relations over these spaces. In [K2], we have introduced some

constructive way to obtain partial differential equations, which produces many related pairs with respect to the

classes:

(PDE f in
2
,∼∗f in), (PDE∞2 ,∼∗∞),

where ∗ = e or ee.

Let us explain more details. Our basic idea is to approximate PDE by discrete rational dynamics of the form:

zt+1
N+1 = f (zt+1

N−l0 , . . . , z
t+1
N , z

t
N−l1 , . . . , z

t
N+k1
, . . . , zt−d

N+kd+1
)

by introducing scaling parameters zt
N = ε

mu(x, s) and (N, t) = (ε−px, ε−qs). Notice that for any n variable function

f as above, one can choose various types of the sets of variables (zt+1
N−l0
, . . . , zt+1

N , z
t
N−l1
, . . . , zt

N+k1
, . . . , zt−d

N+kd+1
). We

say that the sets:

{(zt+1
N−l0 , . . . , z

t+1
N , z

t
N−l1 , . . . , z

t
N+k1
, . . . , zt−d

N+kd+1
), (m, p, q)}

are the approximation data.

Let us say that the above rational dynamics is consistent, if all k1, . . . , kd+1 ≤ 1 hold. As a general procedure, the

rational dynamics with the scaling parameters above give pairs of partial differential equations F(ε, u, ux, . . . ) = 0

as the leading terms, and the error terms F1(ε, u, ux, . . . ) by use of Taylor expansions (3.B):

zt+1
N+1 − f (zt+1

N−l0 , . . . , z
t−d
N+kd+1

) = εmF(ε, u, ux, us, uxs, . . . , uαx, uαs)

+ εm+1F1(ε, u, ux, us, uxs, . . . , uαs, u(α+1)x(ξα+1,0), . . . , u(α+1)s(ξ0,α+1))

We say that a partial differential equation P(u, ux, us, uxs, . . . , uαx, uαs) is in PDE∞2 , if there is an induced pair (F,F1)

as above and a positive function h > 0 so that:

(1) F satisfies the equality:

F(ε, u, ux, us, uxs, . . . , uαx, uαs) =
P(u, ux, us, uxs, . . . , uαx, uαs)

h(u, ux, us, uxs, . . . , uαx, uαs)

(2) there is a constant C ≥ 0 so that the pointwise estimates hold:

|F1(ε, u, ux, us, . . . , uαs, u(α+1)x(ξα+1,0), uαx,s(ξα,1), . . . , u(α+1)s(ξ0,α+1))|
≤ C(|u(α+1)x(ξα+1,0)| + |uαx,s(ξα,1)| + · · · + |u(α+1)s(ξ0,α+1)|).

P is said to be in PDE f in
2

, if in addition the discrete dynamics is consistent.

126



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 4; 2012

For the domains of solutions, we consider on:

⎧⎪⎪⎨⎪⎪⎩
(0, A0) × [0,T0) P ∈ PDE f in

2
, A0,T0 ∈ (0,∞],

(0,∞) × [0, T0) P ∈ PDE∞2 , T0 ∈ (0,∞].

The following result was obtained by the analysis of the combination of Lipschitz geometry with some scaling

limits called tropical geometry:

Theorem 1.1 (K2) Suppose two PDEs P,Q ∈ PDE∗2 are obtained from two relatively elementary and increasing
functions f and g which are mutually tropically equivalent, where ∗ = fin or∞. Then they are mutually related:

P ∼+∗ Q if P,Q ∈ PDE∗2

where + = e or ee, and + can be e only when both f and g are linear.

As a concrete case, we have the following:

Proposition 1.2 Two partial differential equations of order 1:

vs +
ε

2
vvx − 1

2
v2 = 0, 2us +

ε

2
u(us + ux) = 0

are both in PDE∞2 in the class (20, 2, 1, 2, 1), and they are mutually related in ∼ee

∞ in the class (40, 4, 1, 2; 1).

The following theorem suggests that “sizes of PDE∗2/ ∼+∗ will be large”:

Theorem 1.3 (1) For any M,D, L ≥ 1, there are l0 and a0, b0 so that for each even l = 2m ≥ l0, two PDEs

u, v : (0, a0) × [0, b0)→ (0,∞) of order l:

εus +
ε2

2
u2s + · · · + ε

l

l!
uls + ε

2uxs +
ε3

2
uxss + · · · + ε

l

l!
u(l−1)M′ s = 0,

ε(vs + vx) + ε2(vxs +
1

2
v2s +

1

2
v2x) + · · · + ε

l

l!
vlx = 0

are both in PDE f in
2

in the class (1, 1, 0, 1, 1), and they are mutually unrelated in ∼e
f in in the classes (M, 1,D, L; l).

(2) For any M, c,D, L ≥ 1, there is I0 so that for all I ≥ I0, pairs of PDEs given by:

4us + εu(us + ux) = 0, vs = Ivx

are both in PDE∞2 in (20, 2, 1, I + 1, 1), and are mutually unrelated in ∼ee

∞ in the class (M, c,D, L; 1).

The analysis for (2) touches with the technique in the field of the singular perturbations in the sense of continuity

of solutions at ε = 0.

The discrete dynamics used in the proof of (1) above satisfy the following property (Definition 4.1):

Lemma 1.4 There is a pair of the discrete dynamics which are mutually infinitely unrelated.

Now in particular one has obtained the followings:

Corollary 1.5 There are unrelated pairs both in

(1) (PDE f in
2
, ∼e

f in), (2) (PDE∞2 , ∼ee

f in)

with respect to any constants.

Finally we would like to address some problems which arise from the line of this paper:

Question 1.1 Are there unrelated pairs in the following classes:

(1) (PDE f in
2
, ∼ee

f in), (2) (PDE∞2 , ∼e
∞), (3) (PDE∞2 , ∼ee

∞).

In order to approach such problems, computer calculations seem very convenient. In fact in many examples

estimated here, one can express very concrete constants even though they are far from optimal. So in section 5, we

have given computer calculation results. It turns out that certainly their data reflect related and unrelated situations.
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In order to treat the real models in physics, we need to extend this method for systems of partial differential equa-

tions. In particular the Korteweg-de Vries (KdV) equation is quite intriguing systems and has surprising relation-

ship with the soliton cellular automaton system known as Box and ball system (BBS) through the time-discretized

Lokta-Volterra system. We would expect that study of such direction might lead us to rough classifications of

non-equilibrium systems.

2. Classes for Partial Differential Equations

2.A Initial Conditions

Let us consider Cα+1 functions u, v : (0, A0) × [0,T0)→ (0,∞), where A0,T0 ∈ (0,∞].

For 0 < ε < 1, we introduce the initial rates:

[u : v]ε ≡ sup
(x,s)∈(0,A0)×[0,ε]∪(0,ε]×[0,T0)

(
u(x, s)

v(x, s)
)±1.

Let u : (0, A0) × [0,T0) → (0,∞) be a function of class Cα+1 as above. Then we introduce the uniform norm of u
of order α + 1 by:

||u||α+1 = max
∂i= ∂x, ∂s

{|| ∂
α+1u

∂1 . . . ∂α+1

||C0((0,A0)×[0,T0))}.
Suppose u(x, s) > 0 is positive. Then we introduce the higher derivative rates by:

Kα+1(u) ≡ ||u||α+1

inf(x,s)∈(0,A0)×[0,T0) u(x, s)
.

2.B Analytic Relations on Partial Differential Equations

Let

(∗,+) ∈ {( f in, e), ( f in, ee), (∞, e), (∞, ee)}.
Definition 2.1 Let P,Q ∈ PDE∗2 of order α. P and Q are related in (∗,+):

P ∼+∗ Q

if there are constants M, c,D, L ≥ 1 and C,C′ so that for any positive solutions u, v : (0, A0) × [0,T0)→ (0,∞):

P(ε, u, ux, us, uxs, . . . , uαs) = 0, Q(ε, v, vx, vs, vxs, . . . , vαs) = 0

they satisfy the asymptotic estimates:

(
u(x, s)

v(x, s)
)±1 ≤

⎧⎪⎪⎨⎪⎪⎩Mcε
−D (x+s+1)

([u : v]Lε)
cε
−D(x+s+1)

+ = ee,

Mε
−D(x+s+1)[u : v]Lε + = e

for all 0 < Lε ≤ min( 1
CK , A0,T0,C′), where K = max(Kα+1(u),Kα+1(v)).

The following is immediate:

Lemma 2.1 Let P,Q ∈ PDE∞2 . P1 ∼+∞ P2 holds whenever P1 ∼+f in P2 for both + = e or ee.

When we specify the constants, then we denote:

P ∼ee

∗ Q in(M, c,D, L;α), orP ∼e
∗ Q in(M, 1,D, L;α).

The following is immediate:

Lemma 2.2 Suppose M ≤ M′, c ≤ c′, D ≤ D′ and L ≤ L′ hold. Then P1 ∼+∗ P2 in (M, c,D, L;α) implies P1 ∼+∗ P2

in (M′, c′,D′, L′;α).

Remark 2.3 Notice that even though two pairs P1, P2 ∈ PDE∗2 are unrelated in ∼+∗ in the class (M, c,D, L;α), they

might still be related in ∼+∗ in the class (M′, c′,D′, L′;α).

In [K2], we have obtained a general method to produce related partial differential equations. In the next section

we sketch its construction, and in section 3.D.2, we calculate a concrete example of a pair of related PDEs which

arise from the method.
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3. Construction of Related PDEs

3.A Evolutional Discrete Dynamics

Let f = k
h be a rational function of n variables, where k and h are both polynomials. An evolutional discrete

dynamics is given by flows of the form {zt
N}t,N≥0, where one regards that t is time parameter:

z0
0

z0
1
. . . z0

N . . . ↓ (t = 0)

z1
0 z1

1 . . . z1
N . . . ↓ (t = 1)

. . . . . . . . . . . . . . .
zt

0
zt

1
. . . zt

N . . .
. . . . . . . . . . . . . . .

A general equation of evolutional discrete dynamics is of the form:

zt+1
N+1 = f (zt+1

N−l0 , . . . , z
t+1
N , z

t
N−l1 , . . . , z

t
N+k1
, . . . , zt−d

N+kd+1
)

where li, k j ≥ 0, N ≥ max(l0, . . . , ld+1) and t ≥ d, with initial values:

z̄0
0 ≡ {zt

a}0≤a≤max(l0,...,ld+1),t=0,1,... ∪ {zh
N}0≤h≤d,N=0,1,....

3.B Approximation of PDE by Rational Dynamics

Let us consider Cα+1 functions u : (0, A0) × [0,T0) → (0,∞) where A0,T0 ∈ (0,∞]. We consider its Taylor

expansion, where |(x, s) − ξi j| ≤ |(iε p, jεq)|:

zt+ j
N+i = u(x + iε p, s + jεq) = u + iε pux + jεqus +

(iε p)2

2
u2x +

( jεq)2

2
u2s

+ jεqiε puxs + · · · + (iε p)α

α!
uαx +

( jεq)α

α!
uαs +

(iε p)(α+1)

(α + 1)!
u(α+1)x(ξi j) + · · · + ( jεq)(α+1)

(α + 1)!
u(α+1)s(ξi j).

Let f = k
h be as in 3.A and choose an approximation data. Then we consider the corresponding discrete dynamics

zt+1
N+1
= f (zt+1

N−l0
, . . . , zt−d

N+kd+1
) and change of variables εmu(x, s) = zt

N , N = x
ε p and t = s

εq
. If A0 < ∞, then we assume

ki ≤ 1 for all 1 ≤ i ≤ d + 1.

Let us insert the expansion and take their difference:

zt+1
N+1 − f (zt+1

N−l0 , . . . , z
t−d
N+kd+1

)

= εmu(x + ε p, s + εq) − f (εmu(x − l0ε p, s + εq), . . . , εmu(x + kd+1ε
p, s − dεq))

=
εmF1(u) + εm+pF2(ux) + εm+qF3(us) + ε

2m+pF4(u, ux) + . . .

h(εmu(x − l0ε p, s + εq), . . . , εu(x + kd+1ε p, s − dεq))

where Fi(u, ux, . . . ) are monomials.

Let us divide its numerator into two parts:

εmF1(u) + εm+pF2(ux) + εm+qF3(us) + ε
2m+pF4(u, ux) + . . .

= εmP(ε, u, ux, us, uxs, . . . , uαs) + ε
m+1Q(ε, u, .., {u(α+1)x(ξα+1,0), uαx,s(ξα,1), . . . , u(α+1)s(ξ0,α+1)})

so that the first term contains only monomials whose derivatives of u are up to order α, and all the monomials of

the second term contain derivatives of u of order α + 1. Then putting:

F(ε, u, ux, us, uxs, . . . , uαx, uαs) = P(ε, u, ux, . . . , uαs)/h(εmu(x − l0ε p, s + εq), . . . ),

F1(ε, u, .., {uix, js(ξi j)}i+ j=α+1) = Q(ε, u, .., {uix, js(ξi j)}i+ j=α+1)/h(εmu(x − l0ε p, s + εq), . . . ),

one obtains the following expression:

zt+1
N+1− f (zt+1

N−l0 , . . . , z
t−d
N+kd+1

) = εmF(ε, u, ux, us, uxs, . . . , uαx, uαs) + ε
m+1F1(ε, u, ux, . . . , uαs, {uix, js(ξi j)}i+ j=α+1).

Definition 3.1 A partial differential equation P(u, ux, us, uxs, . . . , uαx, uαs) is in PDE∞2 , if there is an induced pair

(F,F1) as above and a positive function h > 0 so that:
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(1) F satisfies the equality:

F(ε, u, ux, us, uxs, . . . , uαx, uαs) =
P(ε, u, ux, us, uxs, . . . , uαx, uαs)

h(εmu(x − l0ε p, s + εq), . . . )

(2) There is a constant C ≥ 0 so that the pointwise estimates hold:

|F1(ε, u, ux, us, . . . , {uix, js(ξi j)}i+ j=α+1)| ≤ C(|u(α+1)x(ξα+1,0)| + · · · + |u(α+1)s(ξ0,α+1)|).

P is in PDE f in
2

if in addition, the discrete dynamics is consistent.

Let us consider the last term with the estimate (see 2.A):

C(|u(α+1)x(ξα+1,0)| + · · · + |u(α+1)s(ξ0,α+1)|) ≤ Cl ||u||α+1

where l is the number of the summation of α + 1 derivatives of u. We say that the number Cl is the error constant
for the approximation of P. Notice that the error constant is determined by the approximation data and the original

rational function f .

For P ∈ PDE f in
2

, we consider (0, A0) × [0, T0) as domains of solutions, and (0,∞) × [0,T0) for P ∈ PDE∞2 , where

A0,T0 ∈ (0,∞].

Let

{(zt+1
N−l0 , . . . , z

t+1
N , z

t
N−l1 , . . . , z

t
N+k1
, . . . , zt−d

N+kd+1
), (m, p, q)}

be the approximation data. Then one obtains several numbers:

L = max(l, d), D = max(p, q), k = max(k1, . . . , kd+1), l = max(l0, . . . , ld+1).

Below in 3.C, we induce extra numbers M = Mf and c = c f from f . Then the function f and the approximation

data determine the constants:

(M, c, L, k,D).

We say that P(u, ux, us, uxs, . . . , uαs) is approximable in the class (M, c, L, k,D) in PDE∗2, if it is induced from some

discrete dynamics as above whose constants are all less than or equal to M, c, L, k,D respectively.

Remark 3.1 Notice that three data, defining equations of discrete dynamics (1) zt+1
N+1
= f (zt+1

N−l0
, . . . , zt−d

N+kd+1
), (2) the

exponents of the scaling change of variables (m, p, q) and (3) the order to take the Taylor expansions α, determine

the defining PDEs.

3.C Scale Transform and Tropical Geometry

A relative (max,+)-function ϕ is a piecewise linear function of the form:

ϕ(x̄) = max(α1 + ā1 x̄, . . . , αm + ām x̄) −max(β1 + b̄1 x̄, . . . , βl + b̄l x̄)

where āl x̄ = Σn
i=1

ai
lxi, x̄ = (x1, . . . , xn) ∈ R

n, āl = (a1
l , . . . , a

n
l ), b̄ ∈ Z

n and αi, βi ∈ R. Notice that ϕ is Lipschitz,

since it is piecewise linear. We say that the multiple integer M ≡ ml is the number of the components of ϕ.

Correspondingly tropical geometry associates the parametrized rational function given by:

ft(z̄) ≡ kt(z̄)

ht(z̄)
=
Σm

k=1
tαk z̄āk

Σl
k=1

tβk z̄b̄k

where z̄ā = Πn
i=1

zai

i , z̄ = (z1, . . . , zn) ∈ R
n
>0

. We say that ft above is a relatively elementary function. We say that

both terms ht(z̄) = Σl
k=1

tβk z̄b̄k and kt(z̄) = Σm
k=1

tαk z̄āk are just elementary functions.

These two functions ϕ and ft admit one to one correspondence between their presentations. Moreover the defining

equations are transformed by two steps, firstly by taking conjugates by logt and secondly by letting t → ∞ (see

[Mi]).

In some cases the same (max,+) function admits different presentations, while the corresponding rational functions

are mutually different. For example for ϕ(x) ≡ max(0, 2x) = max(0, x, 2x) ≡ ψ(x), the corresponding rational

functions ft(z) = z2 + 1 and gt(z) = z2 + z + 1 are mutually different.
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Definition 3.2 Let ft and gt be the relatively elementary functions with respect to ϕ and ψ respectively.

We say that ft and gt are mutually tropically equivalent, if ϕ and ψ are the same as maps (but possibly with the

different presentations).

For a relatively elementary function ft, let c f ≥ 1 be the Lipschitz constant and Mf be the number of the compo-

nents with respect to the corresponding (max,+)-function ϕ.

3.D Asymptotic Estimates between Different PDEs

Let f be a relatively elementary function of n variables. We have two constants Mf , c f ≥ 1 in 3.C. Let

{(zt+1
N−l0
, . . . , zt+1

N , z
t
N−l1
, . . . , zt

N+k1
, . . . , zt−d

N+kd+1
), (m, p, q)} be an approximation data, and L, k,D be the corresponding

set of the numbers. With these numbers, consider:

M = max(Mf ,Mg), c = max(c f , cg), C

where C is the maximum of the error constants for the approximations of PDEs (3.B). We have obtained the

following result:

Theorem 3.2 (K2) Let f and g be both relatively elementary and increasing functions of n variables, which are
mutually tropically equivalent. Let P,Q ∈ PDE∗2 be two PDEs of order α ≥ 0 which are approximated by f and g
with the above approximation data respectively, where ∗ = fin or∞.

Let us take positive Cα+1 solutions u, v : (0, A0) × [0,T0)→ (0,∞) with:

P(ε, u, ux, us, . . . , uαx, uαs) = 0, Q(ε, v, vx, vs, . . . , vαx, vαs) = 0

and assume the estimates Kα+1(u),Kα+1(v) ≤ K. Then for any 0 < ε ≤ min( 1
2CK , (L + 1)−1A0, (L + 1)−1T0, n−1),

they satisfy the asymptotic estimates:

(
u(x, s)

v(x, s)
)±1 ≤ (2M)8 cε

−D (x+ks)+1−1
c−1 ([u : v](L+1)ε)

cε
−D(x+ks)+n

.

If both f and g happen to be linear, then c = 1 and so they admit the exponential asymptotic estimates.

The core of such asymptotic estimates has also appeared in [K1] in the case of discrete dynamics.

Corollary 3.3 Under the above situation, P1 ∼+∗ P2 in (M′, c′,D, L + 1;α), where:

(M′, c′) =

⎧⎪⎪⎨⎪⎪⎩
((2M)

8
c−1 , ck) c > 1,

((2M)8k, 1) c = 1

Proof. Firstly suppose c > 1. Then one has the estimates:

(2M)8 cε
−D(x+ks)+1−1

c−1 ≤ [(2M)
8

c−1 ](ck)ε
−D (x+s+1)

,

cε
−D(x+ks)+n ≤ (ck)ε

−D(x+s+1).

Next suppose c = 1. Then:

lim
c→1

(2M)8 cε
−D (x+ks)+1−1

c−1 = (2M)8(ε−D(x+ks)+1) ≤ [(2M)8k]ε
−D(x+s+1).

This completes the proof.

3.D.2 Example Let us apply the above method to a concrete case. See [K2] for more examples of order 2.

Proposition 3.4 Two partial differential equations of order 1:

vs +
ε

2
vvx − 1

2
v2 = 0, 2us +

ε

2
u(us + ux) = 0

are both in PDE∞2 in the class (20, 2, 1, 2, 1), and they are mutually related in ∼ee

∞ in the class (40, 4, 1, 2; 1).
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Proof. We have verified that these equations are in PDE∞2 in [K2]. For convenience, we give the explicit approxi-

mation data here. Let us choose:

zt+1
N+1 = f (zt+1

N−1, z
t
N , z

t
N+2) ≡ zt

N+2

2
+

zt
N(1 + 2zt+1

N−1
)

2(1 + zt
N)
,

wt+1
N+1 = g(wt+1

N−1,w
t
N ,w

t
N+2) ≡ wt

N+2

2
+

wt
N + wt

Nwt+1
N−1

2(1 + wt
N)
,

and (m, p, q) = (1, 1, 1). Then it is direct to check the followings:

εa(x + ε, s + ε) − A(εa(x − ε, s + ε), εa(x, s), εa(x + 2ε, s))

=

⎧⎪⎪⎨⎪⎪⎩
ε2

2(1+εv)
(2vs + 2εvvx − v2) + ε2F1(v, vx, .., vxx) (a, A) = (v, f ),

ε2

2(1+εu)
(2us + εuus + εuux) + ε2G1(u, ux, .., uxx) (a, A) = (u, g),

where the estimates hold:

|F1| ≤ 2(εv)ε |vxs(ξ−11)|
(1 + εv)

+ ε(2|vxs(ξ11)| + |vxx(ξ20)|) ≤ 5ε||v||2,

|G1| ≤ εuε|uxs(η−11)|
(1 + εu)

+ ε(2|uxs(η11)| + |uxx(η20)|) ≤ 4ε||u||2.

Thus both the equations are in PDE∞2 , and their error constants are both bounded by 5ε ≤ 5. Thus combining with

theorem 3.1, one has verified:

Lemma 3.5 Let us put K = max(K2(u),K2(v)) and choose any 0 < ε ≤ min(0.1K−1, 1/3). Then any C2 positive
solutions to the above two PDEs satisfy the asymptotic estimates for all (x, s) ∈ (0,∞) × [0,T0):

(
u(x, s)

v(x, s)
)±1 ≤ 402ε

−1(x+2s)+4

([u : v]2ε)
2ε
−1(x+2s)+3

.

Proof of proposition 3.4 The above estimates are bounded by:

402ε
−1(x+2s)+4

([u : v]2ε)
2ε
−1(x+2s)+3 ≤ 4022ε−1(x+s+1)

([u : v]2ε)
22ε−1(x+s+1)

.

for all 0 < ε ≤ min(0.1K−1, 1/3). This completes the proof.

4. Unrelated Classes

Let us take the discrete dynamics zt+1
N+1
= f (zt+1

N−l0
, . . . , zt−d

N+kd+1
) and (m, p, q). Then one obtains a family of PDEs

{Pα}α≥1 with respect to the order of the Taylor expansions (Remark 3.1 in 3.B).

Let us fix (m, p, q), and take two discrete dynamics zt+1
N+1
= f (zt+1

N−l0
, . . . , zt−d

N+kd+1
) and wt+1

N+1
= g(zt+1

N−l0
, . . . , zt−d

N+kd+1
).

Then one obtains two families of PDEs {Pα}α≥1 and {Qα}α≥1 correspondingly.

Definition 4.1 Two discrete dynamics zt+1
N+1
= f (zt+1

N−l0
, . . . , zt−d

N+kd+1
) and wt+1

N+1
= g(zt+1

N−l0
, . . . , zt−d

N+kd+1
) are infinitely

unrelated in ∼+∗ , if for any constants M, c,D, L, there are some α so that Pα and Qα are mutually unrelated in ∼+∗ in

the class (M, c,D, L;α).

Here we give some pairs of PDEs which are mutually unrelated. We treat two cases, where:

(1) they are both in PDE f in
2

, which are exponentially unrelated in ∼e
f in. They arose from two discrete dynamics

which are mutually infinitely unrelated.

(2) they are both in PDE∞2 , which are double-exponentially unrelated in ∼ee

f in.

4.A Unrelated Pairs in the Linear Case

Below we show that the following linear equations are mutually unrelated:

Theorem 4.1 For any M,D, L > 1, there are l0 and a0, b0 so that for each even l = 2m ≥ l0, two PDEs u, v :

(0, a0) × [0, b0)→ (0,∞) of order l:

εus +
ε2

2
u2s + · · · + ε

l

l!
uls + ε

2uxs +
ε3

2
uxss + · · · + ε

l

l!
u(l−1)xs = 0,

ε(vs + vx) + ε2(vxs +
1

2
v2s +

1

2
v2x) + · · · + ε

l

l!
vlx = 0
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satisfy the followings:

(1) they are approximable in the class (1, 1, 0, 1, 1) in PDE f in
2

, and

(2) they are mutually unrelated in (M, 1,D, L; l).

Proof. (1) Let us consider the discrete dynamics given by:

zt+1
N+1 = zt

N+1, wt+1
N+1 = wt

N

and the scaling parameters by N = x
ε
, t = s

ε
and zt

N = u(x, s). Then by taking the Taylor expansions up to order

l + 1, one obtains the desired PDEs, which are both approximable in PDE f in
2

in the class (1, 1, 0, 1, 1, 1). Notice

that each monomial of the PDE in u contains derivatives of s.

(2) Let f (x) = xl + 1, and put u(x, s) = f (x) and v(x, s) = f (x − s). It is immediate to see that they are solutions

respectively, because of independence of the variable s for u, and of the symmetry of the equation for v. Moreover

the equalities K(u)l+1 = Kl+1(v) = 0 hold, since l + 1 derivatives of u and v are both equal to zero. We require that

l are even in order to guarantee positivity of values of v.

If they were related in (M, 1,D, L; l), then there is some C independent of solutions so that they must satisfy the

asymptotic estimates:

(
u(x, s)

v(x, s)
)±1 ≤ Mε

−D(x+s+1)[u : v]Lε

for all 0 < Lε ≤ min(a0, b0,C).

Let us choose small ε > 0 with Lε ≤ 1. Then the estimates hold:

Mε
−D(x+s+1) ≤ Mε

−D(a0+b0+1),

[u : v]Lε ≤ [u : v]1 = max( sup
0<x≤a0

xl + 1

(x − 1)l + 1
, sup

0<x≤1

(b0 − x)l + 1

xl + 1
)

where:

xl + 1

(x − 1)l + 1
=

1 + 1
xl

(1 − 1
x )l + 1

xl

≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
1

2l
= 2l+1 x ≥ 2,

2l+1 x ≤ 2.
,

sup
0<x≤1

(b0 − x)l + 1

xl + 1
= bl

0 + 1.

Let us choose b0 ≥ 3. Then the estimate [u : v]Lε ≤ bl
0
+ 1 holds.

Now let us find a0 > b0 ≥ 3 so that the inequality a0

a0−b0
> b0 holds. In fact for 2 < β < 4 (say β = 3 is enough), if

one chooses large a0 with a2
0 − βa0 ≥ 0 then

b0 =
1

2
(a0 +

√
a2

0
− βa0) ≥ 3

satisfies the required conditions. Notice that the equality a
a−b = b holds, in the case when b = 1

2
(a +

√
a2 − 4a).

Thus if one chooses b0 as above, then the estimate a0

a0−b0
> b0 holds by an elementary observation.

Let us fix such a pair (a0, b0). Now u(a0,b0)
v(a0,b0)

=
al

0
+1

(a0−b0)l+1
holds. If one chooses sufficiently large l >> 1, then the

estimates:

u(a0, b0)

v(a0, b0)
(bl

0 + 1)−1 =
al

0
+ 1

(a0 − b0)l + 1

1

(bl
0
+ 1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
≥ 1

4

al
0

bl
0

(a0 − b0 ≤ 1)

≥ 1
4

al
0

(a0−b0)l
1
bl

0

(a0 − b0 > 1)

> Mε
−D(a0+b0+1)

hold, since the last term is independent of l. Then one has:

(
u(a0, b0)

v(a0, b0)
)±1 > Mε

−D(a0+b0+1)(bl
0 + 1) ≥ Mε

−D(a0+b0+1)[u : v]Lε .
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This is a contradiction. This completes the proof.

4.B Nonlinear Estimates

Let us treat the case of double-exponential estimates. Let P(ε, u, us, ux, . . . , uαs) = 0 be in PDE∞2 of order α ≥ 1,

and let us compare its solutions with the translations:

PI : vs = Ivx, (I > 0).

Let us start from a general situation.

Lemma 4.2 Suppose that for some 1
4
≥ δ0 > 0, C,C′,C′′ > 0 and for all small 0 < ε ≤ ε0, there are solutions

uε(x, s) on (0, δ0) × [0, δ0)→ (0,∞) with the initial values u(x, 0) = f (x) = 1 − x, which satisfy both the estimates:

(1) C ≤ uε(x, s) ≤ C′, (2) Kα+1(uε) ≤ C′′.

Then for any M, c,D, L ≥ 1, there is some I0 > 0 so that for all I ≥ I0, P and PI are unrelated in ∼ee

f in in the class
(M, c,D, L;α)

Proof. We verify the conclusion for a specific I0 > 0. Then the general case follows by restricting the domain of

the solutions by choosing some smaller δ0 ≥ δ′0 > 0.

Let us put v(x, s) = f (x + I0s). Then v is the solution to PI0
and Kα+1(v) = 0 holds.

Let us take sufficiently small δ0 >> ε >> δ > 0, and choose I0 with I0δ0 = 1−δ0−δ. One may assume the estimate

I0Lε ≤ δ0. Then δ0 + I0Lε ≤ 2δ0 and Lε + I0δ0 = 1 − δ0 − δ + Lε ≤ 1 − δ0
2

. So the estimate x + I0s ≤ 1 − δ0
2

holds

on the initial domain (x, s) ∈ (0, δ0) × [0, Lε) ∪ (0, Lε) × [0, δ0). Thus the estimate holds:

[v : uε]Lε ≤ 2C′δ−1
0 .

Suppose they could be (M, c,D, L;α) related. Then they must satisfy the asymptotic estimates ( uε (x,s)
v(x,s)

)±1 ≤
Mc2ε−D

(2C′δ0)c2ε−D

.

On the other hand v(δ0, δ0) = δ and uε(δ0, δ0) ≥ C hold. So uε (δ0,δ0)
v(δ0,δ0)

≥ C
δ

which can be arbitrarily large. This is a

contradiction. This completes the proof.

4.B.2 Conservation Equations

Let us apply the above situation to the first order conservation equations and the translations:

4us + εu(us + ux) = 0 , vs = Ivx.

We verify that both are in PDE∞2 and are mutually unrelated in ∼ee

f in (Compare this with Proposition 3.3):

Theorem 4.3 For any M, c,D, L, there is I0 so that for all I ≥ I0, pairs of PDEs given by:

4us + εu(us + ux) = 0, vs = Ivx

are both in PDE∞2 in (20, 2, 1, I + 1, 1), and are unrelated in ∼ee

f in in the class (M, c,D, L; 1).

Before proceeding, let us briefly recall a way to produce solutions, called the method of characteristics for the

conservative non linear equations of the form us + F(u)ux = 0.

Let u(ξ, 0) = f (ξ) be the initial condition, and try to solve the equation dx
ds = F(u) for u = u(x, s) with x(ξ, 0) = ξ.

Then du(x,s)
ds = us +

dx
ds ux = 0 holds. So u is constant along x(ξ, s). Moreover d2 x

ds2 =
F(u)
ds

du
ds = 0, and so x(ξ, s) =

F( f (ξ))s + ξ. Thus if one could solve ξ = ξ(s, x), then f (ξ(x, s)) will give us solutions, since u is constant along

x(ξ, s),

Proof. For the second equation, it is induced from the discrete dynamics wt+1
N+1
= wt

N+I+1
, so it lies in the class

(1, 1, 0, I + 1, 1). Thus both are in PDE∞2 in the class (20, 2, 1, I + 1, 1) by Proposition 3.3.

Now let us consider the initial function f : (0, 1) → (0,∞) by f (x) = 1 − x. The result follows if one can find

solutions u which satisfy two conditions (1) and (2) in Lemma 4.2. We will solve the equation very concretely by

use of the method of characteristics.
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Let us consider the equation:

x − ξ = μ f (ξ)s
1 + μ f (ξ)

=
μ(1 − ξ)s

1 + μ(1 − ξ) , ( μ =
ε

4
).

Then it gives the equation μξ2 − (1 + μ(x − s + 1))ξ + (1 + μ)x − μs = 0, and one can solve it with x(ξ, 0) = ξ:

ξ(x, s) =
1

2μ
[ 1 + μ(x − s + 1) −

√
(1 + μ(x − s + 1))2 − 4μ{(1 + μ)x − μs} ].

Let us put the solution u(x, s) = 1− ξ(x, s). Then for a small δ0 > 0 and all sufficiently small ε > 0, two conditions

(1) C ≤ u(x, s) ≤ C′ and (2) K2(u) ≤ C′′ are certainly satisfied, by elementary calculations.

This completes the proof.

Remark 4.4 One has an observation of positivity of solutions, which rely heavily on the structure of the equation.

Let us rewrite the equation as us = −εuux(4 + εu)−1. At s = 0, ux(x, 0) = −1 < 0 hold and so us(x, 0) =

εu(4 + εu)−1 > 0 holds. Thus there is some T0 > 0 so that us(x, s) > 0 still hold for all (x, s) ∈ (0, 1
2
) × [0,T0). In

particular u(x, s) ≥ 1
2

for all (x, s) ∈ (0, 1
2
)× [0,T0). The same argument works for the equation vs+

ε
2
vvx− 1

2
v2 = 0.

5. Computational Aspects

Our mathematical framework is intimately familiar with the computer systems. Many essential quantities of the

analysis are computable within finite steps and finite values. By use of numerical calculations, we reprove Theorem

1.3 for some particular values of constants (M = 103 and l = 103). This can be done possible since the discretization

of the PDEs are the rigorous solutions rather than just approximating. However in more general situations, such

verification would be expected to work effectively by use of numerical simulation with guaranteed accuracy.

For the proof that the two partial differential equations are of unrelated pair, it is sufficient to show that there exists

the test point does not satisfy the inequality of the asymptotic estimates in the definition 2.1. We focus on this

inequality and give some discussions from the point of view of the numerical calculations in two cases: the related

pair and the unrelated pair.

Recall that we have induced PDEs from discrete dynamics, and our computation here will be done for these discrete

dynamics.

Let {zt
N}N,t≥0 and {wt

N}N,t≥0 be two discrete dynamics. Then for L,N0 and t0, we put the discrete version of the initial

rates by:

[{zt
N} : {wt

N}]L,N0,t0 ≡ sup
0≤N≤N0,0≤t≤t0,0≤a≤L

max{( za
N

wa
N

)±, (
zt

a

wt
a

)±}

Let us denote ũ(εN, εt) = zt
N and ṽ(εN, εt) = wt

N respectively. Then we regard that both ũ and ṽ approximate u and

v respectively:

ũ(εN, εt) ∼ u(εN, εt)

and similar for v. In fact in the examples in 5.A, both ũ and ṽ coincide with u and v respectively, which induces

Proposition 5.1 below.

Throughout this section, we choose the rescaling parameters (m, p, q) = (1, 1, 1). All of the numerical calculations

in this section are performed by using the computer algebra system “Maple 13” with rational or floating num-

ber manipulations. Then numbers after calculation are converted to the floating-point numbers for presentation

purposes.

5.A Case of the Unrelated Pair

Let us recall two PDEs:

εus +
ε2

2
u2s + · · · + ε

l

l!
uls + ε

2uxs +
ε3

2
uxss + · · · + ε

l

l!
u(l−1)xs = 0, (∗1)

ε(vs + vx) + ε2(vxs +
1

2
v2s +

1

2
v2x) + · · · + ε

l

l!
vlx = 0 (∗2)

which are mutually induced by the discrete dynamics:

zt+1
N+1 = zt

N+1 , wt+1
N+1 = wt

N .
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Recall that in 4.A we have verified that the pair of the solutions u(x, s) = xl + 1 and v(x, s) = (x− s)l + 1 breaks the

exponential bounds:

max{ u(x, s)

v(x, s)
,

v(x, s)

u(x, s)
} >> Mε

−D(x+s+1)[u : v]Lε .

Now for N, t = 0, 1, 2, . . . , let us put the solutions to the above discrete dynamics:

zt
N = (εN)l + 1 , wt

N = ε
l(N − t)l + 1

which are precisely the same as the solutions to the PDEs u(x, s) and v(x, s) by the scaling change of variables

x = Nε and s = tε respectively.

We put:

Q̃e(x, s) = log max{w
t
N

zt
N
,

zt
N

wt
N
} − log [{zt

N} : {wt
N}]L,ε−1 x,ε−1 s

whose values are much bigger than ε−D(x + s + 1) log M in the above case.

We calculate the values Qe(x, s) at the points (x, s) = (Nε, tε) for {N, t ∈ Z | 1 < N ≤ A0/ε, 1 < t ≤ T0/ε}.
Let us put:

Qe(x, s) = max
(
0, Q̃e(x, s)

)
.

Now we verify the following by computer calculations. These calculations are performed by using rational numbers

which means that the calculated values are exact ones.

Proposition 5.1 The pair of the above equations (∗1, ∗2) are mutually unrelated in ∼e
f in in (103, 1, 1, 1; 103) at

ε = 1/2.

Proof. Since the values of discrete dynamics zt
N and wt

N are precisely the same as the solutions zt
N = u(Nε, tε) and

wt
N = (x, s) = (Nε, tε) respectively, it is enough to verify that Qe(x, s) certainly hit bigger values than ε−D(x + s +

1) log M = 6(x + s + 1) log 10 at some points.

Let us choose constants by l = 1000, L = 0 and ε = 1/2, and consider the values of Q̃e at each point (x, s) = (Nε, tε)
for 1 ≤ N, t ≤ 8. For example Q̃e(1.5, 2) = log max{w4

3

z4
3

,
z4

3

w4
3

} − log [{zt
N} : {wt

N}]0,3,4

Then we show the values of Qe(x, s) in 4-digits of precision at the point (x, s) = (Nε, tε) for {N, t ∈ Z | 1 < N, t ≤
8 = 4/ε} in Table 1.

Table 1. Computed values of Q(Nε, tε) (Unrelated pair)

N\t 0 1 2 3 4 5 6 7 8

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.6931 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 0.0 404.8 404.8 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 287.7 691.8 287.6 0.0 0.0 0.0 0.0 0.0

5 0.0 223.1 510.1 510.1 223.2 0.0 0.0 0.0 0.0

6 0.0 182.3 404.8 287.6 404.9 182.7 0.0 0.0 0.0

7 0.0 154.2 335.8 154.1 154.2 335.7 154.0 0.0 0.0

8 0.0 135.5 287.0 64.50 0.0 64.50 287.0 133.0 0.0

Now for D = 1,M = 1000, log Mε
−D(x+s+1) ≤ log Mε

−D(4+4+1) ∼ 124.3. So one can find that the exponential

asymptotic estimates:

Qe(x, s) ≤ log Mε
−D(x+s+1)

does not hold at the several points. This completes the proof.
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Remark 5.2 Owing to the exact solutions of the partial differential equations, we are able to prove Proposition 5.1

by using computer system. Nevertheless, in any case, even that we know little of solutions, it might be possible to

apply the self-validating numerical method [Loh,O] in mathematical proof.

5.B Case of the Related Pair

In case of the examples of the related pairs we present here, the numerical calculations do not directly provide the

mathematical proof of the relevancy. Nevertheless such calculations give us several insights on the actual behaviour

for further analysis by comparison with the case of the unrelated pair.

Let us recall two PDEs:

vs +
ε

2
vvx − 1

2
v2 = 0, 2us +

ε

2
u(us + ux) = 0

which are mutually induced from the discrete dynamics:

zt+1
N+1 =

zt
N+2

2
+

zt
N(1 + 2zt+1

N−1
)

2(1 + zt
N)
, (∗∗1)

wt+1
N+1 =

wt
N+2

2
+

wt
N(1 + wt+1

N−1
)

2(1 + wt
N)

(∗∗2)

In Proposition 1.2, we have seen the asymptotic estimates for all solutions, which are equivalent to:

log

(
u(x, s)

v(x, s)

)±1

− 2ε
−1(x+2s)+3 log([u : v]2ε) ≤ 2ε

−1(x+2s)+4 log 40

Now let us consider the solutions to the above discrete dynamics (∗∗) with the initial and boundary values:

zt
N = (εN)l + 1 , wt

N = ε
l(N − t)l + 1

respectively, where (N, t) = {0} × N ∪ N × {0}.
Let ũ and ṽ be as in 5.A, and u, v : [0, A0] × [0,T0] be solutions to the corresponding PDEs respectively. Then as

before we regard that both ũ and ṽ approximate u and v respectively at the points (x, s) = (Nε p, tεq) = (Nε, tε) for

{N, t ∈ Z | 1 < N ≤ A0/ε, 1 < t ≤ T0/ε }.
We put:

Q̃ee (x, s) = log max{w
t
N

zt
N
,

zt
N

wt
N
} − 2ε

−1(x+2s)+3 log [{zt
N} : {wt

N}]L,ε−1 x,ε−1 s.

Here we calculate the values using floating numbers with 100 digits of precision,

Qee (x, s) = max
(
0, Q̃ee (x, s)

)

where we choose constants l = 1000, L = 1, ε = 1/10 and A0 = T0 = 1. In particular the domain of PDEs are

{(x, s) = (Nε, tε) : 0 ≤ N, t ≤ 10}.
The numerical calculations verify that all the entries are equal to 0. In particular the estimates:

Qee (x, s) ≤ 24+(x+2s)/ε log 40

follows, which gives the numerical verification of proposition 3.3 for particular constants. Notice that approxi-

mately the value is given:

24+(x+2s)/ε log 40|ε=1/10,x=s=10ε ∼ 6.337 × 1010

So far we have checked that certainly double exponential estimates hold for these pairs. Next let us examine

whether they might still satisfy the exponential estimates.

Let us consider the values of Qe(x, s) = max
(
0, Q̃ee (x, s)

)
, where:

Q̃e(x, s) = log max{w
t
N

zt
N
,

zt
N

wt
N
} − log [{zt

N} : {wt
N}]1,ε−1 x,ε−1 s
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with the same constants, l = 1000, L = 1, ε = 1/10 and A0 = T0 = 1. Table 2 gives the result of numerical

calculations.

Table 2. Computed values of Qe(Nε, tε) (Related pair)

N\t 0 1 2 3 4 5 6 7 8 9 10

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.095 0.189 0.258 0.331 0.393 0.463 0.524 0.0 0.0

3 0.0 0.0 0.196 0.327 0.461 0.567 0.682 0.776 0.0 0.0 0.0

4 0.0 0.0 0.229 0.450 0.618 0.794 0.926 0.0 0.0 0.0 0.0

5 0.0 0.0 0.318 0.565 0.813 0.991 0.0 0.0 0.0 0.0 0.0

6 0.0 0.0 0.334 0.670 0.899 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.399 0.677 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8 0.0 0.0 0.294 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Let us compare their values with:

10 log 40 = ε−1 log 40|ε=1/10 ≤ ε−1(x + s + 1) log 40

≤ ε−1(x + s + 1) log 40|ε=1/10,x=s=10ε = 30 log 40

where the left and right hand sides are approximately 36.89 and 110.7 respectively. Thus the inequality above

holds for any points (N, t) ∈ [0, 10] × [0, 10].

Finally we would like to raise a question:

Question 5.1 Are two PDEs:

vs +
ε

2
vvx − 1

2
v2 = 0, 2us +

ε

2
u(us + ux) = 0

exponentially related in ∼e∞ or in ∼e
f in ?
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