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Abstract

Let G be a finite directed graph, β(G) the minimum size of a subset X of edges such that the graph G′ =
(V, E � X) is directed acyclic and γ(G) the number of pairs of nonadjacent vertices in the undirected graph

obtained from G by replacing each directed edge with an undirected edge. Chudnovsky, Seymour and Sullivan

proved that if G is triangle-free, then β(G) ≤ γ(G). They conjectured a sharper bound (so called the “CSS

conjecture”) that β(G) ≤ γ(G)/2. Nathanson and Sullivan verified this conjecture for the directed Cayley

graph Cay(Z/NZ, EA) whose vertex set is the additive group Z/NZ and whose edge set EA is determined by

EA = {(x, x+ a) : x ∈ Z/NZ, a ∈ A} when N is prime and |A| ≤ (N − 1)/4 by introducing “height”. In this work,

we extend the definition of height and apply to answer the CSS conjecture for Cay(Z/NZ, EA) to any positive

integer N and |A| ≤ (N − 1)/4.
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1. Introduction

A finite directed graph G = (V, E) consists of two finite sets, the set V = V(G) of vertices of G and the set

E = E(G) ⊆ V × V of edges of G. Let v and v′ be distinct vertices of the finite directed graph G. A directed
path of length l in G from v to v′ is a sequence of l edges {(vi−1, vi)}li=1

such that v = v0 and v′ = vl. A directed
cycle of length l in G is a sequence of l edges {(vi−1, vi)}li=1

such that v0 = vl. A loop, a digon and a triangle
are directed cycle of length 1, 2 and 3, respectively. A triangle free graph is a graph with no loops, digons, or

triangles. A directed graph is called acyclic if it has no directed cycles.

Let β(G) be the minimum size of a subset X of edges such that the graph G′ = (V, E �X) is directed acyclic, and

let γ(G) be the number of pairs of nonadjacent vertices in the undirected graph obtained from G by replacing

each directed edge with an undirected edge. Chudnovsky, Seymour and Sullivan (Chudnovsky, M., 2007)

proved that if G is a triangle-free digraph, then β(G) ≤ γ(G). They conjectured a sharper bound (so called the

“CSS conjecture”) that if G is a triangle-free digraph, then β(G) ≤ γ(G)/2.

Let N be a positive integer and A a nonempty subset of Z/NZ � {0} of cardinality d ≤ N. Consider the directed

Cayley graph G = Cay(Z/NZ, EA) whose vertex set is the additive group Z/NZ and whose edge set EA is

determined by

EA = {(x, x + a) : x ∈ Z/NZ, a ∈ A}.
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Assume that G is triangle free. Then G has neither loops nor digons, so the number of pairs of adjacent vertices

is the same as the number of directed edges, which is dN. Thus the number of pairs of nonadjacent vertices is

γ(G) =

(
N
2

)
− dN =

N(N − 1 − 2d)

2
. (1)

In this case, the inequality in the CSS conjecture becomes

β(G) ≤ γ(G)

2
=

N(N − 1 − 2d)

4
.

By introducing the term “height in finite projective space”, Nathanson and Sullivan verified this conjecture

when N is prime in (Nathanson, M. B., 2007) and d ≤ (N − 1)/4. Later, the height on the finite projective line

was studied extensively in (Batson, J., 2008).

Using the “height” idea together with some elementary number theory facts involving the unit group of Z/NZ
and its cardinality, we prove the CSS conjecture when N is any positive integer expanding Nathanson and

Sullivan’s results. The detail of our work is divided into two sections. Section 2 presents the definition and

bound of the height defined for Z/NZ. The final section talks about the CSS conjecture and shows how to relate

the height to it.

2. Heights

Let N and d be positive integers. We define an equivalence relation ∼ on the set of nonzero d-tuple (Z/NZ)d �
(0, . . . , 0) by

(a1, a2, . . . , ad) ∼ (b1, b2, . . . , bd) ⇔ (b1, b2, . . . , bd) = λ(a1, a2, . . . , ad)

for some λ ∈ (Z/NZ)×. Here (Z/NZ)× stands for the unit group of Z/NZ and we use (Z/NZ)∗ for the set of

nonzero element in Z/NZ. Observe that (Z/NZ)× = (Z/NZ)∗ if and only if N is a prime. Also, |(Z/NZ)×| =
φ(N), the Euler φ-function. Write (a mod N) for the least nonnegative integer in the congruence class a ∈
Z/NZ. We first compute

Lemma 1 For a ∈ (Z/NZ)∗, ∑
k∈(Z/NZ)×

(ka mod N) =
Nφ(N)

2
.

Proof. Let a ∈ (Z/NZ)∗. If N = 2, then (a mod 2) = 1 = 2φ(2)/2. Next we assume that N > 2. It is clear that

k ∈ (Z/NZ)× ⇔ N − k ∈ (Z/NZ)× for all k ∈ (Z/NZ)∗. Since N > 2, k � N − k for every k ∈ (Z/NZ)×. Then

(Z/NZ)× = {k,N − k : k ∈ (Z/NZ)× and k < N/2}
and so φ(N) is even. Note that

((N − k)a mod N) = ((Na − ka) mod N) = N − (ka mod N)

for all k ∈ (Z/NZ)×. Thus

∑
k∈(Z/NZ)×

(ka mod N) =
∑

k∈(Z/NZ)×,
k<N/2

[(ka mod N) + ((N − k)a mod N)]

=
∑

k∈(Z/NZ)×,
k<N/2

[(ka mod N) + (N − (ka mod N))]

=
∑

k∈(Z/NZ)×,
k<N/2

N =
Nφ(N)

2
.

Hence we have the lemma. �
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We denote the equivalence class of the point (a1, a2, . . . , ad) by 〈a1, a2, . . . , ad〉 and the set of all equivalence

classes by Pd−1(Z/NZ). The height of the class a = 〈a1, a2, . . . , ad〉 ∈ Pd−1(Z/NZ) is given by

hN(a) = min

⎧⎪⎪⎨⎪⎪⎩
d∑

i=1

(kai mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎬⎪⎪⎭ .

Since a � 0, there exists a j ∈ (Z/NZ)∗ such that (ka j mod N) > 0 for every k ∈ (Z/NZ)×, so hN :

Pd−1(Z/NZ) → Z+. We use d∗(a) to denote the number of nonzero components of a = 〈a1, . . . , ad〉 ∈
Pd−1(Z/NZ), that is, the number of ai � 0, and we define

d∗(A) = max{d∗(a) : a ∈ A}
for A ⊆ Pd−1(Z/NZ). Clearly, hN(a) ≤ d∗(a)(N − 1) for all a ∈ Pd−1(Z/NZ). For any nonempty finite subset A
of Z+ with |A| = m, we note that min A ≤ (1/m)

∑
a∈A a. By Lemma 1, we have

hN(a) = min

⎧⎪⎪⎨⎪⎪⎩
d∑

i=1

(kai mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎬⎪⎪⎭

≤ 1

φ(N)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k∈(Z/NZ)×

⎛⎜⎜⎜⎜⎜⎜⎝
d∑

i=1

(kai mod N)

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
1

φ(N)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k∈(Z/NZ)×
(kai mod N)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

=
1

φ(N)

(
d∗(a)

Nφ(N)

2

)
=

d∗(a)N
2
.

Since heights are positive integers, hN(a) ≤ �d∗(a)N/2. Hence we get a better bound for hN(a). We summarize

the above computation with its corollary as follows.

Lemma 2 For a ∈ Pd−1(Z/NZ), hN(a) ≤ �d∗(a)N/2.

Corollary 3 (i) For d ≥ 1 and a ∈ Pd−1(Z/2Z), h2(a) = d∗(a).
(ii) For N ≥ 2 and a = 〈a〉 ∈ P0(Z/NZ), hN(a) ≤ �N/2. In particular, if a ∈ (Z/NZ)×, then

hN(a) = min{(ka mod N) : k ∈ (Z/NZ)×} = min{(k mod N) : k ∈ (Z/NZ)×} = 1.

3. The CSS Conjecture

In this section, we deal with the CSS conjecture for the Cayley graph G = Cay(Z/NZ, EA). Notice that if the

outdegree of every vertex in finite directed graph is at least one, then the graph contains a cycle. Thus every

finite directed acyclic graph contain at least one vertex with outdegree 0. Nathanson and Sullivan used this to

prove the following theorem and derived its consequence. Their proofs can be found in (Nathanson, M. B.,

2007). We recall this work in

Theorem 4 (Nathanson, M. B., 2007) Let V = {v0, v1, . . . , vN−1} be the vertex set of the directed graph G. Then
G is directed acyclic if and only if there is a permutation σ of {0, 1, . . . ,N − 1} such that r < s for every edge
(vσ(r), vσ(s)) of the graph G.

Corollary 5 (Nathanson, M. B., 2007) Let G = (V, E) be a directed graph with vertex set {v0, v1, . . . , vN−1} and
let Σ ⊆ S N be a set of permutations of {0, 1, . . . ,N − 1}. For σ ∈ Σ, let Bσ be the set of edges (vσ(r), vσ(s)) ∈ E
with r ≥ s. Then β(G) ≤ min{|Bσ| : σ ∈ Σ}.

This corollary yields an immediate result on our Cayley graph Cay(Z/NZ, EA), namely,
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Lemma 6 Let N ≥ 2, d ≥ 1 and A = {a1, . . . , ad} ⊆ (Z/NZ)∗. Let G = Cay(Z/NZ, EA) be the Cayley graph
constructed from A. Let Σ be a set of permutations of Z/NZ and σ ∈ Σ. For i ∈ Z/NZ and j ∈ {1, . . . , d}, define
ti j ∈ Z/NZ by σ(i) + a j = σ(ti j). Then EA = {(σ(i), σ(ti j)) : i ∈ Z/NZ and j ∈ {1, . . . , d}}. Let

Bσ = {(σ(i), σ(ti j)) : (i mod N) > (ti j mod N) and j ∈ {1, . . . , d}}.
Then the graph G′ = (Z/NZ, EA � Bσ) is directed acyclic for every permutation σ ∈ Σ and β(G) ≤ min{|Bσ| :

σ ∈ Σ}.

For k ∈ (Z/NZ)×, define the permutation σk of Z/NZ by σk(i) = ki for all i ∈ Z/NZ. Let Σ = {σk : k ∈
(Z/NZ)×} be the set of φ(N) permutations of Z/NZ. Fix k ∈ (Z/NZ)×. For i ∈ Z/NZ and j ∈ {1, . . . , d}, define

ti j ∈ Z/NZ � {i} by σk(ti j) = σk(i) + a j. Since k ∈ (Z/NZ)×, there exists uk ∈ (Z/NZ)× such that kuk = 1. Let

r j = (uka j mod N). Then 1 ≤ r j ≤ N − 1 and a j = kr j. Thus

σk(ti j) = σk(i) + a j = ki + kr j = k(i + r j) = σk(i + r j),

so ti j = i+ r j. Since 1 ≤ r j ≤ N −1, (ti j mod N) = (i mod N)+ r j−N < (i mod N) if (i mod N)+ r j ≥ N.

Moreover, if (i mod N)+r j < N, then (ti j mod N) = (i mod N)+r j > (i mod N). Hence (i mod N) > (ti j

mod N) ⇔ N − r j ≤ (i mod N).

Let Bσk = {(σk(i), σk(ti j)) : (i mod N) > (ti j mod N) and j ∈ {1, . . . , d}}. Then

|Bσk | = |{(σk(i), σk(ti j)) : N − r j ≤ (i mod N) ≤ N − 1}| =
d∑

j=1

r j =

d∑
j=1

(uka j mod N).

Applying Lemma 6 and the fact that {uk : k ∈ (Z/NZ)×} = (Z/NZ)×, we get

β(G) ≤ min{|Bσk | : k ∈ (Z/NZ)×}

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑

j=1

(uka j mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d∑

j=1

(ka j mod N) : k ∈ (Z/NZ)×
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= hN(〈a1, . . . , ad〉).
Thus β(G) ≤ hN(〈a1, . . . , ad〉). Together with Lemma 2, we have

Lemma 7 Let N ≥ 2, d ≥ 1 and A = {a1, . . . , ad} ⊆ (Z/NZ)∗. Let G = Cay(Z/NZ, EA) be the Cayley graph
constructed from A. Then

β(G) ≤ hN(〈a1, . . . , ad〉) ≤ dN
2
.

This lemma gives

Theorem 8 Let N ≥ 5, d ≥ 1 and A = {a1, . . . , ad} ⊆ (Z/NZ)∗. Let G = Cay(Z/NZ, EA) be the Cayley graph
constructed from A which has no digons. If d ≤ (N − 1)/4, then β(G) ≤ γ(G)/2.

Proof. Assume that d ≤ (N − 1)/4. Then

dN
2
= dN − dN

2
≤ N(N − 1)

4
− dN

2
=

N(N − 1 − 2d)

4
.

By Lemma 7 and Eq. (1), we get

β(G) ≤ dN
2

≤ N(N − 1 − 2d)

4
=
γ(G)

2

as desired. �
Hamidoune proved the Caccetta-Häggkvist conjecture for Cayley graphs:
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Theorem 9 (Hamidoune, Y. 0., 1981, p.349-355 or Nathanson, M. B., 2006) Let A ⊆ (Z/NZ)∗ and d = |A| ≥
N/k. Then the Cayley graph G = Cay(Z/NZ, EA) contains a cycle of length at most k. In particular, if G is
triangle-free, then d < N/3.

Back to the CSS conjecture. Since dN/2 ≤ N(N − 1 − 2d)/4 if and only if d ≤ (N − 1)/4, it follows that, for a

fixed N, we only need to consider sets A of cardinality d > N/4. Combined with Theorem 9, in order to prove

the CSS conjecture for the group Z/NZ, it remains to work only on the sets A of size d, where N/4 < d < N/3.

The following example shows that sometimes the height is greater than γ(G)/2, so we cannot conclude the CSS

conjecture without computing β(G) explicitly.

Example 10 Let N = 14 and A = {1, 2, 8, 9} ⊂ (Z/14Z)∗. Then N/4 < d < N/3. Since 0 is not in A, 2A
and 3A, G = Cay(Z/14Z, EA) is a triangle-free digraph. We have h14(〈1, 2, 8, 9〉) = 20 and γ(G) = 35. Thus
h14(〈1, 2, 8, 9〉) > γ(G)/2.
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