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Abstract

This work is an investigation into the structure and properties of supersymmetric hypermatrix Lie algebra generated by
elements of the dihedral group D3. It is based on previous work on the subject of supersymmetric Lie algebra (Schreiber,
2012).

In preview work I used several new algebraic tools; namely cubic hypermatrices (including special arrangements of such
hypermatrices) and I obtained an algebraic structure associated with the basis of the Lie algebra sl2, and I showed that the
basis elements sl2 are generators of infinite periodic hypermatrix Lie algebraic structures with semisimple sub-algebras.
The generated algebra has been shown to be an extended Lie hypermatrix algebra that has a classical Lie algebra decom-
position composed of hypermatrices with periodic properties. The generators of higher dimensional Lie algebra were
shown to be special supersymmetric, anti-symmetric and certain skew-symmetric hypermatrices. The present work takes
a different look at the structure of periodic hypermatrix Lie algebra by using elements generating the classical dihedral
group D3. Using cubic dihedral symmetric hypermatrices (type: even-even, odd-odd, even-odd odd-even permutation)
to generate Lie hypermatrix algebra I show that the extended dihedral algebra is a Lie hypermatrix algebras with special
hypermatrix group properties, semisimple, symmetric, skew-symmetric, anti-symmetric, and anti-clockwise symmetric
properties.

Keywords: Anti-symmetric, Anti-clockwise-symmetry, Basis, Dihedral, Generator, Hypermatrices, Ideal, Lie algebra,
Semisimplicity, Skew-symmetry, Supersymmetry

1. Introduction

In preview work a hypermatrix Lie algebra generated by the basis elements of sl2 has been shown to be an extended Lie
hypermatrix algebra that has a classical Lie algebra decomposition (Bourbaki, 1980; Humphreys, 1972; Jacobson, 1962;
Serre, 1987); specifically a periodic set of Lie algebras composed of hypermatrices has been generated.

In the present work I study the structure of certain periodic hypermatrix Lie algebras by using generators of the classical
dihedral group D3 structured from the simultaneously turning and reflecting pairs of triangles and relations among hy-
permatrices. Using cubic dihedral symmetric hypermatrices I show that a dihedral D3 hypermatrices Lie algebra can be
extended to higher dimension Lie hypermatrix algebras with special semisimple, symmetric, skew-symmetric, antisym-
metric, and anti-clockwise symmetric properties.

2. The HD3 Lie algebra of Two Triangles

The group elements associated with the reflection, and turning of a triangle or its permutation are classically represented
by using the following set of matrices:

t1 =

1 0 0
0 1 0
0 0 1

 , t2 =
0 0 1
1 0 0
0 1 0

 , t3 =
0 0 1
0 1 0
1 0 0

 , t4 =
0 1 0
0 0 1
1 0 0

 , t5 =
1 0 0
0 0 1
0 1 0

 , t6 =
0 1 0
1 0 0
0 0 1


Under matrix multiplication it has the non-commutative classical group structure shown in <Table 1>.

2.1 The first extension of D3

We consider the first extension HD3 Lie hypermatrix algebra (defined below and see also; Schreiber, 2012) of simultane-
ously turning and reflecting 36 pairs of triangles
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The triangles are represented by pairs of matrices situated on the back and front of hypermatrix Wi, j, such that:

W1;1 =

(
t1
t1

)
, W1;2 =

(
t2
t1

)
, W1;3 =

(
t3
t1

)
, W1;4 =

(
t4
t1

)
, W1;5 =

(
t5
t1

)
, W1;6 =

(
t6
t1

)
,

and in general all 36 hypermatrices are represented by the relations

Wi; j =

(
t j

ti

)
, i = 1, ..., 6; j = 1, ..., 6.

We label each hypermatrix even-even, even-odd, odd-even, odd-odd according to the number of permutations in each
Wi-hypermatrix components. The matrix t1 is even, t2 is even, t3 is odd, t4 is even, t5 is odd, and t6 is odd. For example t6
has the permutation (2, 1, 3) with one entry smaller than the first and the sub permutation (1, 3) with no smaller entry than
the first element (2), hence t6 has an odd permutation. Accordingly, W1,1 is an even-even permutation structured from two
identical even permutation matrices. We sum up the 36 elements in four sets, Weven−even, Wodd−odd, Weven−odd, Wodd−even

as follows:
Weven−even = {W1;1,W2;2,W4;4,W1;4,W4;1,W2;4,W4;2,W1;2,W2;1}

Wodd−odd = {W3;3,W5;5,W6;6,W3;5,W5;3,W3;6,W6;3,W5;6,W6;5}

Weven−odd = {W1;3,W1;5,W1;6,W2;3,W2;5,W2;6,W4;3,W4;5,W4;6}

Wodd−even = {W3;1,W5;1,W6;1,W2;3,W5;2,W6;2,W3;4,W5;4,W6;4} (1)

The even elements in D3 are represented by t1, t2, t4 and the odd elements by t3, t5, t6. In general for even elements we
have a commutation relation eie j = e jei characteristics of the alternating even elements in the symmetric subgroup of S 3,
see also <Table 1>.

Definition 1 Lie Algebra of Hypermetrices (Schreiber, 2012). Consider the space {W} over a field F, with an operation
WW ∈ W∗. Note that W∗ is the first extension, e.g., if Wi, j is a two sheet hypermatrix W∗ is a 4-sheet hypermatrix.

Denote by (Wi,W j) the hypermatrix Lie bracket over F; the set {W∗} constitutes a Lie hypermatrix algebra if the following
conditions are satisfied:

A) WW ∈ W∗ where (Wsi,Ws j) ∈ W∗,Wsi a component sheet of W∗k, i.e., (W,W) ∈ {×,+,−,W∗} ∈ Linear{W∗} - a linear
combination in W∗i sheets.

B) 1) the bracket operation is bilinear.

2) (W,W) = 0∗ for all W ∈ {W}.
C) (Wi, (W j,Wk)) + (W j, (Wk,Wi)) + (Wk, (Wi,W j)) = 0∗∗,∀Wi,W j,Wk ∈ {W}. ∗∗ - is the second extension under hyper-
matrix multiplication.

The hypermatrix algebra has to be closed in terms of its components, and with respect to the field operations, in the sense
that the component sheets {Wsi ∈ W} are well defined in the extended space, under the bracket operation {WW ∈ W∗}.
Next I describe some of the bracket products in the hypermatrix dihedral set (Wi, j,Wk,l) in terms of triangle permutation
properties (even or odd permutation) and symmetric characteristics of the hypermatrix products.

2.2 Odd permutation

For the Lie bracket operation of the odd-odd components e.g., hypermatrices W3,3,W3,5 we have

(W3;3,W3;5) = W3;3W3;5 −W3;5W3;3 =

 t3t3
t3t5 t3t5

t3t3

 −
 t5t3
t3t3 t5t5

t3t3

 =
 (t3t3 − t5t3)
(t3t5 − t3t3) (t3t5 − t5t5)

(0)



=



 1 0 −1
−1 1 0
0 −1 1

−1 1 0
0 −1 1
1 0 −1


−1 1 0

0 −1 1
1 0 −1


(0)


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In short
(W3;3,W3;5) = W0,t4−t1,t1−t2,t4−t2 (2)

Sub indices such as Wt4−t1 indicate the difference of t4 − t1 matrices of D3. We see that (W3;3,W3;5) has partial sheet
symmetry in one central plane direction such that (W3;3,W3;5)t = (W3;3,W3;5) for components W2 and W4 in (W3;3,W3;5)
there is symmetry about the hypermatrix horizontal line.

2.3 Even-even permutation and anti-symmetric sheet arrangement

(W4;2,W2;4) = W4;2 ×W2;4 −W2;4 ×W4;2 =



 0 1 −1
−1 0 1
1 −1 0

 0 −1 1
1 0 −1
−1 −1 0

 (0)

(0)


(W4;2,W2;4) = W0,t2−t4,t4−t2,0 (3)

We see that (W4;2,W2;4) has trace zero and it has partial sheet skew symmetry in one central plane direction so that
(W4;2,W2;4)t = −(W4;2,W2;4) for inherent sheet components. Sheet elements Ws2 and Ws4 are skew-symmetric and have
trace zero.

2.4 Odd permutation and anti-symmetric sheet arrangement

(W3;5,W5;3) = W3;5 ×W5;3 −W5;3 ×W3;5 =



(0)

(0)

 0 1 −1
−1 0 1
1 −1 0

 0 −1 1
1 0 −1
−1 1 0




(W3;5,W5;3) = Wt2−t4,0,0,t4−t2 (4)

We see that (W3;5,W5;3) has trace zero and it has partial sheet skew symmetry in one central plane direction so that
(W3;5,W5;3)t = −(W3;5,W5;3) for the sheet components. W1 and W4 have trace zero and are skew-symmetric.

2.5 Even-odd permutation and anti-symmetric sheet arrangement

(W2;5,W5;2) = W2;5 ×W5;2 −W5;2 ×W2;5 =



 1 −1 0
0 1 −1
−1 0 1


−1 1 0
0 −1 0
0 −1 1
1 0 −1


 0 −1 1
−1 1 0
1 0 −1

 0 1 −1
1 −1 0
−1 0 1





skew − symmetric

(W2;5,W5;2) = Wt6−t3,t4−t1,t1−t4,t3−t6 (5)

We see that (W2;5,W5;2) has trace zero components and it has partial sheet skew symmetry in one plane direction so that
(W2,5,W5,2)t = −(W2,5,W5,2) for inherent sheet components.

2.6 Even-odd sheet arrangement

For the Lie bracket operation of the even-odd components hypermatrices W1;3, and W1;5 we have

(W1;3,W1;5) = W1;3 ×W1;5 −W1;5 ×W1;3 =



−1 0 1
0 1 −1
1 −1 0

 1 0 −1
0 −1 1
−1 1 0


 0 1 −1
−1 0 1
1 −1 0


(0)


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(W1;3,W1;5) = W0,t5−t3,t3−t5,t4−t2 (6)

We see that (W1;3,W1;5) has trace zero. Sheets Ws2 and Ws3 are symmetric, and Ws4 is skew-symmetric Ws1 = 0.

The multiplication table for the 1296 hypermatrices of D∗3 are represented here according to the evenness and oddness
of the permutation of the triangles and the Lie bracket characteristics; it has certain algebraic symmetric characteristics
summarized in table 2 for the multiplication of the two triangle hypermatrices and in table 3 for the two triangle anti-
symmetric hypermatrix product, <Table 2>, <Table 3>.

Theorem 1 A1) Lie bracket products of dihedral antisymmetric D3 hypermatrices of type (even, even) in the two triangle
configuration generate trace-zero hypermatrices with skewsymmetric sheet arrangements of the hypermatrices.

A2) The Lie bracket products of dihedral antisymmetric D3 hypermatrices of type (even, even) as in the two triangle
configuration, generate a semisimple hypermatrix Lie algebra.

B1) The Lie Bracket products of dihedral antisymmetric D3 hypermatrices of type (odd, odd) result in trace-zero Lie
hypermatrices with skewsymmetric sheet arrangements of the hypermatrices.

B2) The Lie bracket products of dihedral antisymmetric D3 hypermatrices of type (odd, odd) generate a semisimple
hypermatrix Lie algebra.

Proof: A1) Let the hypermatrices be composed of even antisymmetric sheets such that, written here horizontally,
(W(ei, e j), W(e j, ei)) = W(eie j − e jei, eiei − e je j, e je j − eiei, e jei − eie j) if I-identity element is not among the ei − s′

the differences, by table 1, in W are either t4 − t2 or t2 − t4 therefore the result is

 0 1 −1
−1 0 1
1 −1 0

 or

 0 −1 1
1 0 −1
−1 −1 0

 and

since the even sheet elements commute two of the above sheet WS e entries commute and will vanish while the other two
are related by Wsi = −Ws j and are skewsymmetric as hypermatrix sheets. If the identity element is among the ei − s′ only
the sign of the sheet will change and, therefore, the result follows.

A2) By Schreiber (2012) for antisymmetric matrices we had rules related to the classical semisimpe Lie algebra

x =
(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
the antisymmetric hypermatrices with nilpotent components

(t4, t2) =
[(
−y
X

)
,

(
−x
Y

)]
and the antisymmetric hypermatrices with nilpotent and symmetric components

(t8, t6) =
[(

h
Y

)
,

(
y
h

)]
Generally we have: (W f (h,y,x),W⊗ f (h,y,x)) = W∗trace zero hyper−matrix where W∗ is a trace zero hypermatrix resulting from the
product of nilpotent and trace zero elements in antisymmetric hypermetrics arrangement.

Here ⊗ stands for antisymmetric arrangement of any cubic sheet arrangement of the basis elements f (h, y, x). With a
mapping, for example (h, y)→ (y, h), (h, y, x)→ (y, h, x), (h, y, x, 5h − x)→ (y, h, 5h − x, x) etc’.

In conclusion we may sum up with rule 2 stating that:

{(WH f (h,y,x),WH⊗ f (h,y,x))} = {WHsemi skew−symmetric hypermatrixalgebra} (7)

The Lie product of hypermetrics (composed of h, y, x elements) set in antisymmetric hypermatrices, result in skew-
symmetric trace zero hypermatrices, or semi skew-symmetric hypermatrices. The generalization to any size hypermatrices
follows by induction on dimension.

In order to show that the resulting Lie algebra is semisimple it is required to show that the hypermatrix Lie algebra {W}
has no proper abelian ideals other then {0}.
Since the resulting products of antisymmetric even-even hypermatrices have skew-symmetric sheet arrangement the hy-
permatrices do not commute and the only ideals are the {0} ideal, therefore, the resulting Lie algebra is a semisimple Lie
algebra.
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B1) Although the odd elements do not commute their product results in an even element (see table 1), therefore, the
argument for part B1 is similar to the argument in part A1 and the proof follows in similar lines to those in part A1.

B2) Although the odd elements do not commute their product results in an even element (see table 1), therefore, the
argument for part B2 is similar to the argument in part A2 and the proof follows in similar lines to those of part A2. The
resulting products constitute semisimple hypermatrix Lie algebra (schriber, 2012).

3. Symmetric Hypermatrices Dihedral Type

The symmetric set of hypermatrices Wsymmetric = {W1,1,W2,2,W3,3,W4,4,W5,5,W6,6} composed from the dihedral group
elements ti, i = 1, ..., 6 has special unique properties.

Under bracket multiplication it has the non-commutative classical group structure as shown in <Table 4>.

The matrices with even permutation elements (t1, t4, t2) constitute a normal alternating subgroup of the dihedral group D3.
Therefore, the hypermatrices with even-even permutation elements {W1,1,W2,2,W4,4} constitute a normal alternating hy-
permatrix subgroup (defined below) of the dihedral Lie hypermatrix algebra D∗3{W1,1,W2,2,W3,3,W4,4,W5,5,W6,6}symmetric.
The Lie algebra D∗3 has trace zero, and it is skew symmetric. By definition D∗3 is the extended Lie hypermatrix algebra of
D3, while D∗×n

n is the nth-extended Lie hypermatrix algebra of Dn.

3.1 Lie supersymmetric hypermatrix group

Definition 2 A multiplicative cubic-hypermatrix group is a set {W} of hypermatrices with a multiplicative operation and
the following properties:

a) Closure in the extended hypermatrix set. Wi ×W j ∈ {W∗}, ∀Wi,W j ∈ {W}, W∗-the higher dimensional extended cubic-
hypermatrix. Closure is maintained with respect to the field and components matrix sheets. The hypermatrix size and the
number of sheets do not remain constant.

b) Identity element. ∃ an element I ∋ Wi × I ∈ W∗i ,∀Wi, I ∈ {W}.
c) Invertability. ∀Wi,W ∈ {W}, ∃ an element W ∋ Wi ×W = I∗, I∗ ∈ {W∗}.
d) Associativity. (Wi ×W j) ×Wk = Wi × (W j ×Wk),Wi,W j,Wk ∈ {W}.
Associativity of hypermatrices is maintained when the pair order multiplication of hypermatrices is maintained, and when
pair order is maintained the associativity property of hypermatrices is derived from matrix associativity.

Definition 3 A subset of hypermatrix Lie algebra is a hypermatrix subgroup if it is a hypermatrix group as a set, i.e., it
satisfies all the conditions of a hypermatrix group.

4. The Determinant of Hypermatrices and Conditions for Invertability

The necessary and sufficient conditions for the existence of an invertible hypermatrix W−1 to an hypermatrix W ∈ {W},
are given by the following theorem in which DW is the determinant of W.

Theorem 2 ∀Wi ∈ {W} if DW = 0 and for all sheets S i of W DWsi , 0, ∀i then W−1 the inverse element of W exist and

WW−1 = W−1W = I∗ (8)

4.1 The determinant of the hypermatrix W2×2×2

Let W be defined by α =
(
α111 α121
α211 α221

)
, β =

(
α112 α122
α212 α222

)
where W =

(
β
α

)
. The determinant D of the hypermatrix W2×2×2

is defined as follows:

DW = sgn(1, 1, 1; 2, 2, 2)α111α222+sgn(1, 1, 2; 2, 2, 1)α112α221+sgn(1, 2, 2; 2, 1, 1)α122α211+sgn(1, 2, 1; 2, 1, 2)α121α212 =

det(Wma jor−d) − det(Wminor−d) = Signed sum of transversals. See (Cayley, 1843).

The general definition of hypermatrix determinant is given by

Definition 2 The determinant of an n-dimensional cubic hypermatrix with k−sheets Ws1,s2,,sk ∈ {W∗×n, ∗ × n is the nth
extension} is defined by the signed sum of transversing products∑

(σ1,...,σn)∈S n,(S σ1,...,S σn)∈S n

sgn
∏

α1σS σ1 ...αnσnS σn (10)

Summation is over all arrangements of (S 1, ..., S σn) sub-sheets in the cubic hypermatrices and sheets.

Proof of theorem 2 The idea of the proof is as follows: since the general case of a hypermatrix determinant has to reduce
to the case of a single matrix in terms of conditions for invertability. The individual sheet sub-matrices must be non-
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trivial and invertible because their product with the inverse hypermatrix results with identity sheet sub-matrices. If the
hypermatrix is a symmetric structure by the definition of the determinant of a hypermatrix the determinant of an (even-
even) dihedral hypermatrix has value zero and an inverse. When the hypermatrix W with the above characteristics exists
it must have an inverse since its individual components has inverses i.e., WW−1 = (I, I, I, I, I, ..., I) = I∗∗ for all W, the
elements product in the brackets are arranged right to left.

Lemma 1 Assume DW , 0 and the sheets of W are identical then W is not necessarily invertible.

Proof: In the proof I consider one of the matrix sheets in W and without loss of generality if DWs2 , 0, Ws1 , Ws2 and
if Ws2 is invertible W is not invertible because I∗ cannot exist, this follows because WW−1 = I∗ if and only if Ws1 = Ws2
and both sheets are not trivial or nilpotent. This could be checked directly and the lemma holds by induction for any finite
dimension of W.

Therefore, DW = 0 is a necessary condition for the invertability of W but not a sufficient condition. Generalization for
higher dimension of W is by induction and induction on dimension of hypermatrices.

Lemma 2 If DW = 0 and Wsi , Ws j, ∀i, j W is not necessarily invertible.

Proof: To get DW = 0 we might choose one invertible sheet e.g., Wsi and one trivial sheet Ws j = 0 or two nilpotent non-
identical sheets then possibly D(Wma jor) , D(Wminor) and I∗ cannot exist because WW−1 = I∗ if and only if Ws1 = Ws2
and they must be invertible as matrices.

In conclusion we have shown that in order for the hypermatrix W to have an inverse element W−1 all the components sheets
of the hypermatrix need to be identical non-trivial and invertible sub-matrices of the hypermatrix W. The determinant of
the hypermatrix W has to vanish, i.e., DW = 0. We sum up the bracket multiplication of the (even, even), (odd, odd)
elements and their properties in <Table 5>.

Theorem 3 The invertible (even, even) dihedral set elements of any order constitute a commutative multiplicative hyper-
matrix group.

Proof: By table 1 the multiplication is closed in the matrix set, each element has an inverse in an hypermatrix set, and
multiplication is commutative, here associativity follows from the commutativity of the hypermatrix (..., even, even...even)
set.

Theorem 4 The invertible (odd, odd) dihedral set elements of any order constitute a skew-symmetric Lie hypermatrix
algebra.

Proof: By table 3 the invertible (odd, odd) dihedral set is Lie hypermatrix algebra and by induction on dimension it is a
skew-symmetric Lie hypermatrix algebra of the invertible (odd, odd) dihedral set.

5. The Extended Hypermatrix Lie Algebra Associated with Antisymmetric and Symmetric Hypermatrices

The (even, even), (even,even) hypermatrix products of the dihedral algebra in table 4 with identical symmetric sheet
elements constitute a hypermatrix group and a commutative Lie hypermatrix algebra. Each extension of the set of group
elements constitutes a group structure in a higher cubic hypermatrix set. The set of elements with trace zero is a sub-Lie
hypermatrix algebra which generates a higher cubic dimension semisimple Lie hypermatrix algebra, which has global
skew-symmetric properties (Schreiber, 2012). Next we consider the third extension of the symmetric elements.

5.1 The third extension

Next, consider the extension of the elements in table 4 under the Lie bracket operation:

Skew-symmetric elements type (odd, odd, odd, odd)

Consider the products of the (odd, odd, odd, odd) elements W3,3;5,5 and W3,3;6,6. These elements are
symmetric and their product is skew-symmetric. If we define the elements W3,3;5,5 = (t∗3, t

∗
5), then

the 4-dimensional hypermatrix product Wα,α,α,α, is represented by hypermatrix with four sheets α = 0 1 −1
−1 0 1
1 −1 0

, and similarly for W3,3;6,6 = (t∗3, t
∗
6), we have the hypermatrix Wβ,β,β,β, with four iden-

tical sheets β =

 0 −1 1
1 0 −1
−1 1 0

, therefore, we find that the bracket product (Wα,α,α,α,Wβ,β,β,β) =

{(α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β), (α, β)} = W(0)∗∗ that
follows from αt = −β and αt = −α, and therefore, (α,−αt) = 0, which holds for all skew-symmetric elements. Hence this
Lie product is represented by a trivial 16- sheet symmetric hypermatrix set in a four dimensional cube, the bracket entries
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are arranged right to left.

Similarly, (W6,6;5,5,W6,6;3,3) = W(0)∗∗.

Symmetric and skew-symmetric elements

If we consider the products of the symmetric element W3,3;6,6 and skew-symmetric element W2,2;6,6 we find that their
Lie product result in a hypermatrix with skew-symmetric sheets. The element W3,3;6,6 = (t∗3, t

∗
6) is represented by a 4-

dimensional hypermatrix Wγ,γ,γ,γ set in cubic hypermatrix, with γ =

 0 −1 1
1 0 −1
−1 1 0

 and the element W2,2;6,6 = (t∗2, t
∗
6)

is represented by the hypermatrix Wω,ω,ω,ω with ω =

−1 0 1
0 1 −1
1 −1 0

 and we find that the Lie bracket product

is (Wγ,γ,γ,γ,Wω,ω,ω,ω) = {(γ, ω), (γ, ω), (γ, ω), (γ, β), (γ, ω), (γ, ω), (γ, β), (γ, ω), (γ, ω), (γ, βω), (γ, β), (γ, ω), (γ, ω), (γ, ω),

(γ, ω), (γ, ω)} = W(

 2 −4 2
−4 2 2
2 2 −4

)∗∗. We obtain a16- sheet symmetric hypermatrix set in a four dimensional cube

with symmetric matrices and hypermatrices that have trace zero.

Symmetric elements type (odd, odd, even, even) and (even, even, odd, odd)

Consider W3,3;2,2 and W5,5;4,4 arranged anti-symmetrically as (odd,odd, even,even) and (odd,odd, even,even) products de-
fined by (Wτ,τ,τ,τ,Wσ,σ,σ,σ) = {(τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ), (τ, σ),

(τ, σ), (τ, σ)} = W(

 0 3 −3
−3 0 3
3 −3 0

)∗∗. We obtain a16- sheet symmetric hypermatrix set in a four dimensional hypermatrix

with skew-symmetric hypermatrix sheets that have trace zero.

While for the (odd, odd), (even, even) product W3,3;2,2 and the (even, even), (odd, odd), product W4,4;5,5 we have (W3,3;2,2,

W4,4;5,5) = W(

−1 −1 2
2 −1 −1
−1 2 −1

)∗∗. We obtain a16- sheet symmetric hypermatrix set in a four dimensional cube with anti-

clockwise-symmetric (acs) hypermatrix sheets i.e., (W3,3;2,2,W4,4;5,5)acs = (W3,3;2,2,W4,4;5,5). For W∗symmetric type odd, even
and even, odd we have (W∗symm,W

∗
symm) = W∗∗acs(symm) = W∗∗.

Symmetric elements type (odd, odd, even, even) and (even, even, odd, odd)

(W3,3;4,4,W2,2;6,6) = W(

 0 −3 3
3 0 −3
−3 3 0

)∗∗.
Anti-symmetric elements type (odd, odd, even, even)

For the anti-symmetric hypermatrices of type (odd, odd, even, even) W3,3;2,2, under Lie product with the (even, even, odd,

odd) W2,2;3,3 we have (W3,3;2,2,W2,2;3,3) = W(

−4 0 0
0 −4 0
0 0 −4

)∗∗ set in a16- sheet symmetric hypermatrix with symmetric

sheets.

Anti-symmetric elements type (odd, odd, even, even)

(W5,5;2,2,W2,2;5,5) = W(0)∗∗

Anti-symmetric elements type (even, even, odd, odd)

For trivial center elements W6,6;5,5 and W5,5;6,6 we obtain (W6,6;5,5,W5,5;6,6) = W(0)∗∗.

Hence the higher extensions set of the symmetric hypermatrices associated with the dihedral D3 group arrangement of
triangles have a zero trace if the hypermatrics have all even or all odd elements and if they are arranged anti-symmetrically
their product results in symmetric sheets and symmetric Lie hypermatrix algebra.

Theorem 5 a) The extended dihedral D∗3 Lie algebra associated with symmetric and (odd, odd, odd, odd) anti-symmetric,
trace zero type, four dimensional W∗ hypermatrices generates a semisimple Lie hypermatrix algebra W∗∗ with symmetric
sheets.

144 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 2; April 2012

b) The extended dihedral D∗3 Lie algebra associated with skew-symmetric trace zero four dimensional W*hypermatrices
type W∗(odd, odd, odd, odd) generates a semisimple Lie hypermatrix algebra W∗∗ with trivial sheets.

c) The extended dihedral D∗3 Lie algebra associated with symmetric trace zero four dimensional W∗ hypermatrices type
W∗(odd, odd, even, even) or W*(even, even, odd, odd) generates a trace-zero Lie hypermatrix algebra if the sheets are
symmetric and the hypermatrices are anti-symmetric and generates an acs Lie hypermatrix algebra if the sheets are
symmetric and the hypermatrices are of general type.

Proof: a) I have shown above and it can be seen from the resulting products in table 4 that the (even, even) symmetric
element and the (odd, odd) anti-symmetric elements of the second extension W∗ have trace zero as hypermatrices so when
we apply the Lie bracket operation to symmetric hypermetrics we obtain the following W∗∗ extension:

(Wi,i; j, j(t),Wk,k;l,l(t)) = (W∗α,W
∗
β) = W∗∗((α, β), ..., (α, β)) (11)

a 16 sheet hypermatrix set in a 4-dimensional hypermatrix with symmetric sheets.

In table 4 if the generators elements {ti} have trace zero, there are two possibilities: a) either W∗ has symmetric sheets,
or b) (odd, odd, odd, odd) type anti-symmetric sheets, in any case the hypermatrices W∗∗ are globally symmetric because
they are generated by symmetric elements type Wi,i; j, j which result in symmetric sheets if generated by an (even, even) =
even×2 hypermatrices W(t) and skewsymmetric sheets if generated by odd×2 hypermatrices W(t).

b) If we apply the Lie bracket operation to skew-symmetric hypermatrics W∗ in table 4 we obtain the following W∗∗

extension
(Wi,i; j, j(t),Wk,k;l,l(t)) = (W∗α,W

∗β) = W∗∗((α, β), ..., (α, β)) (12)

a 16 sheet hypermatrix set in a cubic 4-dimensional hypermatrix with trivial sheets, see rule 2 (Schreiber, 2012).

{(WH f (h,y,x),WH⊗ f (h,y,x))} = {WHsemi skew−symmetric hypermatrix algebra} or trace zero algebra (W f (h,y,x),W⊗ f (h,y,x)) =
W∗trace zero hypermatrix algebra.

In table 4 if the generators elements {ti} have trace zero, there are two possibilities: either W∗ has symmetric sheets, or
(odd, odd ,odd, odd) type antisymmetric sheets, as noted above the hypermatrices W∗∗ are globally symmetric because
they are generated by symmetric elements type Wi,i; j, j and have symmetric trivial sheets if generated by even hypermatrices
W(t) and symmetric trivial sheets W∗∗((α, β), ..., (α, β)) = W(0)∗∗ if generated by odd hypermatrices W(t).

So the extended dihedral Lie algebra associated with W∗ skew-symmetric four dimensional hypermatrices generates the
semisimple Lie hypermatrix algebra W∗∗ with trivial sheets.

c) The extended dihedral D∗3 Lie algebra associated with skew-symmetric trace zero four dimensional W∗ hypermatri-
ces type W∗ (odd, odd, even, even) or W∗ (even, even, odd, odd) generates a Lie hypermatrix acs-algebra W∗∗. For
the hypermatrices Wi,i; j, j, Wk,k;l,l of general type W∗ (odd, odd, even, even) or W∗ (even, even, odd, odd) we have
(Wi,i; j, j,Wk,k;l,l)acs = (Wi,i; j, j,Wk,k;l,l), acs-anti-clockwise-symmetric. For W∗ symmetric type (odd, even) and (even, odd)
we have (W∗symm,W

∗
symm) = W∗∗acs(m) = W∗∗. In this case we obtain products of Lie hypermatrices with anti-clockwise-

symmetric sheets.

The product of the elements in Wi,i; j, j and Wk,k;l,l are symmetric trace-zero sheets, their Lie product is either trivial or has
an anti-clockwise-symmetric (acs) sheet structure because the constituent sub-matrices are pair-wise-symmetric and acs.
We may note that the odd elements W5, W6 are symmetric and we also have the relations tacs

5 = t6, tacs
4 = t2. But, their

product with acs elements results in a acs type sheet and, therefore, all resulting products must be acs type sheets, and so
are the resulting hypermatrices. That follows because the product of acs type sheet with another acs type sheet is an acs
type sheet. We note that a linear combination of acs matrices is also an acs matrix, and generally for α, β type acs we
have αacs = α, βacs = β, therefore, (βα) = (αacsβacs)acs. Also every symmetric matrix is an acs matrix but not every acs
matrix is symmetric. Hence the Lie product of acs hypermatrices produces an acs Lie hypermatrix algebra.

If the elements are symmetric and the hypermatrices are anti-symmetric the resulting product is trivial and the resulting
Lie hypermatrix algebra has trace zero (Schreiber, 2012); it is not commutative hence it is semisimple.

Open Questions

Describe the extended dihedral D∗×n
n Lie hypermatrix algebra and all iterations associated with symmetric, anti-symmetric,

and skew-symmetric sheets composing the Lie hypermatrices algebra of D∗×(n−1)
n . D∗×n

n is the nth-extended Lie hyperma-
trix algebra of the elements of the classical group Dn.
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Table 1. Multiplication table for the dihedral group D3

X even even even odd odd odd
t1 t4 t2 t5 t3 t6

even t1 t1 t4 t2 t5 t3 t6
even t4 t4 t2 t1 t3 t6 t5
even t2 t2 t1 t4 t6 t5 t3
odd t5 t5 t6 t3 t1 t2 t4
odd t3 t3 t5 t6 t4 t1 t2
odd t6 t6 t3 t5 t2 t4 t1

The even permutation elements (t1, t4, t2) constitute a normal subgroup of the dihedral group D3.

Table 2. Multiplication table for two triangle hypermatrices

W(ti, ti),W(tk, tl) even, even odd, odd even, odd odd, even
even, even Semisimplicity and Trace-zero

Symm (even, even) sheet skew-symmetry
odd, odd Trace-zero Semisimplicity

Symm(odd, odd) symmetry about
certain hypermatrix

plane lines
even, odd Semisimple, sheet Semisimple, sheet

skew-symmetry skew-symmetry
odd, even Semisimple, sheet Semisimple, sheet

skew-symmetry skew-symmetry

Table 3. Two triangle antisymmetric hypermatrices multiplication table

(W(ti; ti),W(t j; ti)) even, even odd, odd even, odd odd, even
even, even Semisimplicity and X

sheet skewsymmetry
odd, odd X Semisimplicity,

symmetry about certain
hypermatrix plane lines

even, odd X Semisimple,
Skew-symmetry

odd, even Semisimple, X
Skew-symmetry
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Table 4. Second extension of symmetric elements of the dihedral group D∗3

even, even even, even even, even odd, odd odd, odd odd, odd
W(ti; ti) W(t j; t j) W1,1 W4,4 W2,2 W5,5 W3,3 W6,6

even, even W1,1 0∗∗ 0∗∗ 0∗∗ 0∗∗ 0∗∗ 0∗∗

even, even W4,4 0∗∗ 0∗∗ 0∗∗

 0 −1 1
−1 1 0
−1 0 −1


−1 1 0

1 0 −1
0 −1 1


 1 0 −1

0 −1 1
−1 1 0


even, even W2,2 0∗∗ 0∗∗ 0∗∗

 0 1 −1
1 −1 0
−1 0 1


−1 0 1

0 1 −1
1 −1 0


−1 0 1

0 1 −1
1 −1 0


odd,odd W5,5 0∗∗

 0 1 −1
1 −1 0
−1 0 1


 0 −1 1
−1 1 0
1 0 −1

 0∗∗

 0 −1 1
1 0 −1
−1 1 0


 0 1 −1
−1 0 1
1 −1 0


odd,odd W3,3 0∗∗

 1 −1 0
−1 0 1
0 1 −1


 1 0 −1

0 −1 1
−1 1 0


 0 1 −1
−1 0 1
1 −1 0

 0∗∗

 0 −1 1
1 0 −1
−1 1 0


odd,odd W6,6 0∗∗

−1 0 1
0 1 −1
1 −1 0


 1 0 −1

0 −1 1
−1 1 0


 0 −1 1

1 0 −1
−1 1 0


 0 1 −1
−1 0 1
1 −1 0

 0∗∗

∗ Each entry in the table is a 4-sheet 4 dimensional cubic hypermatrix.

The matrices with even permutation elements (t1, t4, t2) constitute a normal subgroup of the dihedral group D3. The
hypermatrices with even-even permutation elements {W1,1,W2,2,W4,4} constitute a normal hypermatrix subgroup of the
dihedral Lie hypermatrix algebra D∗3{W1,1,W2,2,W3,3,W4,4,W5,5,W6,6} symmetric. The Lie algebra D∗3 has trace zero, and
it is skew symmetric.

Table 5. Two triangle symmetric-invertible hypermatrices multiplication

(W(ti; ti),W(t j; t j)) even, even odd, odd
even, even 0∗ Trace zero
odd, odd Trace zero Semisimple, symmetry about certain

hypermatrix lines, Trace-zero
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