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Abstract

Let (X,) be a sequence of Bernoulli random variables and N a positive integer value random variable. Assume
that N, X;, X, ... are independent. In this paper, we investigate uniform and non-uniform bounds in Poisson
approximation for random sums X; + X + - -+ + Xy.
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1. Introduction and Main Results

Let X}, X, ..., X, be independent Bernoulli random variables with
PX;=1)=pi=1-PX; =0)

and
S, =X1+Xo+---+X,.
-5k

A
0 fork=0,1,2,....Setd, =}, pi.

It has long been known that the distribution of S, can be approximated by the distribution of U, if p;’s are small,
that is Poisson approximations are essential in the case of event has small probability of occurring. Many authors
investigated the approximations between S, and U,,. For examples, Le Cam in 1960 gave a uniform bound

Let U, be a Poisson random variable with parameter 4, i.e., P(U, = k) =

sup |[P(S, < x)— P(U,, <x)| < Zp,z
i=1

erS
and Kerstan in 1964 obtained this result in the form of

sup |P(S, < x) — P(U,, < x)| <1.051" Z Pl if max p; < 1/4,
<i<n
- si<

- +
xeZg i

In 1974, Chen used the Stein’s method to gave the bound

sup [P(S, < x) = P(Uy, < )| <54, > pf

el i=1

and then Barbour and Hall improved the result of Chen (1974) as follows.
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Theorem 1.1 (Barbour & Hall, 1984) We have
n
sup |P(S, < x)— P(Uy, < x)| < A,'(1 - ew)zp?'
xeZ§ <

In 2003, Neammanee gave a non-uniform pointwise bound when 4,, € (0, 1]Jand x = 1,2,...,n— 1
1 n
IP(Sy = x) = P(Uy, =0 < = ) pl.
X

In the same year, he generalized his result to the case of any positive 4,,.

Theorem 1.2 (Neammanee, 2003) For A, > 0and x = 1,2,...,n— 1, then

1 n
IP(Sy = x) = P(Uy, = 0] < min{—, 4"} > pt.
x i=1

In 2005, Teerapabolarn and Neammanee also gave a non-uniform bound as follow.

Theorem 1.3 (Teerapabolarn & Neammanee, 2005) We have
Aoy 2
IP(S, <x)—P(Uy, <0l <A, (1 - e‘*n)min{l, %} ;p?

where x € {0, 1,...,n}.

Let Xi, X5, ... be a sequence of independent Bernoulli random variables and N a positive integer-value random
variable. Assume that N, X|, X, ... are independent. Define Sy = X + X5 + - - - + Xy which is called random sums
and Ay = Zﬁ (piand A = EAdy. In 1991, Yannaros gave uniform bounds between the distribution of Sy and U,.
The following is his result.

Theorem 1.4 (Yannaros, 1991) We have

|- &
1. sup |P(Sy < x) — P(Uy < )| < Elly — EAyl + E( Zp?).
K

+
x€Zg

2. Ifpy=py=---=p, then

pVar (N)

sup [P(Sy < x) = P(Upgy < X)| < min oy

P
XeZg {2\/1—]?

In this paper, we will find uniform and non-uniform bounds for random sums by Poisson approximation. The
followings are our results.

Theorem 1.5 We have

1
,pE(1 - e-PN)} +3 min {1,2/pEN}.

TEA
1. [P(Sy = x)— P(U, = x)| < —~

where x € {1,2,...},

3
2. sup |P(Sy =x)— P(U; =x)| < EE/IN +2min{EAy, E|A — Ay}

xeZ*

Note that, when x = 0 we can compute the exact probability, that is,

oo n N
PSy=0=> PN=n]]a-p)=E] [0 -p.
n=1 i=1 i=1

Theorem 1.6 For x € {1,2, ...}, we have

P(S x)— P(U X +E l—e mmngl, —— E = .
N P N 1 — Pi
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If X;’s are identically distributed, we have the following result.

Corollary 1.7 If py = p» = -+ = p, then

I |P(Sy=x)—P(U,=x) <

TpEN
192 where x € {1,2,...},

2. sup |P(Sy=x)—P(U, =x)| <

xeZ*

3pEN
P ~— +2pmin [EN.EIN - ENI)

PN
1}] where x € {1,2,...}.

3pEN
3PSy <x) = PU, < 0 < 2222 4 pE|(1 = &) min{l, e+
X X

2. Proof of Main Results
Proof of Theorem 1.5
1. Let x € {1,2,...}. Note that

IP(Sy =2 = P(Uy = 0] = | ) PN = mP(S, = x) = P(U = )|
n=1

= > PN =n)IP(S, = x) - P(U) = )

n=1

< > PN =n)IP(U,, = %)= P(Uy = 0]+ ) PN = n)P(S, = x) = P(Uy, = )|

n=1 n=1

= A] + Az.
By Chebyshev’s inequality, we obtain

EU; _A,+24

b}

EU
[P(Uy, =x)—P(Uy=x)| <PU,, 2x)+PU, > x) < by
X X X

and then

To bound A,, we note that

Az = Z P(N = n)|P(S" =X) - P(U/ln = x|+ P(N = X)lP(SX =x)— P(U,lx = X)l =: Ay + Ap.

n=1
n#x

By Theorem 1.2 and the fact that P(S,, = x) =0forn =1,2,...,x — 1, we have

x—1 o0

Aoy = D PN =mIP(S, =) = P(Uy, = 0+ ). PN = mP(S, = x) = P(Uy, = %)
n=1

n=x+1

x—1 ) n
1
<) PN=mPWU, =x)+~ ) PN=m)) pi
n=1 n=x+1 i=1
1 x—1 1 )
< - Z; PN = mEU,, +~ Zl P(N = n)A,
n= n=x+

i i P(N = n)d,.

n=1
n#x
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To bound A,,, we note that

X X
1 1 +pa+---+ A
PSc=x=[]pm<(]]p) < 2L oo
i=1 i=1

X X

by applying AM-GM inequality.

Next, we will show that
Ay
P(U, =x)<— for x=2,3,....
2x

Assume that x > 2. If 1, < x — 1, then

Lo A ! A7 x—1 227!
* > + = ( +1) >
x=2)! (x=D! x-=-D!" a, (x=1!
this implies that
AT A
P(U/lx = X) = < —
; ! 2x
If A, = x, we have
Al AL AT x 2A%
A X X X X
T > +==—=(=+1)>
¢ x=D! x!  x! (/l ) x!
Hence
(U = 5) = e x - 1
Uy, =x) = =5

Combine (2.7) and (2.8), we obtain (2.6).
Hence, by (2.5) and (2.6), for x = 2,3, ...

x et A,
Py =2~ PUL =Dl <] [P+ —F <=
i=1 :

Observe that if x = 1, then

_ _ 31
IP(S,=x)—P(Uy, =x)|=Ipi—e'pil=pill —e | < p; < 71

By (2.9) and (2.10),
31,
[P(Sy=x)—PU,, =x)|< o for x=1,2,....
X
By (2.3), (2.4) and (2.11), we have

1 — 3 3
Ay <= N PN = m)d, + = P(N = 0, < —Edy.
2 x;( n) 2x( X) BN

n#x

Hence, by (2.1), (2.2) and (2.11), we obtain (1) as desire.
2. Freedman (1974, pp. 260) showed that for all p, uy > 0

sup [P(Uy,, < %)~ P(Uy, < 0| < |1 — pol.

i
XEL
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Then

Ay

D PN = nIPU,, = x) = PU, = )|
n=1

P(N =n){|P(U,, <x)— PUy < 0)|+|P(Uy < x—1)—P(U,, <x— 1}

Ms

=
1]

< 2ZP(N =n)d -4,
n=1

=2E|1 - Ayl. (2.14)

By (2.1), (2.2), (2.12) and (2.14), we conclude that

3
sup [P(Sy =x)— P(U, = x)| < EE/IN +2min{EAy, E|A1 — Ay}

xeZ*
Proof of Theorem 1.6

By the same argument of (2.2), we have

= = 2EA
B := ZP(N =n)|P(U,, <x)—PU, <x)| < ZP(N =n)P(U,, > x)+P(U, 2 x)| < P N (2.15)
n=1 n=1
Using the fact that P(S, < x) = 1 forn =1,2,..., x, we obtain
By = ) P(N = mIP(S, < x) = P(U,, < )|
n=1
< P(N =n)P(U,, = x)
n=1
l (o]
<- Z P(N = n)d,
X n=1
1
- e (2.16)
X

By Theorem 1.3, we get

Byi= Y PN =n)IP(S, <x)~ P(Uy, <)

n=x+1

0 /l n
NS R B e 2
< Z PN =nmA'(1-e )mln{l,—x+]};pi

n=x+1 .
}Z 7. 2.17)
=1

eW
x+1

< B[4 (1 - e-AN)min{l,

From the fact that

[P(S,=x)—P(U,=x)<By+B,+ B3
and (2.15) — (2.17), we complete the proof.
3. Examples

Applying our main results together with the facts that

1 1
L Edy = (4 + Aon) and E|dy — EAy| = 5 (on = ),

2. EN=2 and E|N — EN|=1and
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3. EN =y and EIN — EN| = 2ue™

in Example 3.1-Example 3.3, respectively, we conclude the following bounds.

Example 3.1 Fix n € N, let N be random variable defined by
1 1
P(N =n) = 5 and P(N =2n) = ok

Then

1. [IPSy =x)—P(Uy=x)| <

(A, + A2
Mt ) o210,
4x

1
2. sup|P(Sy = x) = P(Uy = )| < 7 (T3, = 4,) and

xeZ*

3(L, + Ao 1 -1 do _
3. 1P(Sy < x) = P(Uy < )] < St Az) [ Zp-2+e > P forx=12....
i=1

2x 2+ DY A £ ! by !
1 :
where A = 5(/1” + Az,). Furthermore if p; = p, = --- = p, then

21

1. IP(Sy = x) = P(Uspp = X)| < 4”1’ forx=1,2,..,
X
13

2. sup [P(Sy = ) = P(Usppa = 0| < —L and

xeZ*

9np N p(e™’ + 2P —2)

3. [P(Sy £ X) = P(Uzpppp < x)| < forx=1,2,... 3.1
[P(S Ny £ x) = P(Usppjp < ) 7y 61D or x 3.1
Example 3.2 Let N be random variable defined by
PV =)= 5
=n)=—
2n

forall n € {1,2,...}. Assume that p; = p =--- = p. Then

7
1 IP(Sy =x) = P(Uyy =x)| < L forx=1,2,...,
X

2. sup [P(Sy = x) = P(Us, = x) < 5p and

xeZ*

. 6p 2p e -1
3. ife? <2, then |P(Sy < ) = P(Usy S 0| < — + — 1(m) forx=1,2,.... (3.2)

Example 3.3 Let 0 < 4 < 1 and let N be a random variable defined by

-, n

P(N=n)=% forn=0,1,2,....

Assume that p; = p, =--- = p. Then

7
1 |P(Sy = x) = P(Uy, = 9| < % forx=1,2,...,
X

7
2. sup [P(Sy = x) — P(Uyy = 1)) < # and

xeZ*
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3up plet =D —1)
X

3. |P(Sy < x) = P(U,p < x)| < —

forx=1,2,.... 3.3)

Remark 3.4 In the case of i.i.d., the uniform bounds of Yannaros (Theorem 1.4 (2)) in Example 3.1 — Example 3.3
are

(21) m1n{2 )4 p(l B e P -;e—2nl7)} . W

(2.2) min{ P ,p(l o )} + \/Ep and

2T-p 2er — 1

(2.3) min{—"— p(1 - " D) + vip,

2\/l—p,p

respectively. We observe that the bounds of Yannaros ((2.1)—(2.3)) and our non-uniform bounds ((3.1)—(3.3)) have
the same order but our bounds are better if x is large enough.
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