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Abstract

In this paper, we show the upper bound of transitive index of reducible tournaments and prove that this upper

bound is sharp.
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1. Introduction

Let V = {v1, v2, · · · , vn} be a finite set with n (> 1) distinct elements. A binary relation on V is defined by a subset R
of V ×V . The set of all binary relations on V (including the empty relation) is denoted by Rn(V). A Boolean matrix

is a matrix over the binary Boolean algebra {0, 1}, where the (Boolean) addition and (Boolean) multiplication in

{0, 1} are defined as a + b = max{a, b} and ab = min{a, b}, respectively (we assume 0 < 1). Let Bn denote the set

of all n × n matrices over the Boolean algebra {0, 1}. The map

R −→ B(R) = (ai j),

where ai j = 1 if (vi, v j) ∈ R and ai j = 0 otherwise, is an isomorphism from Rn(V) to Bn.

Let D = (V, E) be a digraph. Elements of V are referred as vertices and those of E as arcs. In this paper, digraphs

are all finite, and loops are permitted but no multiple arcs. Let Dn(V) be the set of all such digraphs. Then each

matrix in Bn can be regarded as the adjacency matrix of D ∈ Dn(V), and each digraph in Dn(V) can be regarded

as the associated digraph of A ∈ Bn(V). It is well known that there is a bijection between Rn(V), Bn and Dn(V):

R←→ B(R)←→ D(R),

where D(R) is the graph mapping to the matrix B(R).

In Rn(V) a multiplication can be introduced. Let R1, R2 ∈ Rn(V). Then (x, y) ∈ R1R2 if there is a z ∈ V such that

(x, z) ∈ R1 and (z, y) ∈ R2.

A binary R is called transitive if R2 � R. t(R) denote the least integer s � 1 such that Rs is transitive, i.e. R2s � Rs.

Such a number exists (Schwarz, S., 1970). Let R ∈ Rn(V), B(R) is the matrix corresponding to R. B(R) is called

transitive if R is transitive. t(R) is transitive index of B(R) and denoted by t(B(R)). It is easy to show that B ∈ Bn is

transitive if and only if B2 ≤ B. Let D ∈ Dn(V) be the associated digraph of B ∈ Bn(V). D is called transitive if B
is transitive, and t(B) is transitive index of D and denote by t(D). Using matrix theoretic techniques the study t(D)

can now be turned into the study t(B).

In 1970, Schwarz introduced a concept of the transitive index and gave some results.

For B ∈ Bn, if there is a permutation matrix P such that PBPT = A, then we say that B is permutation similar to a

matrix A (written B ∼ A). It is well-known that B ∼ A if and only if D(B) is isomorphic to D(A).
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A matrix B ∈ Bn is reducible if B ∼
(

B1 0

C B2

)
, where B1 and B2 are square (non-vacuous). B is irreducible if it

is not reducible. A matrix of order 1 is always irreducible. A digraph D = (V, E) is said to be strongly connected

(or strong ) if there exists a path from u to v for all u, v ∈ V(D). It is well know that B is irreducible if and only if

its associated digraph D(B) is strongly connected.

A Boolean matrix B ∈ Bn is primitive if Bk = J for some positive integer k, where J is the matrix of all 1′s
and the least integer k is called the primitive exponent of B and denoted by γ(B). Let D = (V, E) ∈ Dn(V),

u, v ∈ D = (V, E). A walk from u to v is a sequence of not necessarily distinct vertices u, u1, · · · , up = v and a

sequence of arcs (u, u1), (u1, u2), · · · , (up, v). A path is a walk with distinct vertices. A digraph D = (V, E) ∈ Dn(V)

is primitive if there exists a positive integer k such that there is a walk of length k from u to v for all u, v ∈ V(D).

The least integer k is called the exponent of D and denoted by γ(D).

A tournament is an orientation of a complete graph. The adjacency matrix of tournament is called tournament

matrix. Let Tn be the set of all tournaments. Tn ∈ Tn is reducible (or irreducible) if the adjacency matrix of Tn is

reducible (or irreducible). Notice that a tournament matrix An satisfies the equation

An + AT
n = Jn − In

where Jn is the matrix of all 1′s and In is the identity matrix.

If a tournament matrix has a certain property (e.g. reducible), then we shall say that the tournament defined by

the matrix also has the property. Tournament properties have been investigated in Ryser, H. J. (1964), Richard A.

Brualdi (2006), Bondy, J. A. and Murty, U. S. R. (1976), Zhou Bo and Shen Jian (2002) and Xuemei Ye (2007).

2. Preliminaries

The notation and terminology used in this paper will basically follow those in Liu Bolian (2006). For convenience

of the reader, we will include here the necessary definitions and basic results in Moon, J. W. and Pullman, N. J.

(1970) and Xuemei Ye (2007). In this paper, digraphs are all finite, and loops are permitted but no multiple arcs.

Let T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, Tl =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

1 0 · · · 0
...
. . .

. . .
...

1 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
l×l

, T�
3m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 0 · · · 0

J T · · · 0
...
. . .

. . .
...

J · · · J T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, I�

3m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I3 0 · · · 0

J I3 · · · 0
...
. . .

. . .
...

J · · · J I3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where I3 is the identity matrix of order 3.

Lemma 2.1 (Richard A. Brualdi, 2006) Let A ∈ Bn.Then

A ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 0 0 · · · 0

J A2 0 · · · 0

J J A3 · · · 0
...

...
...
. . .

...
J J J · · · Ak

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where the diagonal blocks A1, · · · , Ak are irreducible components of A. Let Ai be ni × ni matrix, 1 ≤ i ≤ k and
1 ≤ ni ≤ n. Then k and ni are uniquely determined by A.

Lemma 2.2 (Moon, J. W. & Pullman, N. J., 1970) Let A be n×n tournament matrix with n ≥ 4. Then A is primitive
if and only if A is irreducible.

It is obvious that 3 × 3 tournament matrix is not primitive, the primitive exponent of 4 × 4 irreducible tournament

matrix is 9. For n > 4, we have

Lemma 2.3 (Moon, J. W., & Pullman, N. J., 1970) If n ≥ 5, An is n × n irreducible tournament matrix, then
γ(An) ≤ n + 2.

Lemma 2.4 (Xuemei Ye, 2007) Let T̄n = (V, E) be a digraph and V = {1, 2, 3, · · · , n} with n ≥ 4.E = {(i, i + 1) |
1 ≤ i ≤ n − 1} ∪ {(i, j) | 3 ≤ j + 2 ≤ i ≤ n}, T̄n is irreducible tournament. If n ≥ 5, then γ(T̄n) = n + 2.

Lemma 2.5 (Xuemei Ye, 2007) Let n ≥ 5,Tn be an irreducible tournament of order n. Then γ(Tn) = n + 2 if and
only if Tn is isomorphic to T̄n as Lemma 2.4.
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3. The Main Results

It is evident that if D is primitive digraph then t(D) = γ(D). For primitive tournament Tn, its primitive exponent are

determined by Moon and Pullman in Moon, J. W. and Pullman, N. J. (1970). In this paper we obtain some results

on transitive index of reducible tournaments.

Theorem 3.1 If An is Boolean matrix of reducible tournament with order n(≥ 8), then there exists a positive integer
s ≤ n + 1 such that

As
n ∼ A� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 0 0 · · · 0

J B2 0 · · · 0

J J B3 · · · 0
...

...
...
. . .

...
J J J · · · Bg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the diagonal blocks Bi is zero matrix of order li, I�

3qi
or matrices of 1’s of order mi(4 ≤ mi < n),1 ≤ i ≤ g.

0 ≤ 3qi, li ≤ n, and integer qi, li,mi, g are uniquely determined by An.

Proof. It is obvious that the irreducible tournament matrix of order 1 is zero matrix of order 1, such matrix of order

2 is not exists, and the matrix of order 3 is isomorphic to T. Hence, the diagonal blocks Ai is zero matrix of order

1, T or irreducible tournament matrix of order mi with 4 ≤ mi < n in Lemma 2.1.

Let Ai � (0)1×1 ,Ai+1 = Ai+2 = . . . = Ai+li = (0)1×1 and Ai+li+1 � (0)1×1(if exists). Then

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai+1 0 · · · 0

J Ai+2 · · · 0
...

...
. . .

...
J J · · · Ai+li

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= Tli =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

1 0 0
...
. . .

. . .

1 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
li×li

.

Let Aj � T, Aj+1 = Aj+2 = . . . = Aj+qi = T and Aj+qi+1 � T(if exists). Then

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Aj+1 0 · · · 0

J Aj+2 · · · 0
...

...
. . .

...
J J · · · Aj+qi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= T�3qi

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 0 · · · 0

J T · · · 0
...
. . .

. . .
...

J · · · J T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
3qi×3qi

.

Let s be a multiple of 3 in {n − 1, n, n + 1}. Since An is a Boolean matrix of reducible tournament of order n with

n ≥ 8, T�
3qi

s
= I�

3qi
and Tli

s = (0)li×li . If Ai is irreducible tournament matrix of order mi with 4 ≤ mi < n in Lemma

2.1. Then Ai
s = J. By Lemma 2.3, the conclusion established and the proof is done.

Note that t(Tn) = 1, t(T�
3n) = 3, n > 1.

Let Tn be reducible tournament of order n, and let An be the adjacency matrix of Tn. Thus A2 ∼ T2 and A3 ∼ T3.

And we have t(T2) = t(T3) = 1.

For T4, it is obtained from Lemma 2.1 that A4 ∼ T4, A4 ∼ Ā4 =

(
0 0

J T

)
or A4 ∼ Ã4 =

(
T 0

J 0

)
. Since t(T4) = 1

and t(Ā4) = t(Ã4) = 3, we have t(T4) ≤ 3.

For T5, it follow from Lemma 2.2 that A5 ∼ T5, A5 ∼ Ã5 =

(
T2 0

J T

)
, A5 ∼ Â5 =

(
T 0

J T2

)
, A5 ∼ ¯̄A5 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1 0 0

J T 0

J J T1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, A5 ∼ Ā5 =

(
0 0

J B4

)
or A5 ∼ Ǎ5 =

(
B4 0

J 0

)
, where B4 is primitive tournament matrix of

order 4. It is clear that t(T5) = 1, t(Ã5) = t(Â5) = t( ¯̄A5) = 3 and t(Ā5) = t(Ǎ5) = 9. Thus we have t(T5) ≤ 9.

Similarly, t(Ti) ≤ 9 for i = 6, 7. Let Ā6 =

(
T2 0

J B4

)
and Ā7 =

(
T3 0

J B4

)
, where B4 is primitive tournament

matrix of order 4, and let T̄i be associated digraph of Āi for i = 6, 7. It is easy to see that t(T̄6) = t(T̄7) = 9.

For n ≥ 8, we have the follow result.
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Theorem 3.2 If Tn(n ≥ 8) is reducible tournament then t(Tn) ≤ n + 1.

Proof. Let An be the adjacency matrix of Tn of order n. By Theorem 3.1, there exists a positive integer s ≤ n + 1

such that

As
n ∼ A� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 0 0 · · · 0

J B2 0 · · · 0

J J B3 · · · 0
...

...
...
. . .

...
J J J · · · Bg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where the diagonal blocks Bi is zero matrix of orderli, I�

3qi
or matrices of 1’s of order mi with mi ≥ 4, 1 ≤ i ≤ g,

0 ≤ 3qi, li,mi ≤ n and the integers qi, li,mi, g are uniquely determined by An. Obviously, (A�)2 ≤ A�, where A� is

transitive matrix. Hence t(Tn) = t(An) ≤ s ≤ n + 1. This completes the proof.

Theorem 3.3 If n ≥ 8, then there exists a reducible matrix T (1)
n of order n such that t(T (1)

n ) = n + 1.

Proof. Let T (1)
n = (V, E) be a digraph , where V = {1, 2, 3, · · · , n}, andletE = {(i, i + 1) | 2 ≤ i ≤ n − 1} ∪ {(i, j) | 3 ≤

j+2 ≤ i ≤ n}∪{(2, 1)}, where (i, j) denote an arc from vertex i to vertex j. It is easy to check that T (1)
n is a reducible

tournament. Using Lemma 2.5, we have that the subgraph T̃n−1 = T (1)
n \{1} of T (1)

n is a primitive tournament of

order n − 1 and γ(T̃n−1) = n − 1 + 2 = n + 1.

Hence t(T (1)
n ) = n + 1. we are done.

In Theorem 3.3, the adjacency matrix of T (1)
n is A(1)

n =

(
0 0

J Ãn−1

)
, where

Ãn−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0

0 0 1 0 · · · 0

1 0 0 1 · · · 0
...
. . .

. . .
. . .

. . .
...

1 · · · 1 0 0 1

1 · · · · · · 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n−1)×(n−1)

.

Let Ã(1)
n =

(
Ãn−1 0

J 0

)
, A(2)

n =

(
T 0

J Ãn−3

)
, and let Ã(2)

n =

(
Ãn−3 0

J T

)
. The associated digraph of the matrices

Ã(1)
n , A(2)

n and Ã(2)
n are T̃ (1)

n , T (2)
n and T̃ (2)

n , respectively.

In fact, we obtain T (2)
n = (V, E), where V = {1, 2, 3, · · · , n} and E = {(i, i + 1) | 4 ≤ i ≤ n − 1} ∪ {(i, j) | 3 ≤ j + 2 ≤

i ≤ n} ∪ {(1, 2), (2, 3), (4, 3)}.
Theorem 3.4 Let Tn be reducible tournament of order n with n ≥ 8. Then we have the following results.

(1) Let n ≡ 0, 1(mod 3) then t(Tn) = n + 1 if and only if Tn is isomorphic to T (1)
n or T̃ (1)

n .

(2) Let n ≡ 2(mod 3) then t(Tn) = n + 1 if and only if Tn is isomorphic to T (1)
n , T̃ (1)

n , T (2)
n or T̃ (2)

n .

Proof. Let An be the adjacency matrix of the graph Tn.

(1) Suppose n ≡ 0, 1(mod 3). If Tn is isomorphic to T (1)
n or T̃ (1)

n , it follow t(Tn) = t(T (1)
n ) = t(T̃ (1)

n ) = n + 1 from

Theorem 3.3.

Conversely, suppose t(Tn) = n + 1. If there exists Bi that it is I�
3qi

for 1 ≤ i ≤ g and 1 ≤ 3qi, then s = n if n ≡ 0(

mod 3) and s = n − 1 if n ≡ 1(mod 3) in Theorem 3.1. Hence s is multiple of 3. By Theorem 3.2, s < n + 1

and t(Tn) = t(An) ≤ s < n + 1 which is impossible. By Lemma 2.5 and Theorem 3.1, it follow An ∼
(

0 0

J A0

)

or An ∼
(

A0 0

J 0

)
, where A0 is irreducible tournament matrix of order n − 1. By Lemma 2.5, we have that Tn is

isomorphic to T (1)
n or T̃ (1)

n .

(2) Suppose n ≡ 2 (mod 3). If Tn is isomorphic to T (1)
n , T̃ (1)

n , T (2)
n or T̃ (2)

n , then t(Tn) = t(T (1)
n ) = t(T̃ (1)

n ) = n + 1 by

Theorem 3.3. And it is easy to verify that t(Tn) = t(T (2)
n ) = t(T̃ (2)

n ) = t(An) = n + 1.
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Conversely, suppose t(Tn) = n + 1. If there does not exist Bi that it is I�
3qi

for 1 ≤ i ≤ g and 1 ≤ 3qi in Theorem

3.1. Lemma 2.5 and Theorem 3.1 give An ∼
(

0 0

J A0

)
, or An ∼

(
A0 0

J 0

)
, where A0 is irreducible tournament

matrix of order n − 1. Using Lemma 2.5, we have that Tn is isomorphic to T (1)
n or T̃ (1)

n .

If there exists Bi that it is I�
3qi

for 1 ≤ i ≤ g and 1 ≤ 3qi in Theorem 3.1. By Lemma 2.5 and Theorem 3.1, we get

An ∼
(
T 0

J A0

)
, or An ∼

(
A0 0

J T

)
, where A0 is irreducible tournament matrix of order n − 3. Lemma 2.5 give

that Tn is isomorphic to T (2)
n or T̃ (2)

n . We are done.
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