Optimal Couplings of Kantorovich-Rubinstein-Wasserstein L_p-distance

Yinfang Shen (Corresponding author)
Institute of Mathematics and Statistics, Zhejiang University of Finance and Economics
PO box 310018, Hangzhou, China
Tel: 86-158-8889-6193 E-mail: fsilver@163.com

Received: May 24, 2011 Accepted: June 9, 2011 Published: November 1, 2011
doi:10.5539/jmr.v3n4p3 URL: http://dx.doi.org/10.5539/jmr.v3n4p3

The research is supported by Zhejiang Provincial Education Department Research Projects (Y201016421)

Abstract

We achieve that the optimal solutions according to Kantorovich-Rubinstein-Wasserstein L_p-distance ($p > 2$) (abbreviation: KRW L_p-distance) in a bounded region of Euclidean plane satisfy a partial differential equation. We can also obtain the similar results about Monge-Kantorovich problem with more general convex cost functions.

Keywords: Monge-Kantorovich Problem, KRW L_p-distance, Optimal coupling, Partial differential equation

1. Introduction

The classical mass transportation problem of Monge and its version of Kantorovich has found a lot of recent interest because of its applications in lots of fields. Given two probability distributions P and \tilde{P} as the marginal distributions is called a coupling of this pair (P, \tilde{P}). Without losing generality, we may consider two probability measures P and \tilde{P} respectively, $F^{-1}(u)$ and $\tilde{F}^{-1}(u)$ ($0 \leq u \leq 1$) are their right inverses.

In our recent paper (Yinfang & Weian, 2010), we have transformed the Monge-Kantorovich problem as $p = 2$ into Dirichlet boundary problems, we have also obtained the corresponding partial differential equations group in (Yinfang, 2011), and we have achieved an explicit formula of Kantorovich-Rubinstein-Wasserstein L_p-distance ($p > 2$) in (Yinfang, 2011). Now we draw a conclusion that the optimal couplings according to KRW L_p-distance ($p > 2$) in a bounded region of Euclidean plane satisfies a partial differential equation. The proofs are based on variational method from probability point of view. We can also get the similar results about Monge-Kantorovich problem with more general convex cost functions.

2. Main results

Without losing generality, we may consider two probability measures P and \tilde{P} on $[0, 1] \times [0, 1]$. Let X and Y be two random vectors defined on a same probability space with P and \tilde{P} as their individual laws, and $p \geq 2$. Then

$$E|X - Y|^p = E(|X_1 - Y_1|^2 + |X_2 - Y_2|^2)^{\frac{p}{2}}. \quad (2)$$

We assume further their density functions $f(x, y)$ and $\tilde{f}(x, y)$ are smooth and strictly positive on their domains. Denote the marginal densities

$$f_1(x) = \int_0^1 f(x, y)dy, \quad f_2(y) = \int_0^1 f(x, y)dx,$$

and

$$\tilde{f}_1(x) = \int_0^1 \tilde{f}(x, y)dy, \quad \tilde{f}_2(y) = \int_0^1 \tilde{f}(x, y)dx.$$
Furthermore, denote the conditional distributions

\[F_{12}(x|y) = \frac{1}{f_2(y)} \int_0^x f(u, y) du, \quad F_{21}(y|x) = \frac{1}{f_1(x)} \int_0^y f(x, u) du, \]

and

\[\tilde{F}_{12}(x|y) = \frac{1}{f_2(y)} \int_0^x \tilde{f}(u, y) du, \quad \tilde{F}_{21}(y|x) = \frac{1}{f_1(x)} \int_0^y \tilde{f}(x, u) du, \]

which are strictly increasing with respect to their first argument so their inverse functions with respect to their first arguments exist.

Now Denote by \(G \) the set of all density functions \(g(x, y) \) on \([0, 1] \times [0, 1]\) such that \(f_1(x) = \int_0^1 g(x, y) dy \) and \(\tilde{f}_1(y) = \int_0^1 g(x, y) dx \). Then we have

Lemma 1. (Yinfang, 2011) Suppose that \(X, Y \) are the optimal coupling, hence

\[
E|X - Y|^p = \int_0^1 \int_0^1 \int_0^1 [(x - y)^2 + (F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)_x) - F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)]^\frac{p}{2} g(x, y) g(x, t) \frac{1}{f_1(x)} dt dx dy.
\]

(3)

So we just need to look for a density function \(g(x, y) \in G \) minimizes (3). Actually, we have

Theorem 1. When \(p > 2 \), \(g \in G \) minimize (3), then

\[
\frac{\partial^2}{\partial x \partial y} \left(\int_0^1 [(x - y)^2 + (F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)_x) - F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)]^\frac{p}{2} \frac{g(x, y)}{f_1(x)} dt \right) dx dy = 0.
\]

(4)

Proof: For \(0 < a_1 < a_2 < 1 \) and \(0 < b_1 < b_2 < 1 \) when \(\epsilon \) is small enough, s.t. \(a_1 + \epsilon < a_2 < a_2 + \epsilon < 1, b_1 + \epsilon < b_2 < b_2 + \epsilon < 1 \) Define

\[
\tilde{\xi}(s, t) = I_{[a_1, a_2 + \epsilon]}(s) I_{[b_1, b_2 + \epsilon]}(t) - I_{[a_1, a_2 + \epsilon]}(s) I_{[b_1, b_2 + \epsilon]}(t),
\]

and then \(g(s, t) + \delta \tilde{\xi}(s, t) \in G \) when both \(\epsilon, \delta \) are small. Since \(g \) is the minimum,

\[
0 \leq \frac{1}{\epsilon^2} \left(\int_0^1 \int_0^1 [(x - y)^2 + (F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)_x) - F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)]^\frac{p}{2} \frac{g(x, y)}{f_1(x)} dt dx dy \right.
\]

\[
- \left. \int_0^1 \int_0^1 [(x - y)^2 + (F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)_x) - F_{21}^{-1}(\int_0^u \frac{g(x, u)}{f_1(x)} du)]^\frac{p}{2} g(x, y) g(x, t) \frac{1}{f_1(x)} dt dx dy \right)
\]

Denote \(\int_0^1 \frac{g(x, u)}{f_1(x)} du = \phi(x, t) \), letting \(\epsilon \to 0 \), we get

\[
0 \leq \int_0^1 \int_{a_1}^{a_2} [(a_1 - y)^2 + (F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)_x) - F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)]^\frac{p}{2} \frac{g(a_1, y)}{f_1(a_1)} dt dx dy
\]

\[
+ \left. \left(\frac{\partial}{\partial \phi(a_1, t)} F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)_x - \frac{\partial}{\partial \phi(a_1, t)} F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)]^\frac{p}{2} g(a_1, y) g(a_1, t) \frac{1}{f_1(a_1)} dt dx dy \right)
\]

Denote \(\int_0^1 \frac{g(x, u)}{f_1(x)} du = \phi(x, t) \), letting \(\epsilon \to 0 \), we get

\[
0 \leq \int_0^1 \int_{b_1}^{b_2} [(a_1 - y)^2 + (F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)_x) - F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)]^\frac{p}{2} \frac{g(a_1, y)}{f_1(a_1)} dt dx dy
\]

\[
+ \left. \left(\frac{\partial}{\partial \phi(a_1, t)} F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)_x - \frac{\partial}{\partial \phi(a_1, t)} F_{21}^{-1}(\int_0^u \frac{g(a_1, u)}{f_1(a_1)} du)]^\frac{p}{2} g(a_1, y) g(a_1, t) \frac{1}{f_1(a_1)} dt dx dy \right)
\]
Consequently we can say

\[
\frac{\partial^2}{\partial x \partial y} N(x, y) \geq 0,
\]

where

\[
N(x, y) = - \int_0^1 \int_0^y [(x - t)^2 + (F_{21})^{-1}(\int_0^u \frac{g(a_2, u)}{f_1(a_2)} du) - F_{21}^{-1}(\int_0^u \frac{g(a_2, u)}{f_1(a_2)} du)] dw dt \geq 0.
\]
On the other hand, if one replace \(g + \delta \xi \) by \(g - \delta \xi \), the same computation leads
\[
\frac{\partial^2}{\partial x \partial y} N(x, y) \leq 0.
\] (7)

Thus we deduce that
\[
\frac{\partial^2}{\partial x \partial y} N(x, y) = 0, \quad \forall \ 0 < x, y < 1.
\] (8)

References

Villani, C. (2003). Topics in optimal transportation, AMS.

