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Abstract

This paper presents an alternative technique for solving linear programming problems. It is centered on finding a feasible
interior point each time the feasible region is contracted, thus generating a sequence of feasible interior points that con-
verge at the optimal solution of linear programming problem. The convergence of the algorithm is proved, and it is shown
that the algorithm performs faster in a smaller feasible region.
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1. Introduction

Linear programming is without doubt the most popular tool used in operations research study. A number of solution
techniques are available and these include the simplex method developed by Dantzig et al (1956) and the interior point
methods initiated by Karmarkar (1984).

The simplex methods and its variants search for the candidate optimal solution in an intelligent fashion by moving from
one corner point of the feasible region to another. Although, the simplex methods and its variants have enjoyed widespread
acceptance and usage in solving linear programming problems, they are by no means the only good technique. The time
and number of iterations required by the simplex methods to reach an optimal solution may be exponential even in small
scale linear programming problems thus making the method less efficient (Eiselt et al, 1987).

An attempt to solve linear programming problems in polynomial time facilitated the advent of the interior point methods.
Since the dramatic development by Karmarkar (1984), there has been considerable interest in research in the area of
interior point methods (Gondzio, 1995; Marsten et al, 1990; Lustig et al, 1994; Todd and Ye, 1990; Todd and Ye, 1998).

Conventionally, the interior point methods start from the initial feasible interior point and follow a central path through
the feasible region until an optimum solution is found. This is achieved by converting the given linear programming
problem to linear complementarity problem and solved by Newton’s method. Although the interior point methods are
considered to be highly efficient in practice they have some drawbacks, namely, extensive calculations, many iterations,
and large storage space in computer is required. It is therefore necessary to develop a new technique that will overcome
these drawbacks.

In other to find a feasible interior point to the system of linear inequalities, Effanga (2010) modified the existing simplex
splitting method developed by Levin and Yamnitsky (1982). The modified simplex splitting algorithm is embedded in the
feasible region contraction algorithm presented in this paper.

2. The Idea Behind the Development of FRCA

Consider the following primal and dual linear programming problems:

Primal:

maximize Z = cT x

subject to:

Ax ≤ b

x ≥ 0
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Dual:

minimize Y = bT y

subject to:

AT y ≥ c

y ≥ 0

The week duality property:

If x0 is a feasible solution of the primal linear programming problem with the objective function value Z0 and y0 is a
feasible solution of the corresponding dual problem with the objective function value Y0, then Z0 ≤ Y0.

The strong duality property:

If x∗ is an optimal solution of the primal linear programming problem with the objective function value Z∗ and y∗ is an
optimal solution of the corresponding dual problem with the objective function value Y∗, then Z∗ = Y∗.

In view of the weak and strong duality properties, it follows that Z0 ≤ Z∗ ≤ Y0.

3. The Outline of the Feasible Region Contraction Algorithm (FRCA)

Step 0 Find the feasible interior point x0 to the primal problem and the feasible interior point y0 to the dual problem using
the modified simplex splitting algorithm.

Set k = 0

Step 1 Determine the lower bound Zk and upper bound Yk to the optimum objective function value Z∗, where

Zk = cT xk and Yk = bT yk.

Step 2 For a small positive number ε,

Is (Yk − Zk) < ε?

Yes: Stop, an ε - optimal solution is found. Set

x∗ = xk and Z∗ = 1
2 (Zk + Yk)

No: Go to Step 3.

Step 3 Contract the feasible region by introducing the new constraint

cT x ≥ 1
2 (Zk + Yk).

Set k = k + 1

Step 4 Is there a feasible point x f to the updated problem in Step 3?

Yes: Set xk = x f and Zk+1 = 1
2 (Zk + Yk)

No: Set xk = xk−1 and Yk+1 = 1
2 (Zk + Yk)

Return to Step 2.

4. The Convergence of FRCA

Let I0 :=
[
Z0,Y0

]
be the duality gap as defined in the FRCA. Assume that I0, I1, · · · , Ik have been generated. Then

denoting I j :=
[
Z j,Y j

]
, j = 0, 1, 2, · · · , k, we generate Ik+1 as follows:

If there is a feasible point with the objective function value greater than Zk+1, then Ik+1 :=
[
Zk+1,Yk

]
. But if

there is a feasible point with the objective function value less than Zk+1, then Ik+1 :=
[
Zk,Zk+1

]
.
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Lemma

(i) The sequence
{
Ik
}∞
k=0

is a decreasing sequence of duality gaps. i.e., Ik ⊃ Ik+1, 0 ≤ k < ∞

(ii) The length of Ik given by Y0−Z0

2k

(iii)
∞⋂

k=0
Ik = {Z∗}, where Z∗ is the optimal objective function value of the primal linear programming problem.

Proof. Points (i) and (ii) are obvious by our construction.

(iii) For k = 0 Z∗ ∈ I0, by the weak duality property.{
Zk
}∞
k=0

is a monotonically increasing sequence of primal objective function values, and it is bounded above by Y0.
It therefore has a finite limit, L1.

Also,
{
Yk
}∞
k=0

is a monotonically decreasing sequence of dual objective function values, and it is bounded below by
Z0. It therefore has a finite limit, L2.

Now, L2 − L1 = lim
k→∞

(
Yk − Zk

)
= lim

k→∞
(

Y0−Z0

2k

)
= 0.

Therefore, L2 = L1 = Z∗, by strong duality property.

�

Theorem 4.1 Let {Xi}∞i=0 be a sequence of interior feasible points generated by FRCA, then there exists a subsequence{
Xi j

}∞
j=0

that converges at the optimal point x∗ with the objective function value Z∗.

Proof. Since the feasible region is compact, a convergence subsequence
{
Xi j

}∞
j=0

can be selected from the sequence {Xi}∞i=0

generated. By the continuity of the expression of the value of a feasible point, Xi j → X∗ and val
(
Xi j

)
∈ Ii → val (X∗) = Z∗.

�

Theorem 4.2 The FRCA will terminate after at least k = log2

(
Y0−Z0

ε

)
number of iterations.

Proof. Using the stopping rule of FRCA,

‘
(
Yk − Zk

)
< ε?’,

it follows that
Y0−Z0

2k < ε.
That is,

2k ≥ Y0−Z0

ε
.

Therefore,

k ≥ log2

(
Y0−Z0

ε

)
. �

5. The Effect of Scaling down Right hand side values of constraints on the performance of FRCA

The Modified Simplex Splitting Algorithm is a nonlinear algorithm which performs faster in a smaller feasible region.
This algorithm is performed in steps 0 and step 4 of the FRCA. If the feasible region is therefore reduced in size the
decision about the existence of the feasible solution is faster. Hence independent of the main iteration loop, each loop will
be faster by itself.

Since the choice of the simplex depends on the right-hand side values, bi’s, of the constraints, it becomes necessary to
scale down bi’s by multiplying by a factor 10−n, for any positive integer n, prior to applying the algorithm. Scaling down
the bi’s is equivalent to reduction in size of the feasible region. The optimal solution of the original linear programming
problem can be recovered by multiplying the optimal solution of the refined linear programming problem by the factor
10n.

6. Example

Consider the following linear programming problem

minimize Z = 2x1 + 3x2
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subject to:

x1 + x2 ≤ 8

x1 + 2x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

Below is the detailed FRCA report of the above linear programming problem.

F. R. C. Algorithm Solver Report

Solution of LP Problem using the Feasible Region Contraction Algorithm

Primal Problem

Maximize Z = 2x1 + 3x2

subject to:

1) x1 + x2 ≤ 8

2) x1 + 2x2 ≤ 4

x(i) ≥ 0, i = 1, 2.

Dual Problem

Minimize Z = 8y1 + 4y2

subject to:

1) y1 + 2y2 ≥ 2

2) 11 + yx2 ≥ 3

y(i) ≥ 0, i = 1, 2.

Vertices

Vertex 1 = [16, 0]

Vertex 2 = [0, 16]

Vertex 3 = [0, 0]

Epsilon

ε = 0.01

Results
x(0) = [1.8395, 0.937]

y(0) = [2, 2]

Iteration 1

Upper Z(UZ) = 24, Lower Z(LZ) = 6.4901

(UZ − LZ) = 17.5099, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 15.245

No feasible solution

Iteration 2

Upper Z(UZ) = 15.245, Lower Z(LZ) = 6.4901

(UZ − LZ) = 8.755, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 10.8676

No feasible solution

Iteration 3

Upper Z(UZ) = 10.8676, Lower Z(LZ) = 6.4901
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(UZ − LZ) = 4.3775, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 8.6788

No feasible solution

Iteration 4

Upper Z(UZ) = 8.6788, Lower Z(LZ) = 6.4901

(UZ − LZ) = 2.1887, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 7.5845

Feasible Solution: x(1) = [3.3146, 0.3227]

Iteration 5

Upper Z(UZ) = 8.6788, Lower Z(LZ) = 7.5845

(UZ − LZ) = 1.0944, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 8.1317

No feasible solution

Iteration 6
Upper Z(UZ) = 8.1317, Lower Z(LZ) = 7.5845

(UZ − LZ) = 0.5472, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 7.8581

Feasible Solution: x(2) = [3.7409, 0.1292]

Iteration 7

Upper Z(UZ) = 8.1317, Lower Z(LZ) = 7.8581

(UZ − LZ) = 0.2736, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 7.9949

Feasible solution: x(3) = [3.9903, 0.0048]

Iteration 8

Upper Z(UZ) = 8.1317, Lower Z(LZ) = 7.9949

(UZ − LZ) = 1.1368, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 8.0633

No feasible solution

Iteration 9

Upper Z(UZ) = 8.0633, Lower Z(LZ) = 7.9949

(UZ − LZ) = 0.0684, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 8.0291

No feasible solution

Iteration 10

Upper Z(UZ) = 8.0291, Lower Z(LZ) = 7.9949
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(UZ − LZ) = 0.0342, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 8.012

No feasible solution

Iteration 11

Upper Z(UZ) = 8.012, Lower Z(LZ) = 7.9949

(UZ − LZ) = 0.0171, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 8.0034

No feasible solution

Iteration 12

Upper Z(UZ) = 8.0034, Lower Z(LZ) = 7.9949

(UZ − LZ) = 0.0085, is not < ε

Optimal Solution Found

Z∗ = 7.9991

x∗ = x(3) = [3.9903, 0.0048]

Now let the right - hand side values of each of the constraints be multiplied by 10−1. The detailed report of the new
problem is given below.

F. R. C. Algorithm Solver Report

Solution of LP Problem using the Feasible Region Contraction Algorithm

Primal Problem

Maximize Z = 2x1 + 3x2

subject to:

1) x1 + x2 ≤ 0.8

2) x1 + 2x2 ≤ 0.4

x(i) ≥ 0, i = 1, 2.

Dual Problem

Minimize Z = 0.8y1 + 0.4y2

subject to:

1) y1 + 2y2 ≥ 2

2) 11 + yx2 ≥ 3

y(i) ≥ 0, i = 1, 2.

Vertices

Vertex 1 = [1.6, 0]

Vertex 2 = [0, 1.6]

Vertex 3 = [0, 0]

Epsilon

ε = 0.01

Results
x(0) = [0.184, 0.0937]

y(0) = [2, 2]

Iteration 1

Upper Z(UZ) = 2.4, Lower Z(LZ) = 0.649

164 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011

(UZ − LZ) = 1.751, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 1.5245

No feasible solution

Iteration 2

Upper Z(UZ) = 1.5245, Lower Z(LZ) = 0 : 649

(UZ − LZ) = 0.8755, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 1.0868

No feasible solution

Iteration 3

Upper Z(UZ) = 1.0868, Lower Z(LZ) = 0.649

(UZ − LZ) = 0.4377, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 0.8679

No feasible solution

Iteration 4

Upper Z(UZ) = 0.8679, Lower Z(LZ) = 0.649

(UZ − LZ) = 0.2189, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 0.7584

Feasible Solution: x(1) = [0.3315, 0.0323]

Iteration 5

Upper Z(UZ) = 0.8679, Lower Z(LZ) = 0.7584

(UZ − LZ) = 0.1094, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 0.8132

No feasible solution

Iteration 6

Upper Z(UZ) = 0.8132, Lower Z(LZ) = 0.7584

(UZ − LZ) = 0.0547, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 0.7858

Feasible Solution: x(2) = [0.3741, 0.0129]

Iteration 7

Upper Z(UZ) = 0.8132, Lower Z(LZ) = 0.7858

(UZ − LZ) = 0.0274, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 0.7995

Feasible solution: x(3) = [0.399, 0.0005]

Iteration 8

Upper Z(UZ) = 0.8132, Lower Z(LZ) = 0.7995
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(UZ − LZ) = 0.0137, is not < ε

New Constraint

3) 2x1 + 3x2 ≥ 0.8063

No feasible solution

Iteration 9

Upper Z(UZ) = 0.8063, Lower Z(LZ) = 0.7995

(UZ − LZ) = 0.0068, is not < ε

Optimal Solution Found.

Z∗ = 0.8029

x∗ = x(3) = [0.399, 0.0005]

Multiplying the optimal solution by 10 gives the optimal solution of the original problem as

Z∗ = 8.029

x∗ = x(3) = [3.99, 0.005]

7. Concluding Remarks

The solution obtained by FRCA compares favorably with that obtained by the popular simplex algorithm. The optimal
solution by simplex method is Z∗ = 8; x∗ = (4, 0). Furthermore, the FRCA performs faster when the size of the feasible
region is reduced. In the above illustration the number of iterations reduces from 12 to 9.
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