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Abstract

It is shown that if a group ring satisfies the idempotent conjecture and some other restrictions it will be representational
consistent. As an application we show the real numbers as a field are representational consistent. This leads to the problem
of whether a circle can be given a field structure that can be shown to be consistent.
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1. Introduction

The study of consistency has been viewed historically as very important to mathematics. For example Hilbert’s second
problem asks whether the axioms of arithmetic are consistent. There is more than one definition of consistency, the most
straightforward being that a statement cannot be both true and false at the same time. Another definition is ω-consistency
which is the opposite of ω-inconsistency. ω-inconsistency means a statement does not hold for some number, but is still
provable for every number individually. Tarski has proved that the real numbers as a field are consistent see (Blum and
Smale, 2000, p1477-1495).

Representational consistency is defined in a general sense using the notion of structure or interpretation from model theory
(Crossley et al., 1972, p13).

Definition 1. Let S be a nonempty set, and U a collection of relations on S , 〈S , U〉 is called the structure of S . Let
R1 : S → V, R2 : S → W be two monomorphisms of a structure 〈S , U〉 and

U(R1, R2) = {(s, {R1(s)} ∪ {R2(s)}) | s ∈ S } . (1)

This defines an operator U on mappings whose domain is S , but the range of U is

{{v, w} | v ∈ V, w ∈ W} .

Definition 2. The structure 〈S , U〉 is called pair wise consistent if for all pairs of monomorphisms R1, R2 the map
U(R1, R2) is one to one. If for any pair of monomorphisms R1, R2 the map U(R1, R2) is not one to one, the structure is
said to be pair wise inconsistent.

Let S = kG, where G is a group, and k is a field, and U are the relations given by the ring axioms on S . It will be shown
that the structure 〈S , U〉 is pair wise consistent if G satisfies the idempotent conjecture and some other conditions. For
example if G belongs to the class of groups S (Emmanouil, 2001, p151-160), or the class of groups C (Emmanouil, 1998,
p307-330) then it satisfies the idempotent conjecture.

Irving Kaplansky made the idempotent conjecture in his classic book on fields and rings (Kaplansky, 1972, p122).

If G is a torsion free group, and k is a field then the group ring kG has no non-trivial zero-divisors.

The idempotent conjecture is currently open, although there are many cases in which it is known to hold. The idempotent
conjecture is true for

• Torsion free abelian groups

• Torsion free polycyclic by finite groups

• Torsion free Noetherian groups

• Solvable groups with finite Hirsch number
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In Emmanouil’s paper (Emmanouil, 2001, p151-160) he introduces a class S of groups satisfying the idempotent con-
jectures, with nice closure properties. Consider for any group G the complex group algebra CG and the augmentation
homomorphism

ε : CG → C

and the augmentation ideal IG = ker ε. For any left CG-module M let MG = M/IG M. The class S consists of groups that
satisfy the following condition: For any non-zero projective CG-module P, we have PG � 0. The class S contains all
torsion-free abelian groups, and is closed under subgroups, extensions, direct products and free products.

In addition to these examples, a larger class of groups with good closure properties can be found in (Emmanouil, 1998,
p307-330). The class C consists of those groups that satisfy the following condition: For any element g ∈ G of infinite
order the image

(
αg

)
Q

of the class αg in the cohomology ring ⊕iH
i
(
Ng, Q

)
is nilpotent. A group G is said to be residually

contained in C if for any element g ∈ G with g � 1 there exists a normal subgroup K � G, such that g � K and G/K ∈ C.
Emmanouil proves the following theorem.

Theorem 3. Let G be a group. If G ∈ C is torsion-free, then G satisfies the idempotent conjecture.

Proof. See Proposition 4.4 in (Emmanouil, 1998, p307-330). �

The class C includes all torsion and all abelian groups, and is closed under subgroups, finite direct products and free
products (Emmanouil, 1998, p307-330) Proposition 3.5. However there are examples of groups that do not satisfy the
cohomological condition defining class C (Emmanouil, 2001, p159-171).

Further examples of pair wise consistent rings such as non-commutative ordered rings and rings other than group rings
can be found in the book in progress by the author (Bhavnagri, 2010, p1-133).

2. Showing consistency

To show that structures with representational consistency exist we use the theorem from (Bhavnagri, 2009, p4).

Theorem 4. A set S with structure has (pairwise) representational consistency if

H : Aut (S ) × S → S (g, x) �→ y

H (id, x) = x ∀x ∈ S

H (g, x) � x ∀g ∈ Aut (S ) \ {id} , ∀x ∈ S

g2 � id ∀g ∈ Aut (S ) \ {id}
The identity automorphism is denoted by id.

Proof. If the representations of S are pair wise inconsistent then for some φ1, φ2 the mapping U(φ1, φ2) is not one to one.
Hence there are s, t ∈ S with s � t such that

{φ1(s), φ2(s)} = {φ1(t), φ2(t)} (2)

Since φ1, φ2 are monomorphisms they are one to one so

φ1(s) � φ1(t) and φ2(s) � φ2(t). (3)

Since Aut(S ) is a group we have from equation 2

φ−1
2 (φ1(s)) = t (4)

and
φ−1

1 (φ2(s)) = t. (5)

From equations 4 and 5 we have φ−1
1 φ2φ

−1
1 φ2(s) = s.

Since Aut(S ) acts freely on S it must be that φ−1
1 φ2φ

−1
1 φ2 = id where id ∈ Aut(S ) is the identity.

From equation 3 the sets in equation 2 cannot have only one element, as U(φ1, φ2) is not one to one, so φ1 � φ2.

(
φ−1

1 φ2

)2
= id (6)

The group Aut(S ) has an involution. �
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What is striking about the theorem above, is that we did not need to know anything about the structure in order to prove
the theorem. It could perhaps apply to a large class of structures, but it leads to a formidable problem which has been
unsolved since 1997. Identify structures which satisfy the following equations.

H : Aut (S ) × S → S (g, x) �→ y

H (id, x) = x ∀x ∈ S

H (g, x) � x ∀g ∈ Aut (S ) \ {id} , ∀x ∈ S

g2 � g ∀g ∈ Aut (S ) \ {id}
In this paper we now assume S is a ring, not necessarily commutative, because it turns out that ring theory provides some
solutions to the problem.

3. Involutions and idempotents

An element e of a structure is called an idempotent if e2 = e. In a ring involutions and idempotents are equivalent provided
the characteristic of the base field is not 2. If e2 = e then let g = 2e − 1 then g2 = 1 and g is an involution. Conversely if g

is an involution, g2 = 1 and let e = 1
2 (g + 1) so that e2 = e, and e is an idempotent.

Caution is necessary when applying the equivalence of idempotent and involutory elements in a ring. This is because
an involution φ with respect to composition in Aut (S ) is φ (φ (s)) = s which is not the same as an involutory element
g2 = gg = 1. Observe that the product

(2e − 1) (2e − 1)

is not the same as the composition
2 (2e − 1) − 1.

Lemma 5. Let S be a ring (with unit) and define gb : S → S with gb (s) = bs and b = 2a − 1.

(i) If a ∈ S is an idempotent then gb is an involution.

(ii) If an idempotent is invertible it is trivial.

(iii) An involution is its own inverse.

Proof. (i) By definition
gb (gb (s)) = b (bs) = b2s = s

so that gb is an involution under composition.

(ii) a2a−1 = aa−1 ⇒ a = 1

(iii) For any involution b by definition b2 = 1 so b = b−1. Also

b2b−1 = 1b−1 ⇒ b = b−1.

�

However gb is not an automorphism as that would require gb (s) gb (t) = gb (st) for all s, t ∈ S That would require the
equality of bsbt and bst.

On the other hand if we conjugate by two involutory elements b2 = 1 and d2 = 1 with φ (s) = bsd then φ is an involution
with respect to composition in Aut (S ). It is necessary that db = 1 if φ ∈ Aut (S ), such as an inner automorphism which
has d = b−1.

Lemma 6. Let S be a ring with unit.

(i) If a, c ∈ S are idempotents where b = 2a − 1 and d = 2c − 1 and db = 1 then b = d.

(ii) If a ∈ S is a non-trivial idempotent then φ (s) = (2a − 1) s (2a − 1) is a non-trivial involution of Aut (S ), furthermore

φ is an inner automorphism of S .

(iii) If φ ∈ Aut (S ) is an inner automorphism involution φ = xsx−1 then x2 ∈ Z (S ).

(iv) Suppose Z (S ) = k and Aut (S ) =
{
xsx−1 | x ∈ S

}
. If there is a non-trivial involution in Aut (S ) and x2 = λ1 with

λ > 0 then there is a non-trivial involution in S .

Proof. (i)

Expanding db = 1 gives (2c − 1) (2a − 1) = 4ca − 2a − 2c + 1.

Published by Canadian Center of Science and Education 91



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011

Then db = 1 if and only if
2ca = a + c (7)

Multiplying equation 7 by a gives 2ca2 = a2 + ca and from idempotence of a

2ca = a + ca (8)

Multiplying equation 7 by c gives 2c2a = ca + c2 and from idempotence of c

2ca = ca + c (9)

Equating 8 and 9 gives a = c and also b = d.

(ii) We verify that φ (st) = φ (s) φ (t) and φ (φ (s)) = s for all s, t ∈ S .

φ (st) = (2a − 1) st (2a − 1)

From Lemma 5 (iii) (2a − 1)2 = 1 and we have

(2a − 1) st (2a − 1) = (2a − 1) s (2a − 1) (2a − 1) t (2a − 1)

It follows that φ (st) = φ (s) φ (t). Also

(2a − 1) (2a − 1) s (2a − 1) (2a − 1) = 1s1 = s

so that φ (φ (s)) = s.

(iii) For all s, x
(
xsx−1

)
x−1 = s since φ is an inner automorphism involution. Right multiply by x2 yielding x2s = sx2.

Since x2 ∈ Z (S ) it follows that φ (s) = xsx−1 = sxx−1 = s.

(iv) Suppose Z (S ) = k and Aut (S ) ⊆
{
xsx−1 | x ∈ S

}
. If φ is an inner automorphism involution from (iii) x2 = λ1 for

some λ ∈ k. If λ > 0 then λ−1/2x is a non-trivial involution in S . �

Now what we are interested in is the extent to which the converse of Lemma 6 (ii) holds. That will give us conditions for
the last equation in Theorem 4. That is under what conditions does knowing a ring has no non-trivial idempotents tell us
it has no non-trivial automorphism involutions? The answer is provided by (iv) of the same Lemma 6.

There can be non-trivial inner automorphism involutions s �→ xsx−1 with x not an involution. For example in the ring
of 2 × 2 real matrices if x2 = c1 and x−2 = 1

c
1 where c is a scalar. An example of a non-trivial involution in this ring is

x =

[
1 1
1 −1

]
. However x2 is in the centre of the ring S . The standard notation for the centre of a ring is Z (S ). It is well

known the centre of Mn (C) is
Z (Mn (C)) = {λIn | λ ∈ C}

where In denotes the n × n identity matrix. So an inner automorphism involution is just a scaled involution in Mn (C).

In particular n = 1 gives C itself, which has i �→ −i as automorphism. So if j is such that ji j−1 = −i then ji = −i j

so j ∈ H, not in C which is commutative. Even in H the map x �→ ixi−1 is an involution automorphism, but H has no
non-trivial idempotents, its automorphisms are all inner and it is central.

Also observe that for an inner automorphism the third equation in Theorem 4 is φ (s) = xsx−1 � s, unless φ = id (the
second equation). That is x � Z (S ), unless φ = id. If Z (S ) = {λIn | λ ∈ C} then that is true as λIns

(
λ−1In

)
= id.

There are also examples of group rings CG whose centre is a direct sum of C · Ini
, for example if G is a finite group in the

book (Emmanouil, 2006, p195).

Automorphism groups can have outer automorphisms, that is automorphisms that are not inner. However, there are
conditions under which all automorphisms are inner automorphisms. We will find an example of such rings after we deal
with a simpler case first.

4. Ordered rings

An ordered ring is a ring with an order < such that for any a, b, c

a < b =⇒ a + c < b + c

0 < a and 0 < b =⇒ 0 < ab
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An ordered ring has no idempotents other than 0 and 1. There are three cases. If 0 < x < 1 then multiplying by x we have
x2 < x so x2 � x. If x > 1 then x2 > x so x2 � x. Last if x < 0 multiply x < 1 then x2 > x so x2 � x.

The real numbers are an ordered field, so they have no non-trivial idempotents. Likewise the rational numbers are another
example of an ordered field. Both fields have no non-trivial automorphisms.

Any ordered field has positive squares x2 > 0. The complex numbers are not an ordered field, otherwise
√−1 would have

positive square.

5. Inner automorphisms

If k is a field then any automorphism of the ring of matrices over k (denoted Mn (k)) can be extended to an inner automor-
phism. This is a corollary of the theorem of extension of isomorphisms we will now introduce.

A ring R is called simple if it has no non-trivial ideals and R2 � (0). The trivial ideals are R and (0). A division ring is a
ring in which every non-zero element has a multiplicative inverse. Any division ring is simple.

Lemma 7. The ring Mn (D) where D is a division ring is simple.

Proof. See the book (Kaplansky, 1972, p91-92). �

The Jacobson density theorem follows, which can be used to prove the Wedderburn-Artin theorem.

Theorem 8. Let M be a simple right R-module and let D = EndR (M). Let X be a finite subset of M and I = annR (X) the

annihilator of X. If u ∈ M is such that uI = 0 then u ∈ XD.

Proof. See the book (Kaplansky, 1972, p95). �

A ring is said to satisfy the descending chain condition on right ideals, if every properly descending chain of right ideals
is finite. The next theorem is the Wedderburn-Artin theorem.

Theorem 9. A simple ring with descending chain condition on right ideals is the full ring of linear transformations on a

finite-dimensional vector space over a division ring.

Proof. See the book (Kaplansky, 1972, p96). �

A central simple k-algebra is a simple k-algebra whose center is the field k. For example C is not central simple and
(1 ⊗ 1 + i ⊗ i) is a non-trivial ideal because (i ⊗ i + 1 ⊗ 1) (i ⊗ i − 1 ⊗ 1) = 0, hence C ⊗R C is not simple. On the other
hand the quaternion algebra H is central simple, the center being R.

Lemma 10. Let C be an algebra over F. Let A, B be subalgebras with A central simple and B simple. Suppose further

that A and B commute elementwise. Then either AB = 0 or AB is isomorphic to A ⊗ B.

Proof. See the book (Kaplansky, 1972, p153). �

Lemma 11. Let D be a division algebra over F and A a finite dimensional algebra with unit element over F. Then A ⊗ D

satisfies the descending chain condition on right ideals.

Proof. See the book (Kaplansky, 1972, p155). �

Theorem 12. Let E be a vector space over a division ring D with center Z. Let R be the ring of all linear transformations

on E and let B and C be simple subalgebras of R, finite dimensional over Z and containing the unit element of R. Then

any isomorphism between B and C can be extended to an inner automorphism of R.

Proof. See the book (Kaplansky, 1972, p161). �

As a corollary to this theorem we have that if k is a field then any automorphism of Mn (k) can be extended to an inner
automorphism.

For further details about rings see for example the book by Irving Kaplansky (Kaplansky, 1972, p79-198). A similar result
about all automorphisms being inner is also a corollary of the Skolem-Noether theorem (Drupieski and Hamblet, 2005,
p1).
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6. Showing inconsistency

We have seen thus far how to prove consistency, now we show a technique for proving inconsistency. We will show that
the cyclic group is representationaly inconsistent.

Lemma 13. The representations of Zn are inconsistent if n > 2.

Proof. Let φ : Zn → Zn with φ : sm �→ sm(n−1)modn. Suppose n − 1 and n have a common factor p > 1. Then n − 1 = pr

and n = ps for some integers r, s. Since n = n− 1+ 1, ps = pr + 1, so p (r − s) = −1. This would imply p and r − s equal
+1 or −1, contradicting p > 1. Thus n − 1 and n are relatively prime, so that the multiples of φ (s1) = sn−1 generate Zn.
Thus φ is a structure preserving mapping, hence a monomorphism of Zn. Since φ (sn−1) = s1,

U (id, φ) (s1) = {s1, sn−1} = U (id, φ) (sn−1)

so the representations of Zn are inconsistent if n > 2. �

The above lemma can be generalized. If any automorphism φ is an involution the representations will be inconsistent. Let
φ (s1) = s2 and φ (s2) = s1. Then

U (id, φ) (s1) = {s1, s2} = U (id, φ) (s2)

and the representations are inconsistent.

The complex numbers C have complex conjugation as an automorphism. The composition of two conjugations is the iden-
tity, and hence it is an involution. Complex multiplication is commutative so there is no distinction between automorphism
and anti-automorphism. Consequently the field of complex numbers C is representationaly inconsistent.

7. Consistency of circle

The field of real numbers R is consistent in both the classical sense proved by Tarski and in the sense of representational
consistency. This is because it is both ordered and has trivial automorphism group. On the other hand the field of complex
numbers C is inconsistent in the sense of representational consistency. Let us now consider the problem of giving the
circle S 1 a ring structure, so that we can determine whether it is consistent or not.

A periodic function f : R → S 1 such as f (θ) = eiθ maps the real numbers to the circle. Consider ways in which R can be
endowed with a product that is ordered. The lexicographic order (x1, y1) < (x2, y2) if x1 < x2 or if x1 = x2 and y1 < y2.

The tensor product is not orderable. The tensor product R ⊗ R in a basis is (x1, y1) ⊗ (x2, y2) = (x1x2, y1y2). If the
product is ordered then (x1, y1) > 0 and (x2, y2) > 0 implies that (x1x2, y1y2) > 0. A counterexample is provided by
any x1 > 0, y1 < 0, x2 = 0, y2 > 0, in which case x1x2 = 0 but y1y2 < 0. Both (x1, y1) > 0 and (x2, y2) > 0 but
(x1, y1) ⊗ (x2, y2) is not positive.

Consider other products. Another product like (x1x2, x1y2 + x2y1) is also not ordered, (0, 1) (0, 1) = (0, 0). Also
(x1x2 + y1y2, x1y2 + x2y1) is not ordered, for instance (1, 1) (1, −1) = (0, 0).

A more interesting product S 1 × S 1 → S 1 can be defined using the concept of spin. Spin
(
R2

)
is the group consisting of

products
(cos (ϑ1) i + sin (ϑ1) j) (cos (ϑ2) i + sin (ϑ2) j) ,

where ϑ ∈ S1 i.e. the unit circle in the above subspace C ⊂ H. Multiplying out the product it is

− cos (ϑ1) cos (ϑ2) − sin (ϑ1) sin (ϑ2) +
(cos (ϑ1) sin (ϑ2) − cos (ϑ2) sin (ϑ1)) k

So Spin
(
R2

)
is generated by 1, k. i and j act on R2 by reflection while k acts on R2 as a rotation. Thus Spin

(
R2

)
is

isomorphic to U (1) � S1. Is this product ordered?

More generally an open problem would be whether all ordered structures are consistent. Also it is hoped some of the
machinery developed for the idempotent conjecture can be carried over.
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