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Abstract

By only using spectral theory of the Laplace operator on spheres, we prove that the unit 3-dimensional sphere of a 2-
dimensional complex subspace of C3 is an Ω-stable submanifold with parallel mean curvature, when Ω is the Kähler
calibration of rank 4 of C3.
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1. Introduction

In 2000, Frank Morgan introduced the notion of multi-volume for an m-dimensional submanifold M of a Euclidean space
Rm+n, as a volume enclosed by orthogonal projections onto axis (m+ 1)-planes. He characterized stationary submanifolds
for the area functional with prescribed multi-volume as submanifolds with mean curvature vector H prescribed by a
constant multivector ξ ∈ ∧m+1Rm+n, namely H = ξ⌊S⃗ , where S⃗ is the unit tangent plane of M, and proved the existence
of a minimizer among rectifiable currents, as well as their regularity under general conditions of the boundary. In this
setting, a question has arisen on conditions for ∥H∥ to be constant. In (Salavessa, 2010) we extended the variational
characterization of hypersurfaces with constant mean curvature ∥H∥ to submanifolds with higher codimension, when the
ambient space is any Riemannian manifold M̄m+n, as discovered by Barbosa, do Carmo and Eschenburg (1984, 1988) for
the case n = 1. This generalization amounts on defining an “enclosed” (m + 1)-volume of an m-dimensional immersed
submanifold F : Mm → M̄m+n, m ≥ 2, as the Ω-volume defined by each one-parameter variation family F(x, t) = Ft(x)
of F(x, 0) = F(x), where Ω is a semi-calibration on the ambient space M̄, that is, an (m + 1)-form Ω which satisfies
|Ω(e0, e1, . . . , em)| ≤ 1, for any orthonormal system ei of T M̄. A submanifold with calibrated extended tangent space
H ⊕ T M is a critical point of the functional area, for compactly supported Ω-volume preserving variations, if and only
if it has constant mean curvature ∥H∥. In this case we have H = ∥H∥Ω ⌊S⃗ . From a deeper inspection of this proof,
one can see that the initial assumption of calibrated extended tangent space can be dropped, since it will appear as a
consequence of being a critical point itself. This will be explained in detail in a future paper, and also its relations with
Morgan’s formalism. Assuming that M has parallel mean curvature H, a second variation is then computed, and its
non-negativeness defines stability of M. This corresponds to the non-negativeness of the quadratic form associated with
the L2-self-adjoint Ω-Jacobi operator JΩ(W) = J(W) + m∥H∥CΩ(W), acting on sections in the twisted normal bundle
H1

0,T (NM) = F ⊕ H1
0(E), where the set F of H1

0-functions with zero mean value is identified with the set of sections of
the form f ν, with f ∈ F and ν = H/∥H∥, and where E is the orthogonal complement of ν in the normal bundle. This
Jacobi operator is the usual one, but with an extra term, namely a multiple of a first order differential operator CΩ(W) that
depends on Ω. The twisted normal bundle is the H1-completion of the vector space generated by the set FΩ of compactly
supported infinitesimal Ω-volume preserving variations, and, in general, we do not know whether it is larger than FΩ
itself. Thus, Ω-stability implies that the area functional of Ft decreases when t approaches t0 = 0, for any family of
Ω-volume preserving variations Ft of F, but we do not know whether the converse also holds always. In case the ambient
space is the Euclidean space Rm+n, then a unit m-sphere of an Ω-calibrated Euclidean subspace Rm+1 of Rm+n is Ω-stable
if and only if, for any (n − 1)-tuple of functions fα ∈ C∞(Sm), 2 ≤ α ≤ n, the following integral inequality holds:∑

α<β

−2m
∫
Sm

fαξ(Wα,Wβ)(∇ fβ)dM ≤
∑
α

∫
Sm
∥∇ fα∥2dM, (1)

where Wα is a fixed global parallel orthonormal (o.n.) frame of Rn−1, the orthogonal complement of Rm+1 spanned by Sm,
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and ξ is the T ∗Sm-valued 2-form on Rn−1
/Sm

ξ(W,W′)(X) = Ω(W,W ′, ∗X), W,W ′ ∈ Rn−1, X ∈ T ∗Sm

where ∗ : TSm → ∧m−1TSm is the star operator. If (1) holds and

∇̄WΩ(W, e1, . . . , em) = 0, ∀W ∈ NSm, (2)

where ei is an o.n. frame of TSm, then in (Salavessa, 2010, Proposition 4.5) we have shown that for each α < β, ξ(Wα,Wβ)
must be co-exact as a 1-form on Sm, that is,

ξαβ := ξ(Wα,Wβ) = δωαβ,

for some globally defined 2-form ωαβ on Sm. This is the case when Ω is a parallel (m + 1)-form on Rm+n. Using these
forms ωαβ, the stability condition (1) is translated into the long Ω-Cauchy-Riemannian integral inequality:∑

α<β

−2m
∫
Sm
ωαβ(∇ fα,∇ fβ)dM ≤

∑
α

∫
Sm
∥∇ fα∥2dM. (3)

If we fix α < β, and set f = fα, h = fβ, and fγ = 0 ∀γ , α, β, (1) reduces to

−2m
∫
Sm

f ξαβ(∇h)dM ≤
∫
Sm
∥∇ f ∥2dM +

∫
Sm
∥∇h∥2dM, (4)

and if we replace f by c f , and h by c−1h, where c2 = ∥∇h∥L2/∥∇ f ∥L2 , then we obtain the corresponding equivalent short
Ω-Cauchy-Riemannian integral inequality

−m
∫
Sm
ωαβ(∇ f ,∇h)dM ≤

√∫
Sm
∥∇ f ∥2dM

√∫
Sm
∥∇h∥2dM, (5)

holding for all functions f , h ∈ C∞(Sm).

The Ω-stability of a submanifold with calibrated extended tangent space and parallel mean curvature depends on the
curvature of the ambient space and on the calibration Ω (Salavessa, 2010). It always holds on Euclidean spheres if CΩ
vanish. This last condition is equivalent to the condition (2) and ξ ≡ 0 ((Salavessa, 2010), Lemma 4.4). In the case n = 2
the later condition is satisfied, but for n ≥ 3 the operator CΩ may not vanish for spheres, even if Ω is parallel. If CΩ does
not vanish, spheres of calibrated vector subspaces may not be Ω-stable.

We first considerΩ any parallel (m+1)-form on Rm+n. Laplace spherical harmonics of Sm of degree l are the eigenfunctions
for the closed eigenvalue problem with respect to the Laplacian operator corresponding to the eigenvalue λl = l(l+m−1),
and they are just the harmonic homogeneous polynomial functions of degree l of Rm+1 restricted to Sm. We denote by Eλl

the finite-dimensional subspace of H1(Sm) spanned by these λl-eigenfunctions. In the first theorem we show how each
1-form ξαβ transforms a spherical harmonic f into another spherical harmonic h:

Theorem 1.1 If Ω is parallel, then for each f ∈ Eλl , h = ξαβ(∇ f ) is also in Eλl , and it is L2-orthogonal to f .

In this paper we study the stability of the unit 3-sphere of a 2-dimensional complex subspace of C3 with respect to the
Kähler calibration. In this case CΩ does not vanish. Let ϖ be the Kähler form of C3 = R6, and Ω the Kähler calibration
of rank 4,

ϖ = dx12 + dx34 + dx56, Ω =
1
2
ϖ2.

The unit sphere of R4 × {0} is immersed into R6 = C3, by the inclusion map ϕ = (ϕ1, . . . , ϕ4, 0) : S3 → C3. We have only
one of those 1-forms

ξ := ξ56 = ∗(dϕ1 ∧ dϕ2 + dϕ3 ∧ dϕ4) = ϕ1dϕ2 − ϕ2dϕ1 + ϕ3dϕ4 − ϕ4dϕ3,

and ξ = δω, with ω = 1
2 ∗ ξ =

1
2 (dϕ1 ∧ dϕ2 + dϕ3 ∧ dϕ4) = 1

2ϕ
∗ϖ. Our main theorem is the following:

Theorem 1.2 Three-dimensional spheres of C2 are Ω-stable submanifolds of C3 with parallel mean curvature, where
Ω = 1

2ϖ
2 is the Kähler calibration of rank 4.

The Cauchy-Riemann inequality version of the Ω-stability is described in the corollary:
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Corollary 1.1 The Cauchy-Riemann inequality

−
∫
S3
ϖ(∇ f ,∇h)dM ≤ 2

3

√∫
S3
∥∇ f ∥2dM

√∫
S3
∥∇h∥2dM

holds for any smooth functions f and h of S3, with equality if and only if f , h ∈ Eλ1 , with f =
∑

i µiϕi and h =
∑

i σiϕi,
where σ2 = −µ1, σ1 = µ2, σ4 = −µ3, σ3 = µ4.

Finally, we state that the 3-sphere is the unique smooth closed submanifold that solves theΩ-isoperimetric problem among
a certain class of immersed submanifolds:

Theorem 1.3 The unit 3-sphere of a complex 2-dimensional subspace of C3 is the unique closed immersed 3-dimensional
submanifold ϕ : M → C3 with parallel mean curvature, trivial normal bundle, and complex extended tangent space
H ⊕ T M, that is Ω-stable for the Kähler calibration of rank 4, and satisfies the inequality∫

M
S (2 + h∥H∥)dM ≤ 0,

where h and S are the height functions h = ⟨ϕ, ν⟩ and S =
∑

i j⟨ϕ, (B(ei, e j))F⟩Bν(ei, e j).

Remark On a closed Kähler manifold (M, J) with Kähler form ϖ(X,Y) = g(JX,Y), if f , h : M → R are smooth functions,
then by the Cauchy-Schwarz inequality,

∣∣∣∣∣∫
M
ϖ(∇ f ,∇h)dM

∣∣∣∣∣ ≤
√∫

M
∥∇ f ∥2dM

√∫
M
∥∇h∥2dM,

with equality if and only if ∇h = ±J∇ f , or equivalently f ± ih : M → C is a holomorphic function. If this is the case, then
f and h are constant functions. On the other hand, globally defined functions, sufficiently close to holomorphic functions
defined on a sufficiently large open set, are expected to satisfy an almost equality. This is not the case of S3, which is not
a complex manifold, and somehow explains the coefficient 2/3 in Corollary 1.1.

Remark In the case of 3-spheres in C3 we have only one form ξαβ, that is, the long Cauchy-Riemann inequality is the short
one. We wonder if a general proof of short Cauchy-Riemann inequalities can be allways obtained for Euclidean m-spheres
on Rm+n, by using the spectral theory of spheres, when Ω is any parallel calibration. Note that (4) is immediately satisfied
for f , h ∈ Eλl , if λl ≥ m2, that is l ≥ m, so it remains to consider the cases l ≤ m − 1. For 3-spheres we have to consider
polynomial functions up to order l = 2, while for 2-spheres we have to consider only the case l = 1. A related remark is
given in the end of section 3.

2. Preliminaries

We consider an oriented Riemannian manifold M of dimension m, with Levi-Civita connection ∇ and Ricci tensor RicciM :
T M → T M. In what follows e1, . . . , em denotes a local direct o.n. frame.

Lemma 2.1 Let ξ be a co-exact 1-form on a Riemannian manifold M, with ξ = δω, where ω is a 2-form. Then for any
function f ∈ C2(M),

ξ(∇ f ) = div(∇ω f ),

where ∇ω f =
∑

i ω(∇ f , ei)ei . Moreover, for any f , h ∈ C∞0 (M)∫
M

f ξ(∇h)dM =
∫

M
ω(∇ f ,∇h)dM = −

∫
M

hξ(∇ f )dM.

Proof: We may assume at a point x0, ∇ei = 0. Then at x0

ξ(∇ f ) = δω(∇ f ) = −
∑

i

∇eiω(ei,∇ f ) =
∑

i

−∇ei (ω(ei,∇ f )) + ω(ei,∇ei∇ f )

= div(∇ω f ) +
∑

i j

Hess f (ei, e j)ω(ei, e j).

The last equality proves the first equality of the lemma, because Hess f (ei, e j) is symmetric on i, j and ω(ei, e j) is skew-
symmetric. The other equalities of the lemma follow from div( f X) = ⟨∇ f , X⟩ + f div(X), holding for any vector field X
and function f . �
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The δ and star operators acting on p-forms on an oriented Riemannian m-manifold M satisfy δ = (−1)mp+m+1 ∗ d∗,
∗∗ = (−1)p(m−p)Id, and for a 1-form ξ the DeRham Laplacian ∆ and the rough Laplacian ∆̄ are related by the following
formulas

∆ξ(X) = (dδ + δd)ξ(X) = −∆̄ξ(X) + ξ(RicciM(X)),
∆̄ξ(X) = trace∇2ξ(X) =

∑
i ∇ei∇eiξ(X) − ∇∇ei eiξ(X).

If ξ = δω, then δξ = 0, and so ∆ξ(X) = δdξ(X) = −∑
i ∇ei (dξ)(ei, X). We also recall the following well-known formula

(see e.g. Salavessa & Pereira do Vale (2006)) for f ∈ C∞(M),

(∆̄d f )(X) =
∑

i

∇2
ei,ei

d f (X) = g(∇(∆ f ), X) + d f (RicciM(X)).

Thus,
∆̄(∇ f ) = ∇(∆ f ) + RicciM(∇ f ),
(∆̄ξ)(∇ f ) = −(δdξ)(∇ f ) + ξ(RicciM(∇ f )).

(6)

Now we suppose that M is an immersed oriented hypersurface of a Riemannian manifold M′, with Riemannian metric
⟨, ⟩, defined by an immersion ϕ : M → M′ with unit normal ν, second fundamental form B and corresponding Weingarten
operator A in the ν direction, given by

B(ei, e j) = ⟨A(ei), e j⟩ = ⟨∇′ei e j, ν⟩ = −⟨e j,∇′ei
ν⟩,

where ∇′ denotes the Levi-Civita connection on M′. The scalar mean curvature of M is given by

H =
1
m

Trace B =
∑

i

1
m

B(ei, ei).

The curvature operator of M′, R′(X,Y,Z,W) = ⟨−∇′X∇′YZ+∇′Y∇′XZ+∇′[X,Y]Z,W⟩, can be seen as a self-adjoint operator
of wedge bundles R′ : ∧2T M′ → ∧2T M′,

⟨R′(u ∧ v), z ∧ w⟩ = R′(u, v, z,w),

and so R′(u ∧ v) =
∑

i< j R′(u, v, ei, e j)ei ∧ e j, where

< u ∧ v, z ∧ w >= det
[
⟨u, z⟩ ⟨u,w⟩
⟨v, z⟩ ⟨v,w⟩

]
.

In what follows, we suppose that ξ̂ is a parallel (m − 1)-form on M′, and ξ is given by

ξ = ∗ϕ∗ξ̂

where ∗ is the star operator on M. In this case ξ is obviously co-closed, but not necessarily co-exact. We employ the usual
inner products in p-forms and morphisms.

Lemma 2.2 Assume m ≥ 3. Then for all i, j

(∇eiξ)(e j) =
∑

k −B(ei, ek)ξ̂(ν, ∗(ek ∧ e j)) = −ξ̂(ν, ∗(A(ei) ∧ e j)),

∆ξ(e j) = δ dξ(e j) = ξ̂
(
ν, ∗γ(e j ∧ (m∇H − [RicciM′ (ν)]T )γ) + R′(e j ∧ ν)

)
+ ξ(ΘB(e j)),

where [RicciM′ (ν)]T =
∑

k RicciM′(ν, ek)ek and ΘB : T M → T M is the morphism given by, ΘB = ∥B∥2Id + mHA − 2A2.

Proof: We fix a point x0 ∈ M and take ei a local o.n. frame s.t. ∇ei(x0) = 0. We will compute dξ(ei, e j), at x on a
neigbourhood of x0. Recall that for any p-form σ, we have ∗σ = σ∗, where the star operator on the r.h.s. can be seen as
acting on ∧m−pT M, with ∗ei = (−1)i−1e1∧ . . .∧ êi∧ . . . em, and for i < j, ∗(ei∧e j) = (−1)i+ j−1e1∧ . . .∧ êi∧ . . .∧ ê j∧ . . .∧em.
Using the fact that ξ̂ is a parallel form on M′, we have for x near x0,

∇ei (ξ(e j)) =
∑

k, j(−1) j−1ξ̂(e1, . . . ,∇′ei ek, . . . , ê j, . . . , em)

=
∑

k< j(−1)k+ jξ̂(∇′ei ek, e1, . . . , êk, . . . , ê j, . . . , em)
+

∑
k> j(−1)k+ j−1ξ̂(∇′ei ek, e1, . . . , ê j, . . . , êk, . . . , em)

=
∑

k< j −⟨∇ei ek, e j⟩ξ̂(∗ek) − B(ei, ek)ξ̂(ν, ∗(ek ∧ e j))
+

∑
k> j −⟨∇ei ek, e j⟩ξ̂(∗ek) + B(ei, ek)ξ̂(ν, ∗(e j ∧ ek))

= ξ(∇ei e j) +
∑

k, j −B(ei, ek)ξ̂(ν, ∗(ek ∧ e j)).
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Hence, (∇eiξ)(e j) =
∑

k, j −B(ei, ek)ξ̂(ν, ∗(ek ∧ e j)), which proves the first sequence of equalities of the lemma. Now,

dξ(ei, e j) = (∇eiξ)(e j) − (∇e jξ)(ei)

=
∑
k, j

−B(ei, ek)ξ̂(ν, ∗(ek ∧ e j)) +
∑
k,i

B(e j, ek)ξ̂(ν, ∗(ek ∧ ei)),

and by Codazzi’s equation,
(∇ei B)(e j, ek) = (∇e j B)(ei, ek) − R′(ei, e j, ek, ν)∑

i(∇ei B)(ei, ek) = m∇ek H − RicciM′ (ek, ν).

Note that Bik = (∇e j B)(ei, ek) is a symmetric matrix, and if we define Aki = ξ̂(ν, ∗(ek ∧ ei)) (valuing zero if k = i),
then Aik is skew-symmetric. Thus,

∑
k,i BikAki =

∑
k,i BikAki = 0. Furthermore, if we set Cik = −R′(ei, e j, ek, ν), then

Cik −Cki = R′(ek, ei, e j, ν). Hence,∑
i

∑
k,i

CikAki =
∑

ik

CikAki =
∑

ik

1
2

((Cik +Cki) + (Cik −Cki))Aki =
∑

ki

1
2

R′(ek, ei, e j, ν)Aki.

Therefore, for each j, at x0

−δdξ(e j) =
∑

i

∇ei (dξ(ei, e j))

=
∑
k, j

∑
i

−(∇ei B)(ei, ek)ξ̂(ν, ∗(ek ∧ e j)) − B(ei, ek)∇ei (ξ̂(ν, ∗(ek ∧ e j)))

+
∑
k,i

∑
j

(∇ei B)(e j, ek)ξ̂(ν, ∗ek ∧ ei)) + B(e j, ek)∇ei (ξ̂(ν, ∗(ek ∧ ei))

=
∑
k, j

(−m∇ek H + RicciM′(ek, ν))ξ̂(ν, ∗(ek ∧ e j)) +
∑
k,i

1
2

R′(ek, ei, e j, ν)ξ̂(ν, ∗(ek ∧ ei)) + S

where

S =
∑

i
∑

k< j(−1)k+ jB(ei, ek)ξ̂(∇′eiν, e1, . . . , êk, . . . , ê j, . . . , em)
+

∑
i
∑

k> j(−1)k+ j−1B(ei, ek)ξ̂(∇′eiν, e1, . . . , ê j, . . . , êk, . . . , em)
+

∑
i
∑

k<i(−1)k+i−1B(e j, ek)ξ̂(∇′eiν, e1, . . . , êk, . . . , êi, . . . , em)
+

∑
i
∑

k>i(−1)k+iB(e j, ek)ξ̂(∇′eiν, e1, . . . , êi, . . . , êk, . . . , em)

=
∑

i
∑

k< j −B(ei, ek)B(ei, ek)ξ(e j) + B(ei, e j)B(ei, ek)ξ(ek)
+

∑
i
∑

k> j B(ei, e j)B(ei, ek)ξ(ek) − B(ei, ek)B(ei, ek)ξ(e j)
+

∑
i
∑

k<i B(ei, ek)B(e j, ek)ξ(ei) − B(ei, ei)B(e j, ek)ξ(ek)
+

∑
i
∑

k>i −B(ei, ei)B(e j, ek)ξ(ek) + B(ei, ek)B(e j, ek)ξ(ei).

At this point we may assume that at x0 the basis ei diagonalizes the second fundamental form, that is, B(ei, e j) = λiδi j.
Then,

S =
∑

i
∑

k< j −δikλ
2
i ξ(e j) + δi jδikλ

2
i ξ(ek) +

∑
i
∑

k> j δi jδikλ
2
i ξ(ek) − δikλ

2
i ξ(e j)

+
∑

i
∑

k<i δikδ jkλ
2
kξ(ei) − δiiδ jkλiλ jξ(ek) +

∑
i
∑

k>i −δiiδ jkλiλ jξ(ek) + δikδ jkλ
2
kξ(ei)

=
∑

i< j −λ2
i ξ(e j) +

∑
i> j −λ2

i ξ(e j) +
∑

j<i −λiλ jξ(e j) +
∑

j>i −λiλ jξ(e j)
=

∑
i, j −λ2

i ξ(e j) − λiλ jξ(e j) =
∑

i −λ2
i ξ(e j) − λiλ jξ(e j) + (λ2

j + λ
2
j )ξ(e j)

= −∥B∥2ξ(e j) − mHξ(A(e j)) + 2ξ(A2(e j)),

and the second sequence of equalities of the lemma is proved. �

If we suppose that ΘB = µ(x)Id, taking ei a diagonalizing o.n. basis of the second fundamental form, B(ei, e j) = λiδi j,
then each λi satisfies the quadratic equation

2λ2
i − mHλi + (µ − ∥B∥2) = 0,

which implies that we have at most two distinct possible principal curvatures λ±. Moreover, from the above equation,
summing over i, we derive that µ(x) must satisfy µ(x) = m−2

m ∥B∥2 + mH2, and so

λ± =
1
4

mH ±
√

16
m
∥B∥2 + m(m − 8)H2

 .
38 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 2; April 2012

Note that, from ∥B∥2 ≥ m∥H∥2, we have 16
m ∥B∥2 +m(m− 8)H2 ≥ (m− 4)2H2, and so there are one or two distinct principal

curvatures. If M is totally umbilical, then ∥B∥2 = mH2 and µ = 2(m − 1)∥H∥2. The previous lemma leads to the following
conclusion:

Lemma 2.3 Assuming M′ = Rm+1, m ≥ 3, and taking M a hypersurface with constant mean curvature, with ΘB = µ(x)Id,
where µ(x) is a smooth function on M, we get µ(x) = m−2

m ∥B∥2 + mH2 and

∆ξ = µξ.

Furthermore, ξ is an eigenform for the DeRham Laplacian operator, that is µ(x) is constant, if and only if ∥B∥ is constant.

In case M is a unit m-sphere Sm, then ΘB = µId, with µ = 2(m − 1), and taking νx = −x as unit normal, then, at each
x ∈ Sm,

(∇eiξ)(e j) = ξ̂(x, ∗(ei ∧ e j))
dξ(ei, e j) = 2ξ̂(x, ∗(ei ∧ e j))
∆ξ = δdξ = 2(m − 1)ξ.

Lemma 2.4 If f ∈ C∞(Sm), then ∆(ξ(∇ f )) = ξ(∇∆ f ).

Proof: We fix a point x0 ∈ Sm and take ei a local o.n. frame of the sphere s.t. ∇ei(x0) = 0. Let f ∈ C∞(Sm). The following
computations are at x0. Using the above formulas (6) and previous lemma, we have

∆(ξ(∇ f )) =
∑

i

∇ei (∇ei (ξ(∇ f ))) =
∑

i

∇ei((∇eiξ)(∇ f ) + ξ(∇ei∇ f ))

= (∆̄ξ)(∇ f ) + 2(∇eiξ)(∇ei∇ f ) + ξ(∇ei∇ei∇ f )

= −2(m − 1)ξ(∇ f ) + ξ(∇∆ f ) + 2(m − 1)ξ(∇ f ) +
∑

i

2(∇eiξ)(∇ei∇ f ).

Since Hess f (ei, e j) is symmetric in i j and by Lemma 2.3, (∇eiξ)(e j) is skew-symmetric, we have∑
i

(∇eiξ)(∇ei∇ f ) =
∑

i j

Hess f (ei, e j)(∇eiξ)(e j) = 0,

and the lemma is proved. �

3. Proof of Theorem 1.1

We denote by ∇ the Levi-Civita connection of Sm induced by the flat connection ∇̄ of Rm+n. We are considering a parallel
calibration Ω on Rm+n. We fix α < β and define the 1-form on Sm

ξ = ξ(Wα,Wβ) = ∗ϕ∗ξ̂ = δω,

where ξ̂ = ξ̂αβ and ω = ωαβ.

We recall that the eigenvalues of Sm for the closed Dirichlet problem are given by λl = l(l + m − 1), with l = 0, 1, 2 . . ..
We denote by Eλl the eigenspace of dimension ml corresponding to the eigenvalue λl, and by E+λl

the L2-orthogonal
complement of the sum of the eigenspaces Eλi , i = 1, . . . , l − 1, and so it is the sum of all eigenspaces Eλ with λ ≥ λl. If
f ∈ Eλl , and h ∈ Eλs , then ∫

Sm
f h dM = 0 if l , s and

∫
Sm
⟨∇ f ,∇h⟩ dM = δlsλl

∫
Sm

f h dM.

There exists an L2-orthonormal basis ψl,σ of L2(Sm) of eigenfunctions (1 ≤ σ ≤ ml). The Rayleigh characterization of λl

is given by

λl = inf
f∈E+λl

∫
Sm ∥∇ f ∥2dM∫

Sm f 2dM
,

and the infimum is attained for f ∈ Eλl . Each eigenspace Eλl is exactly composed by the restriction to Sm of the harmonic
homogeneous polynomial functions of degree l of Rm+1, and it has dimension ml =

(
m+l
m

)
−
(

m+l−2
m

)
. Thus, each eigenfunction

ψ ∈ Eλl is of the form ψ =
∑
|a|=l µaϕ

a, where µa are some scalars and a = (a1, . . . , am+1) denotes a multi-index of length
|a| = a1 + . . . + am+1 = l and

ϕa = ϕa1
1 · . . . · ϕ

am+1
m+1 .
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From ∇ϕi = ϵ
⊤
i and

∑
i ϕ

2
i = 1, we see that ⟨∇ϕi,∇ϕ j⟩ = δi j − ϕiϕ j ∥∇ϕi∥2 = 1 − ϕ2

i∫
Sm ϕ

2
i dM = 1

m+1 |Sm|
∫
Sm ∥∇ϕi∥2dM = λ1

∫
S2 ϕ

2
i dM = m

m+1 |Sm|.
(7)

We also denote by
∫
Sm ϕ

2dM any of the integrals
∫
Sm ϕ

2
i dM, i = 1, . . . ,m + 1. We recall the following:

Lemma 3.1 If P : Sm → R is a homogeneous polynomial function of degree l, then∫
Sm

P(x)dM =
1
λl

∫
Sm
∆0P(x)dM.

In particular, ∫
Sm
ϕadM =

∑
1≤i≤m+1

ai(ai − 1)
l(l + m − 1)

∫
Sm
ϕa−2ϵi dM,

where the terms ai < 2 are considered to vanish. Thus, if some ai is odd this integral vanishes.

Proof of Theorem 1.1 By Lemma 2.4, if f ∈ Eλk then ξ(∇ f ) ∈ Eλk . From∫
Sm

f ξ(∇ f )dM =
∫
Sm
ω(∇ f ,∇ f )dM = 0

we conclude that f and h = ξ(∇ f ) are L2-orthogonal. �

Remark Let us consider f , h ∈ Eλl , and take the globally defined vector field of Sm, ξ♯ =
∑

j ξ(e j)e j. From Lemma 2.2,
we have

⟨∇h,∇(ξ(∇ f ))⟩ = −ξ̂(ν, ∗(∇h ∧ ∇ f )) + Hess f (∇h, ξ♯).

By Theorem 1.1, ξ(∇ f ) ∈ Eλl as well. The term Hess f (∇h, ξ♯) is a sum of polynomial functions of degree 2l − 3 + kξ
where kξ depends on ξ♯, when expressed in terms of ϕi. Let us suppose that all kξ are even. Then by Lemma 3.1,∫
Sm Hess f (∇h, ξ♯)dM = 0. Since λl ≥ m, and taking into consideration that Ω is a semi-calibration,

−
∫
Sm

hξ(∇ f )dM = − 1
λl

∫
Sm
⟨∇h,∇(ξ(∇ f ))⟩dM

=
1
λl

∫
Sm
ξ̂(ν, ∗(∇h ∧ ∇ f ))dM ≤ 1

λl

∫
Sm
∥∇h∥ ∥∇ f ∥dM ≤ 1

m
∥∇ f ∥L2∥∇h∥L2 .

Thus, in this case the short Cauchy-Riemann inequality holds. Inspection of ξ must be required for each case of Ω. A
general proof of the short Cauchy-Riemann integral inequality, under appropriate conditions on Ω, will be developed in a
future paper.

4. 3-Spheres of C2 in C3

In this section we specialize the Cauchy-Riemann inequalities for the case m = n = 3 and for R6 = C3 we will consider
the Kähler calibration 1

2ϖ
2 that calibrates the complex two-dimensional subspaces, that is,

Ω = dx1234 + dx1256 + dx3456.

Thus, fixing W5 = ϵ5 and W6 = ϵ6 we have ξ̂ := ξ̂56 = dx12 + dx34, and

ξ := ξ56 = ∗ϕ∗ξ̂ = ∗(dϕ12 + dϕ34).

The volume element of Sm is VolS m =
∑

i(−1)i−1ϕidϕ1...î...m, and ∗ξ is the unique 2-form s.t. ξ ∧ ∗ξ = ∥ξ∥2VolS m . Using (7)
we see that ∥ξ∥ = ∥ ∗ ξ∥ = 1. Hence

ξ = ϕ1dϕ2 − ϕ2dϕ1 + ϕ3dϕ4 − ϕ4dϕ3

∗ξ = dϕ1 ∧ dϕ2 + dϕ3 ∧ dϕ4 = 1
2 dξ =: d ∗ ω.

Therefore, we may take ∗ω = 1
2ξ, that is

ω =
1
2
∗ ξ = 1

2
(dϕ1 ∧ dϕ2 + dϕ3 ∧ dϕ4) =

1
2
ϕ∗ϖ.
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Hence, to prove Theorem 1.2 and Corollary 1.1 we have to verify that, for any functions f , h ∈ C∞(S3), one of the
following equivalent inequalities holds:∫

S3
−3ω(∇ f ,∇h)dM =

∫
S3
−3 f ξ(∇h)dM ≤ ∥∇ f ∥L2∥∇h∥L2 (8)∫

S3
−6ω(∇ f ,∇h)dM =

∫
S3
−6 f ξ(∇h)dM ≤ ∥∇ f ∥2L2 + ∥∇h∥2L2 .

By Theorem 1.1 we only need to consider both f , h ∈ Eλl , for some l. Note that λ3 = 15 and since Ω is a calibration,
∥ξ(X)∥ ≤ ∥X∥.
Lemma 4.1 If f , h ∈ E+λ3

are nonzero, (8) holds, with strict inequality.

Proof: By Schwartz inequality and Rayleigh characterization∫
S3
−3 f ξ(∇h)dM ≤ 3∥ f ∥L2∥∇h∥L2 ≤ 3

√
λ3
∥∇ f ∥L2∥∇h∥L2 < ∥∇ f ∥L2∥∇h∥L2 ,

with strict inequality in the last one, since neither f nor h may be constant. �

We now verify that (8) holds for f , h ∈ Eλ1 and f , h ∈ Eλ2 . From (7) and Lemma 3.1, we have for i , j∫
S3 ϕ

2dM = 1
4 |S3|,

∫
S3 ϕ

2
i ϕ

2
jdM = 1

6

∫
S3 ϕ

2dM∫
S3 ϕ

4dM = 1
2

∫
S3 ϕ

2dM,
∫
S3 ∥∇ϕ∥2dM = 3

∫
S3 ϕ

2dM

ω(∇ϕ1,∇ϕ2) = 1
2 (1 − ϕ2

1 − ϕ2
2) ω(∇ϕ1,∇ϕ3) = 1

2 (−ϕ2ϕ3 + ϕ1ϕ4)
ω(∇ϕ1,∇ϕ4) = 1

2 (−ϕ2ϕ4 − ϕ1ϕ3) ω(∇ϕ2,∇ϕ3) = 1
2 (ϕ1ϕ3 + ϕ4ϕ2)

ω(∇ϕ2,∇ϕ4) = 1
2 (ϕ1ϕ4 − ϕ2ϕ3) ω(∇ϕ3,∇ϕ4) = 1

2 (1 − ϕ2
3 − ϕ2

4).

(9)

and moreover

Lemma 4.2
3
∫
ω(∇ϕ1,∇ϕ2) = 3

∫
ϕ2 = ∥∇ϕ1∥L2∥∇ϕ2∥L2 = ∥∇ϕ∥2L2

3
∫
ω(∇ϕ3,∇ϕ4) = 3

∫
ϕ2 = ∥∇ϕ3∥L2∥∇ϕ4∥L2 = ∥∇ϕ∥2L2

−3
∫
ω(∇ϕi,∇ϕ j) = 0 for other i j

−3
∫
ϕkω(∇ϕi,∇ϕ j) = 0 ∀i, j, k

−3
∫
ϕ2

1ω(∇ϕ1,∇ϕ2) = −3
∫
ϕ2

2ω(∇ϕ1,∇ϕ2) = − 1
2

∫
ϕ2

−3
∫
ϕ2

3ω(∇ϕ1,∇ϕ2) = −3
∫
ϕ2

4ω(∇ϕ1,∇ϕ2) = −
∫
ϕ2

−3
∫
ϕ2

1ω(∇ϕ3,∇ϕ4) = −3
∫
ϕ2

2ω(∇ϕ3,∇ϕ4) = −
∫
ϕ2

−3
∫
ϕ2

3ω(∇ϕ3,∇ϕ4) = −3
∫
ϕ2

4ω(∇ϕ3,∇ϕ4) = − 1
2

∫
ϕ2

−3
∫
ϕ1ϕ4ω(∇ϕ1,∇ϕ3) = −3

∫
ϕ1ϕ3ω(∇ϕ2,∇ϕ3) = − 1

4

∫
ϕ2

−3
∫
ϕ1ϕ3ω(∇ϕ1,∇ϕ4) = −3

∫
ϕ2ϕ3ω(∇ϕ2,∇ϕ4) = 1

4

∫
ϕ2

−3
∫
ϕ2ϕ3ω(∇ϕ1,∇ϕ3) = −3

∫
ϕ2ϕ4ω(∇ϕ1,∇ϕ4) = 1

4

∫
ϕ2

−3
∫
ϕ2ϕ4ω(∇ϕ2,∇ϕ3) = −3

∫
ϕ1ϕ4ω(∇ϕ2,∇ϕ4) = − 1

4

∫
ϕ2

−3
∫
ϕiϕ jω(∇ϕk,∇ϕs) = 0 for other cases.

Lemma 4.3 If f , h ∈ Eλ1 , that is f =
∑

i µiϕi, h =
∑

j σ jϕ j, for some constant µi, σ j, then (8) holds, with equality if and
only if σ2 = −µ1, σ1 = µ2, σ4 = −µ3, σ3 = µ4.

Proof: Using the previous lemma,

−3
∫

ω(∇ f ,∇h)dM = (µ1σ2 − µ2σ1)
∫
−3ω(∇ϕ1,∇ϕ2) + (µ3σ4 − µ4σ3)

∫
−3ω(∇ϕ3,∇ϕ4)

= −(µ1σ2 − µ2σ1 + µ3σ4 − µ4σ3)∥∇ϕ∥2L2

≤ 1
2

(
∑

i

µ2
i + σ

2
i )∥∇ϕ∥2L2 =

1
2

(∥∇ f ∥2L2 + ∥∇h∥2L2 ).

The equality case follows immediately. �

Lemma 4.4 If f , h ∈ Eλ2 are nonzero, then (8) holds with strict inequality.
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Proof: Set f =
∑

i αiϕ
2
i +

∑
i< j Ai jϕiϕ j, and h =

∑
i βiϕ

2
i +

∑
i< j Bi jϕiϕ j, where αi, Ai j, βi, Bi j are constants. Now we compute

−3
∫

ω(∇ f ,∇h) = −3
∫

ω(∇ϕ1,∇ϕ2)[(2α1ϕ1 + A12ϕ2 + A13ϕ3 + A14ϕ4)(2β2ϕ2 + B12ϕ1 + B23ϕ3 + B24ϕ4)

−(2α2ϕ2 + A12ϕ1 + A23ϕ3 + A24ϕ4)(2β1ϕ1 + B12ϕ2 + B13ϕ3 + B14ϕ4)]

−3
∫

ω(∇ϕ1,∇ϕ3)[(2α1ϕ1 + A12ϕ2 + A13ϕ3 + A14ϕ4)(2β3ϕ3 + B13ϕ1 + B23ϕ2 + B34ϕ4)

−(2α3ϕ3 + A13ϕ1 + A23ϕ2 + A34ϕ4)(2β1ϕ1 + B12ϕ2 + B13ϕ3 + B14ϕ4)]

−3
∫

ω(∇ϕ1,∇ϕ4)[(2α1ϕ1 + A12ϕ2 + A13ϕ3 + A14ϕ4)(2β4ϕ4 + B14ϕ1 + B24ϕ2 + B34ϕ3)

−(2α4ϕ4 + A14ϕ1 + A24ϕ2 + A34ϕ3)(2β1ϕ1 + B12ϕ2 + B13ϕ3 + B14ϕ4)]

−3
∫

ω(∇ϕ2,∇ϕ3)[(2α2ϕ2 + A12ϕ1 + A23ϕ3 + A24ϕ4)(2β3ϕ3 + B13ϕ1 + B23ϕ2 + B34ϕ4)

−(2α3ϕ3 + A13ϕ1 + A23ϕ2 + A34ϕ4)(2β2ϕ2 + B12ϕ1 + B24ϕ4 + B23ϕ3)]

−3
∫

ω(∇ϕ2,∇ϕ4)[(2α2ϕ2 + A12ϕ1 + A23ϕ3 + A24ϕ4)(2β4ϕ4 + B14ϕ1 + B24ϕ2 + B34ϕ3)

−(2α4ϕ4 + A14ϕ1 + A24ϕ2 + A34ϕ3)(2β2ϕ2 + B12ϕ1 + B24ϕ4 + B23ϕ3)]

−3
∫

ω(∇ϕ3,∇ϕ4)[(2α3ϕ3 + A13ϕ1 + A23ϕ2 + A34ϕ4)(2β4ϕ4 + B14ϕ1 + B24ϕ2 + B34ϕ3)

−(2α4ϕ4 + A14ϕ1 + A24ϕ2 + A34ϕ3)(2β3ϕ3 + B13ϕ1 + B23ϕ2 + B34ϕ4)].

Thus, using Lemma 4.2,

−3
∫

ω(∇ f ,∇h) = −3
∫
ω(∇ϕ1,∇ϕ2) [2α1B12ϕ

2
1 + 2β2A12ϕ

2
2 + A13B23ϕ

2
3 + A14B24ϕ

2
4

−2β1A12ϕ
2
1 − 2α2B12ϕ

2
2 − A23B13ϕ

2
3 − A24B14ϕ

2
4]

−3
∫
ω(∇ϕ3,∇ϕ4) [A13B14ϕ

2
1 + A23B24ϕ

2
2 + 2α3B34ϕ

2
3 + 2β4A34ϕ

2
4

−A14B13ϕ
2
1 − A24B23ϕ

2
2 − 2β3A34ϕ

2
3 − 2α4B34ϕ

2
4]

−3
∫
ω(∇ϕ1,∇ϕ3) [2α1B34ϕ1ϕ4 + A14B13ϕ1ϕ4 − A13B14ϕ1ϕ4 − 2β1A34ϕ1ϕ4

+2β3A12ϕ2ϕ3 + A13B23ϕ2ϕ3 − A23B13ϕ2ϕ3 − 2α3B12ϕ2ϕ3]
−3

∫
ω(∇ϕ1,∇ϕ4) [2α1B34ϕ1ϕ3 + A13B14ϕ1ϕ3 − A14B13ϕ1ϕ3 − 2β1A34ϕ1ϕ3

+2β4A12ϕ2ϕ4 + A14B24ϕ2ϕ4 − A24B14ϕ2ϕ4 − 2α4B12ϕ2ϕ4]
−3

∫
ω(∇ϕ2,∇ϕ3) [2β3A12ϕ1ϕ3 + A23B13ϕ1ϕ3 − A13B23ϕ1ϕ3 − 2α3B12ϕ1ϕ3

+2α2B34ϕ2ϕ4 + A24B23ϕ2ϕ4 − A23B24ϕ2ϕ4 − 2β2A34ϕ2ϕ4]
−3

∫
ω(∇ϕ2,∇ϕ4) [2β4A12ϕ1ϕ4 + A24B14ϕ1ϕ4 − A14B24ϕ1ϕ4 − 2α4B12ϕ1ϕ4

+2α2B34ϕ2ϕ3 + A23B24ϕ2ϕ3 − A24B23ϕ2ϕ3 − 2β2A34ϕ2ϕ3]

=
∫
ϕ2 { − 1

2 [2α1B12 + 2β2A12 − 2β1A12 − 2α2B12 + 2α3B34 + 2β4A34 − 2β3A34 − 2α4B34]
−[A13B23 + A14B24 − A23B13 − A24B14 + A13B14 + A23B24 − A14B13 − A24B23]
+ 1

4[ − 2α1B34 − A14B13 + A13B14 + 2β1A34 + 2β3A12 + A13B23 − A23B13 − 2α3B12

+2α1B34 + A13B14 − A14B13 − 2β1A34 + 2β4A12 + A14B24 − A24B14 − 2α4B12

−2β3A12 − A23B13 + A13B23 + 2α3B12 − 2α2B34 − A24B23 + A23B24 + 2β2A34

−2β41A12 − A24B14 + A14B24 + 2α4B12 + 2α2B34 + A23B24 − A24B23 − 2β2A34] }
=

∫
ϕ2 { −[α1B12 + β2A12 − β1A12 − α2B12 + α3B34 + β4A34 − β3A34 − α4B34]

−[A13B23 + A14B24 − A23B13 − A24B14 + A13B14 + A23B24 − A14B13 − A24B23]
+ 1

2[ − A14B13 + A13B14 + A13B23 − A23B13 + A14B24 − A24B14 − A24B23 + A23B24] }
=

∫
ϕ2 { [−α1B12 − β2A12 + β1A12 + α2B12 − α3B34 − β4A34 + β3A34 + α4B34]

+ 1
2 [−A13B23 − A14B24 + A23B13 + A24B14 − A13B14 − A23B24 + A14B13 + A24B23] }
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and applying the same lemmas we see that

∥∇ f ∥2L2 =

2(
∑

k

α2
k) − 4

3
(
∑
i< j

αiα j) +
4
3

(
∑
i< j

A2
i j)

 ∫ ϕ2.

Hence, we have to verify if the following inequality is true:

[−α1B12 − β2A12 + β1A12 + α2B12 − α3B34 − β4A34 + β3A34 + α4B34] (10)

+
1
2

[−A13B23 − A14B24 + A23B13 + A24B14 − A13B14 − A23B24 + A14B13 + A24B23] (11)

+
2
3

(
∑
i< j

αiα j + βiβ j) (12)

≤
∑

k

(α2
k + β

2
k) +

2
3

(
∑
i< j

A2
i j + B2

i j). (13)

This is equivalent to prove the inequalities

(11) ≤ 2
3

(A2
13 + A2

14 + A2
23 + A2

24 + B2
13 + B2

14 + B2
23 + B2

24) (14)

(10) + (12) ≤
∑

k

(α2
k + β

2
k) +

2
3

(A2
12 + A2

34 + B2
12 + B2

34). (15)

Note that

2 × (11) ≤ (A2
13 + A2

14 + A2
23 + A2

24 + B2
13 + B2

14 + B2
23 + B2

24)

≤ 4
3

(A2
13 + A2

14 + A2
23 + A2

24 + B2
13 + B2

14 + B2
23 + B2

24),

and so inequality (14) holds, with equality if and only if

A13 = A14 = A23 = A24 = B13 = B14 = B23 = B24 = 0.

Now

3 × (10) = 3(α2 − α1)B12 − 3(β2 − β1)A12 + 3(α4 − α3)B34 + 3(−β4 + β3)A34

≤ 3
2

((α2 − α1)2 + (β2 − β1)2 + (α4 − α3)2 + (−β4 + β3)2)

+
3
2

(A2
12 + A2

34 + B2
12 + B2

34)

≤ 3
2

((α2 − α1)2 + (β2 − β1)2 + (α4 − α3)2 + (−β4 + β3)2) (16)

+2(A2
12 + A2

34 + B2
12 + B2

34). (17)

We will prove that

(16) + 3 × (12) ≤
∑

k

3(α2
k + β

2
k), (18)

with equality iff α1 = α2 = α3 = α4 and β1 = β2 = β3 = β4, which proves that (15) holds. Furthermore, from (17) we see
that equality in (15) is achieved iff

A12 = A34 = B12 = B34 = 0, and for all i, j αi = α j, βi = β j.

In order to prove (18) we only have to show that

3
2

((α2 − α1)2 + (α4 − α3)2) + 2
∑
i< j

αiα j ≤ 3
∑

k

α2
k ,
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or equivalently, that
−2α1α2 − 2α3α4 + 4α1α3 + 4α1α4 + 4α2α3 + 4α2α4 ≤ 3

∑
k

α2
k .

But this is just
(α1 − α3)2 + (α3 − α2)2 + (α2 − α4)2 + (α4 − α1)2 + (α1 + α2 − α3 − α4)2 ≥ 0,

with equality to zero iff αi = α j ∀i j. We have proved that inequality (8) is satisfied, with equality iff f = α(
∑

k ϕ
2
k) = α

constant and h constant, and so they must vanish. �

Theorem 1.1, with Lemmas 4.1, 4.3 and 4.4, prove that (8) holds for any pair of functions ( f , h), and so Theorem 1.2 is
proved. Corollary 1.1 follows from these lemmas.

In (Salavessa, 2010, Theorem 4.2) a uniqueness theorem was obtained, on a class of closed m-dimensional submanifolds
with parallel mean curvature and calibrated extended tangent in a Euclidean space Rm+n, and satisfying an integral height
inequality. We will recall such results for the caseΩ parallel. We denote by Bν the ν-component of the second fundamental
form B and by BF the F-component, B = Bν + BF , where F is the orthogonal complement of ν in the normal bundle.

Theorem 4.1 If Ω is a parallel calibration of rank (m + 1) on Rm+n, and ϕ : M → Rm+n is an immersed closed Ω-stable
m-dimensional submanifold with parallel mean curvature and calibrated extended tangent space, and∫

M
S (2 + h∥H∥)dM ≤ 0, (19)

where h = ⟨ϕ, ν⟩ and S =
∑

i j⟨ϕ, (B(ei, e j))F⟩Bν(ei, e j), then ϕ is pseudo-umbilical and S = 0. Furthermore, if NM is a
trivial bundle, then the minimal calibrated extension of M is a Euclidean space Rm+1, and M is a Euclidean m-sphere.

Theorem 1.3 is an immediate consequence of Theorem 1.2 and the above theorem.
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