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Abstract

In this paper, we consider the non-periodic boundary value problem for a type of first order impulsive functional dif-
ferential equation in Banach spaces. The existence of pulse in differential equations makes them an important area of
investigation. We make use of fixed point index theory on the cone to prove existence of positive solutions. The condi-
tions for existence of two and three positive solutions are given.
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1. Introduction and Preliminaries

In recent years, the theories of impulsive functional differential equations have been rapidly developed, and because such
equations may exhibit several real world phenomena in physics, biology, engineering, and so forth (Bainov & Simeonov,
1993; Lakshmikantham, Bainov & Simeonov, 1989; Bainov & Hristova, 1993), they have received much attention (Ding,
Mi & Han, 2005; Zhang & Liu, 2010),The periodic boundary value problem is an important research branch of the
impulsive functional differential equations. Some conclusions have been made (Zhang, Li, Jiang & Wang, 2006; Zhimin
& Weigao, 2002) about the existence of solutions and the multiplicity of positive solutions of the impulsive functional
differential equations with periodic boundary value problems. Whereas the non periodic boundary value occurs more
frequently in differential equations with pulse, researches are needed for the problem of existence of positive solutions
and multiplicity of such equations. In this paper£we restrict our attention to the study of the following first order impulsive
functional differential equations with non-periodic boundary value

u′(t) + M2u(t) = f (t, ut), t ∈ J = [0,T ], t , tk, k = 1, 2, · · · ,m
∆u(tk) = Ik(utk ), k = 1, · · · ,m
u(0) = pu(T ),
u(t) = u(0), t ∈ [−τ, 0],

(1)

Where, f : J × Cτ is continuous. Cτ := {φ : [−τ, 0]→ R ; φ(t) is continuous everywhere except a finite number of points
t, φ(t +), φ(t −) exist, and φ(t) = φ(t −)}. τ > 0 is a constant. ut ∈ Cτ, ut(θ) = u(t+θ), θ ∈ [−τ, 0], 0 < t1 < t2 < · · · < tm <
T, J′ = J \{t1, t2, · · · , tm}, Ik ∈ C(Cτ,R), ∆u(tk) = u(t+k )−u(t−k ) indicates the jump at t = tk, u(t+k ) and u(t−k ) indicate the left
limit and the right limit of u(t) at t = tk, J∗ = [−τ,T ], p ∈ R. For φ ∈ Cτ, its norm is defined as ||φ||[−τ,0] = max θ∈[−τ,0] |φ(θ)|.
The approaches used for the investigation of existence of positive solutions for differential equations with impulse are
monotone iterative technique and upper and lower solution method (Zhimin & She, 2002; Juan & Rosana, 2006; Luo
& Jing, 2008; He & He, 2004). Upper and lower solution method is often applied to discuss the minimal and maximal
solutions of such equations, and monotone iterative technique is usually used to prove the existence of solution. Recently
fixed point index theorem on cones in Banach space is introduced to investigate the multiplicity of solutions (Zhao, 2010).
In (Zhao, 2010), Zhao studied the problem (1), the results are established using the fixed point index theorem on the cone,
and they proved the existence of two solutions.

Motivated by the results mentioned above, in this paper, we give the conditions of the existence of two positive solutions
and three positive solutions of equations (1) using fixed point index theory on the cone.

2. Preliminaries

Throughout the rest of this paper, we always assume that the points of impulse tk are right-dense for each k =
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1, 2, · · · ,m. t ∈ J′ = J \ {t1, t2, · · · , tm}.
We define PC(J∗) = {u : J∗ → R is continuous everywhere except a finite number of points in [−τ, 0], for t ∈ J′ = J \
{t1, t2, · · · , tm}, u(t+k ) and u(t−k ) exist, and u(t−k ) = u(tk), k = 1, 2, · · · ,m}. Let E0 = {u ∈ PC(J∗) : u(t) = u(0), t ∈ [−τ, 0]}
with the norm ||u||[−τ,T ] = sup t∈J∗ |u(t)|, then E0 is a Banach space. Let C+τ = {φ ∈ Cτ : φ(θ) ≥ 0, θ ∈ [−τ, 0]},
C∗ = {φ ∈ Cτ : 0 ≤ δ||φ|| [−τ, 0] ≤ φ(θ), θ ∈ [−τ, 0]}.

Theorem 1.1 Suppose that E is a Banach space, K ∈ E is a cone in ,and r > 0, Ωr = {x ∈ K : ||x|| < r}. If S : Ωr → K is
a complete continuous operator, and for ∀x ∈ ∂Ωr, S x , x

(1) if ∥S x∥ ≤ ∥x∥, ∀x ∈ ∂Ωr, then i(S ,Ωr,K) = 1;

(2) if ∥S x∥ ≥ ∥x∥, ∀x ∈ ∂Ωr, then i(S ,Ωr,K) = 0.

Lemma 1 u ∈ E0 is a solution of question (1), if and only if u ∈ E0 is a solution of the follow integral equation:

u(t) =


∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk ), t ∈ [0,T ]

u(0), t ∈ [−τ, 0]

(2)

Where

G(t, s) =
1

eM2T − p

{
peM2(s−t) , 0 ≤ t ≤ s ≤ T

peM2(T−t+s) , 0 ≤ s ≤ t ≤ T
(3)

For convenient, we always suppose that:

(H1) 0 < p < eM2T ;

(H2) f is an impulsive L1 −Caratheodory function, and for almost all of t ∈ J
′
= J\(t1, t2, · · · , tm) and v ∈ C+τ , f (t, v) ≥ 0;

(H3) Ik(k = 1, 2, · · · ,m) is continuous, and for any v ∈ C+τ , Ik(v) ≥ 0.

We define an operator S : E0 → E0

S (u)(t) =
 F(u)(t), t ∈ [0,T ]

F(u)(0), t ∈ [−τ, 0]
(4)

Where

F(u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk ), t ∈ J (5)

Then u ∈ E0 is a solution of problem (2) if and only if u ∈ E0 is a fixed point of operator S . We define a cone K in Banach
space E0 as follows

K = {u ∈ E0 : u(t) ≥ δ∥u∥[−τ,T ], t ∈ J∗}

Where δ =
min{1, p}

eM2T max{1, p}
.

Lemma 2 If conditions (H1), (H2), (H3) hold, then S (K) ⊂ K, and S : K → K is completely continuous.

Lemma 3 If conditions (H1), (H2), (H3) hold, and f (t, 0) , 0, Ik(0) , 0, then S (0) , 0.

3. Conclusions

Theorem 3.1 Suppose conditions (H1), (H2), (H3) hold, and as well as the following conditions (H4) and (H5).

(H4) lim
v∈C∗,∥v∥[−τ,0]→0

f (t, v)
∥v∥[−τ,0]

= +∞ and lim
v∈C∗,∥v∥[−τ,0]→∞

f (t, v)
∥v∥[−τ,0]

= +∞ hold conformably for all t ∈ [0,T ].

(H5) There exit constants d > 0, η, ηk ≥ 0 satisfying

max { f (t, v) : t ∈ J, δd ≤ ∥v∥[−τ,0] ≤ d, v ∈ C∗} < ηd.

and
max {Ik(v) : δd ≤ ∥v∥[−τ,0] ≤ d, v ∈ C∗} < ηkd, k = 1, 2, · · · ,m

Where η and ηk satisfy

η +

m∑
k=1

ηk > 0, max

η
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ηk

 < δ
Then problem (1) has at least two positive solutions u1, u2, which satisfy 0 < ∥u1∥[−τ,T ] < d < ∥u2∥[−τ,T ].
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Proof: Following condition (H4), and take N > (δmint∈[0,T ]
∫ T

0 G(t, s)ds)−1 , then there exist constants r > 0 , R > 0 (r is
sufficiently small, and R is sufficiently large, r < d < R), for ∀t ∈ [0,T ], we have:

f (t, v) > N∥v∥[−τ,0], v ∈ C∗, ∥v∥[−τ,0] ≤ r (6)

and
f (t, v) > N∥v∥[−τ,0], v ∈ C∗, ∥v∥[−τ,0] ≥ δR (7)

Let Ωr = {u ∈ E0 : ∥u∥[−τ,T ] < r}, ΩR = {u ∈ E0 : ∥u∥[−τ,T ] < R}.
For ∀u ∈ K

∩
∂Ωr and ∀t ∈ J, δ∥u∥[−τ,T ] ≤ ∥ut∥[−τ,0] ≤ ∥u∥[−τ,T ] = r holds, and

0 < δ∥ut∥[−τ,0] ≤ δ∥u∥[−τ,T ] ≤ u(t + θ) = ut(θ)

Therefore ut ∈ C∗ . According to condition (H4) and inequality (6), we have f (t, ut) > N∥ut∥[−τ,0]. Consequently, if t ∈ J ,
then

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≥
∫ T

0
G(t, s)N∥us∥[−τ,0]ds

≥ (Nδmint∈[0,T ]

∫ T

0
G(t, s)ds)∥u∥[−τ,T ]

> ∥u∥[−τ,T ]

Therefore for ∀u ∈ K
∩
∂Ωr, we have ∥S u∥ ≥ ∥u∥[−τ,T ] = r.

For ∀u ∈ K
∩
∂ΩR and ∀t ∈ J we have ∥ut∥[−τ,0] ≥ δ∥u∥[−τ,T ] = δR, and 0 < δ∥ut∥[−τ,0] ≤ ut(θ).

Therefore ∀u ∈ C∗. According to condition H4 and inequality (7), we have f (t, ut) > N∥ut∥[−τ,0].

Therefore when t ∈ J,

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≥
∫ T

0
G(t, s)N∥us∥[−τ,0]ds

≥ (Nδ min
t∈[0,T ]

∫ T

0
G(t, s)ds)∥u∥[−τ,T ]

> ∥u∥[−τ,T ]

and ∥S u∥ ≥ ∥u∥[−τ,T ] = R holds.

Let Ωd = {u ∈ E0 : ∥u∥−τ,T < d}, according to condition V , for ∀u ∈ K
∩
∂Ωd, ∀t ∈ [0,T ] we have ut ∈ C∗ and

δd = δ∥u∥[−τ,T ] ≤ ∥u∥[−τ,0] ≤ ∥u∥[−τ,T ] = d. Consequently,

max{ f (t, ut)} < ηd, max{Ik(ut)} < ηkd, ∀t ∈ J

Therefore

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≤
∫ T

0
(G(t, s)ηd)ds +

m∑
k=1

G(t, tk)ηkd

≤ max
t∈[0,T ]


∫ T

0
ηG(t, s)ds +

m∑
k=1

G(t, tk)ηk

 d

< δd = δ∥u∥[−τ,T ] ≤ u(t)
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Therefore for ∀u ∈ K
∩
∂Ωd and ∀t ∈ [0,T ] we have

∥S u∥ ≤ ∥u∥[−τ,T ] = d and S (u)(t) , u(t).

According to theorem 1.1, we have that S exits at least two fixed points u1, u2 and u1 ∈ K
∩

(Ωd \Ωr), u2 ∈ K
∩

(ΩR \Ωd).

It means that we have at least two positive solutions u1, u2 for problem (1) and they satisfy inequality 0 < ∥u1∥[−τ,T ] <
d < ∥u2∥[−τ,T ].

Theorem 3.2 Suppose conditions (H1), (H2), (H3) hold, together with the following conditions (H6) and (H7).
(H6)

lim
v∈C∗,∥v∥[−τ,0]→0

f (t, v)
∥v∥[−τ,0]

= 0, lim
v∈C∗,∥v∥[−τ,0]→0

Ik(v)
∥v∥[−τ,0]

= 0,

and
lim

v∈C∗,∥v∥[−τ,0]→∞

f (t, v)
∥v∥[−τ,0]

= 0, lim
v∈C∗,∥v∥[−τ,0]→∞

Ik(v)
∥v∥[−τ,0]

= 0

hold uniformly for all t ∈ [0,T ].

(H7) There exit constants d > 0, η, ηk ≥ 0 such that

min { f (t, v) : t ∈ J, δd ≤ ∥v∥[−τ,0] ≤ d, v ∈ C∗} > ηd.

and
min {Ik(v) : δd ≤ ∥v∥[−τ,0] ≤ d, v ∈ C∗} > ηkd, k = 1, 2, · · · ,m

Where η, ηk satisfy

η +

m∑
k=1

ηk > 0, min

η
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ηk

 > 1

Then problem (1) has at least two positive solutions u1, u2, which satisfy 0 < ∥u1∥[−τ,T ] < d < ∥u2∥[−τ,T ].

Proof: Take ξ, ξk > 0 sufficiently small such that

max

ξ
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ξk

 < δ.
From condition (H6), there exists constants r > 0, R > 0 (r is sufficiently small, and R is sufficiently large, r < d < R),
for ∀t ∈ [0,T ], we have:

f (t, v) < ξ∥v∥[−τ,0], Ik(v) < ξk∥v∥[−τ,0], v ∈ C∗, ∥v∥[−τ,0] ≤ r (8)

and
f (t, v) < ξ∥v∥[−τ,0], Ik(v) < ξk∥v∥[−τ,0], v ∈ C∗, ∥v∥[−τ,0] ≥ δR (9)

Let Ωr = {u ∈ E0 : ∥u∥[−τ,T ] < r}, ΩR = {u ∈ E0 : ∥u∥[−τ,T ] < R}.
For ∀u ∈ K

∩
∂Ωr and ∀t ∈ J, δ∥u∥[−τ,T ] ≤ ∥ut∥[−τ,0] ≤ ∥u∥[−τ,T ] = r and

0 < ∥ut∥[−τ,0] ≤ δ∥u∥[−τ,T ] ≤ u(t + θ) = ut(θ)

Therefore we assert ut ∈ C∗. According to condition (H6) and inequality (8), we have

f (t, ut) < ξ∥ut∥[−τ,0], Ik(ut) < ξk∥ut∥[−τ,0]

Consequently, for t ∈ J

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≤
∫ T

0
G(t, s)ξ∥us∥[−τ,0]ds +

m∑
k=1

G(t, tk)ξk∥utk∥[−τ,0]

≤ max
t∈[0,T ]

ξ
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ξk

 ∥u∥[−τ,T ]

< δ∥u∥[−τ,T ] ≤ u(t)
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Therefore for u ∈ K
∩
∂Ωr

∥S u∥ ≤ ∥u∥[−τ,T ] = r and S (u)(t) , u(t) hold.

For ∀u ∈ K
∩
∂ΩR and ∀t ∈ J, we have

∥ut∥[−τ,0] ≥ δ∥u∥[−τ,T ] = δR and 0 < δ∥ut∥[−τ,0] ≤ ut(θ)

hereby ut ∈ C∗, according to condition (H6) and inequality (9) , we have

f (t, ut) < ξ∥ut∥[−τ,0], Ik(ut) < ξk∥ut∥[−τ,0]

Consequently, for t ∈ J, we have

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≤
∫ T

0
G(t, s)ξ∥us∥[−τ,0]ds +

m∑
k=1

G(t, tk)ξk∥utk∥[−τ,0]

≤ max
t∈[0,T ]

ξ
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ξk

 ∥u∥[−τ,T ]

< δ∥u∥[−τ,T ] ≤ u(t)

We have ∥S u∥ ≤ ∥u∥[−τ,T ] = R and S (u)(t) , u(t) hold.

Let Ωd = {u ∈ E0 : ∥u∥[−τ,T ] < d}, then for ∀u ∈ K
∩
∂Ωd and ∀t ∈ [0,T ], according to condition (H7), we have ut ∈ C∗

and δd = δ∥u∥[−τ,T ] ≤ ∥ut∥[−τ,0] ≤ ∥u∥[−τ,T ] = d, and then

min{ f (t, ut)} > ηd, min{Ik(ut)} > ηkd ∀t ∈ J

Then we have

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≥
∫ T

0
(G(t, s)ηd)ds +

m∑
k=1

G(t, tk)ηkd

≥ min
t∈[0,T ]


∫ T

0
ηG(t, s)ds +

m∑
k=1

G(t, tk)ηk

 d

> d = ∥u∥[−τ,T ]

Therefore for ∀u ∈ K
∩
∂Ωd , ∀t ∈ [0, T ], we have ∥S u∥ > ∥u∥[−τ,T ] = d.

We assert that S (u)(t) , u(t).

Therefore from theorem 1.1, we have at least that two fixed points u1, u2 for operator S . such and u1 ∈ K
∩

(Ωd \Ωr), and
u2 ∈ K

∩
(ΩR \Ωd).

It means that problem (1) exist at least two positive solutions u1, u2, and they satisfy 0 < ∥u1∥[−τ,T ] < d < ∥u2∥[−τ,T ].

Theorem 3.3 Suppose conditions (H1), (H2), (H3) hold, and f (t, 0) , 0, Ik(0) , 0, and with the following conditions
(H8), (H9):

(H8) There exist constants R > r > 0, ξ, ξk > 0 such that when v ∈ C+τ , for all of t ∈ J and 0 < ∥v∥[−τ,0] ≤ r, we have
f (t, v) ≤ ξ∥v∥[−τ,0], Ik(v) ≤ ξk∥v∥[−τ,0] and ξ + ξk > 0, max{ξ

∫ T
0 G(t, s)ds +

∑m
k=1 G(t, tk)ξk} < δ hold.

For all of t ∈ J and ∥v∥[−τ,0] ≥ δR, we have

f (t, v) ≤ ξ∥v∥[−τ,0], Ik(v) ≤ ξk∥v∥[−τ,0] and ξ +

m∑
k=1

ξk > 0, max{ξ
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ξk} < δ.

82 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 1; February 2012

(H9) There exist constants r < d < R, η, ηk ≥ 0 such that when v ∈ C+τ , for all of t ∈ J and δd ≤ ∥v∥[−τ,0] ≤ d, we have

f (t, v) ≥ η∥v∥[−τ,0], Ik(v) ≥ ηk∥v∥[−τ,0] and η +

m∑
k=1

ηk > 0, δmin{η
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ηk} > 1

Then problem (1) exits at least three positive solutions u1, u2, u3, and they satisfy 0 < ∥u1∥[−τ,T ] < r < ∥u2∥[−τ,T ] < d <
∥u3∥[−τ,T ] < R.

Proof: For three constants r < d < R, we define three open sets:

Ωr = {u ∈ E0 : ∥u∥[−τ,T ] < r}, Ωd = {u ∈ E0 : ∥u∥[−τ,T ] < d}, ΩR = {u ∈ E0 : ∥u∥[−τ,T ] < R}.
Then θ ∈ Ωr ∈ Ωd ∈ ΩR.

For ∀u ∈ K
∩
∂Ωr and ∀t ∈ J, we have ut ∈ C+τ and δ∥u∥[−τ,T ] ≤ ∥ut∥[−τ,0] ≤ ∥u∥[−τ,T ] = r.

According to condition (H8), we deduce f (t, ut) ≤ ξ∥ut∥[−τ,0] and Ik(ut) ≤ ξk∥ut∥[−τ,0].

Therefore for t ∈ J

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≤
∫ T

0
G(t, s)ξ∥us∥[−τ,0]ds +

m∑
k=1

G(t, tk)ξk∥utk∥[−τ,0]

≤ max
t∈[0,T ]

ξ
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ξk

 ∥u∥[−τ,T ]

< δ∥u∥[−τ,T ] ≤ u(t)

Accordingly for ∀u ∈ K
∩
∂Ωr, we have ∥S u∥ ≤ ∥u∥[−τ,T ] = r, S (u)(t) , u(t).

For ∀u ∈ K
∩
∂ΩR and ∀t ∈ J, we have ut ∈ C+τ and ∥ut∥[−τ,0] ≥ δ∥u∥[−τ,T ] = δR.

According to condition (H8), we have f (t, ut) ≤ ξ∥ut∥[−τ,0], Ik(ut) ≤ ξk∥ut∥[−τ,0].

Therefore when t ∈ J

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≤
∫ T

0
G(t, s)ξ∥us∥[−τ,0]ds +

m∑
k=1

G(t, tk)ξk∥utk∥[−τ,0]

≤ max
t∈[0,T ]

ξ
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ξk

 ∥u∥[−τ,T ]

< δ∥u∥[−τ,T ] ≤ u(t)

Then ∥S u∥ ≤ ∥u∥[−τ,T ] = R, S (u)(t) , u(t).

According to condition (H9) , for ∀u ∈ K
∩
∂Ωd and ∀t ∈ [0,T ], we have

ut ∈ C+τ and δd = δ∥u∥[−τ,T ] ≤ ∥ut∥[−τ,0] ≤ ∥u∥[−τ,T ] = d

Accordingly f (t, ut) ≥ η∥ut∥[−τ,0], Ik(ut) ≥ ηk∥ut∥[−τ,0] hold for ∀t ∈ J.

Then

S (u)(t) =
∫ T

0
G(t, s) f (s, us)ds +

m∑
k=1

G(t, tk)Ik(utk )

≥
∫ T

0
G(t, s)η∥us∥[−τ,0]ds +

m∑
k=1

G(t, tk)ηk∥utk∥[−τ,0]

≥ δ min
t∈[0,T ]

η
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ηk

 ∥u∥[−τ,T ]

> ∥u∥[−τ,T ]
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Therefore for ∀u ∈ K
∩
∂Ωd and ∀t ∈ [0,T ], we have ∥S u∥ > ∥u∥[−τ,T ] = d, thus S (u)(t) , u(t).

Then we deduce from theorem 1.1 that S has at least three fixed points u1, u2, u3 such that u1 ∈ K
∩
Ωr, u2 ∈ K

∩
(Ωd\Ωr),

u3 ∈ K
∩

(ΩR \Ωd).

According to lemma 3, we have u1 , 0.

It means that problem (1) exits at least three positive solutions u1, u2, u3 and they satisfy

0 < ∥u1∥[−τ,T ] < r < ∥u2∥[−τ,T ] < d < ∥u3∥[−τ,T ] < R.

Theorem 3.4 Suppose conditions (H1), (H2), (H3) hold and f (t, 0) , 0, Ik(0) , 0, and the following conditions
(H10), (H11) also hold:

(H10) lim
v∈C∗,∥v∥[−τ,0]→0

f (t, v)
∥v∥[−τ,0]

= 0, lim
v∈C∗,∥v∥[−τ,0]→0

Ik(v)
∥v∥[−τ,0]

= 0, lim
v∈C∗,∥v∥[−τ,0]→∞

f (t, v)
∥v∥[−τ,0]

= 0 and lim
v∈C∗,∥v∥[−τ,0]→∞

Ik(v)
∥v∥[−τ,0]

= 0,

uniformly hold for all of t ∈ [0,T ] ;

(H11) There exist constants d > 0, η, ηk ≥ 0, such that

min{ f (t, v) : t ∈ J, δd ≤ ∥v∥[−τ,0] ≤ d, v ∈ C∗} > ηd

and
min{Ik(v) : δd ≤ ∥v∥[−τ,0] ≤ d, v ∈ C∗} > ηkd, k = 1, 2, · · · ,m

Where η, ηk satisfy

η +

m∑
k=1

ηk > 0, min{η
∫ T

0
G(t, s)ds +

m∑
k=1

G(t, tk)ηk} > 1

Then problem (1) exits at least three positive solutions u1, u2, u3, and they satisfy

0 < ∥u1∥[−τ,T ] < r < ∥u2∥[−τ,T ] < d < ∥u3∥[−τ,T ] < R.

Proof: According to conditions (H10) and (H11), following the proof of theorem 3.2, we can easily deduce:

for ∀u ∈ K
∩
∂Ωr, ∥S u∥ > ∥u∥[−τ,T ] = r and S (u)(t) , u(t) hold;

for ∀u ∈ K
∩
∂ΩR, ∥S u∥ > ∥u∥[−τ,T ] = R and S (u)(t) , u(t) hold;

for ∀u ∈ K
∩
∂Ωd, ∥S u∥ > ∥u∥[−τ,T ] = d, so S (u)(t) , u(t).

Therefore according to theorem 1.1 we deduce that S has at least three fixed points u1, u2, u3 such that u1 ∈ K
∩
Ωr,

u2 ∈ K
∩

(Ωd \Ωr), u3 ∈ K
∩

(ΩR \Ωd).

According to lemma 3, we have u1 , 0. It means that problem (1) exits at least three positive solutions u1, u2, u3, and
they satisfy

0 < ∥u1∥[−τ,T ] < r < ∥u2∥[−τ,T ] < d < ∥u3∥[−τ,T ] < R.
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