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Abstract

Causal inferences on the average treatment effect in observational studies are always difficult problems because the distri-
butions of samples in the two treatment groups can not be observed at the same time, and the estimation of the treatment
effect is often biased.In this paper, the propensity score and the propensity score subclassification, selected from several
methods, are used to assess the treatment effect.The estimation of the average treatment effect give the Bootstrap confi-
dence intervals. Simulation studies are inducted for the continuous samples in normal distribution and the mixed samples
of discrete and continuous type.

Keywords: Average treatment effects, Propensity score, Propensity score subclassification, Maximum likelihood estima-
tion, Bootstrap confidence intervals

1. Introduction

Causal inferences on the average treatment effect in observational studies are difficult problems because the effect could
be confounded with the covariates whose distributions differ systematically in the two treatment groups, and a direct
estimation of the treatment effect is often biased. Propensity score method has been shown to be an effective way to
reduce this bias in the point estimation of the average treatment effect. However, we have not been well developed the
inference procedures concerning this average treatment effect. A generally used approach is to stratify the data based on
the estimated propensity scores and carry out the desired inferences as it is in a stratified random sample.

However, the validity of such procedures, is rather questionable. As the subclassification is based on the propensity scores
estimated from a common logistic model, the responses within each subclass and between the subclasses are not likely to
be independent. Meanwhile, the estimation of the unknown propensity scores also presents an addition source of variation,
which will affect the variance estimate in the inference.

We introduce a Bootstrap confidence interval that takes into account the dependent structure of the propensity score
stratified data in this paper, as well as the extra variation arisen from the propensity score estimation, under an assumption
that the measured covariates can be balanced within all the subclasses based on estimated propensity scores.Different from
the current methods, this procedure does not require an estimation of the variance quantity on the purpose of inference.
Nor does it assume any specific distribution for the pivotal statistic used in the traditional confidence interval construction.

1.1 Proposition of the problem

Let P be a population from which we have a random sample consisting of N units.For each unit i in the sample, i =

1, · · · ,N, let Zi be a binary treatment assignment variable so that unit i receives some control treatment if Zi = 0, and unit
i receives some treatment if Zi = 1. For example, we may toss a coin and let unit i receives the treatment if the Head
appears.The coin may or may not be biased.For an unbiased coin we have

pr(Zi = 1) = pr(Zi = 0) =
1
2
, i = 1, · · · ,N (1)

This is the case, for instance, when we randomly divide the N units into two groups, one for treatment and the other for
control.For many problems in medicine and economics involving observational studies or evaluation studies, the above
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assumption on randomization is usually not realistic. In these cases, typically, the assignment probabilities vary with
individuals.It is useful to think that they depend on some extraneous individual characteristics.

In this paper we shall consider the simple case where each unit i has a scalar outcome depending on the assignment
variable Zi.We let Yi(1) denote the outcome if Zi = 1, that is, unit i is under treatment;and Yi(0) denote the outcome if
Zi = 0, or unit i is under control. For each unit i, the following quantities are assumed to be observable:

(1) a covariate vector Xi = (Xi1, · · · , Xip)T

(2) an assignment variable Zi, which is correlated with correlated with Xi

(3) the outcome variable
Yi = Yi(0) + Zi[Yi(1) − Yi(0)] (2)

The quantity Yi(1) − Yi(0) is known as the causal effect for unit i caused by the treatment.The primary focus of this paper
concerns the construction of good confidence intervals for θ, the average treatment effect over population defined by

θ = E[Yi(1) − Yi(0)] (3)

We can also write
θ = E[g(Xi)] (4)

noting that using the conditional mean treatment effect

g(Xi) = E[Yi(1) − Yi(0)|Xi] (5)

Actually, there exists a problem that we want Yi(1) and Yi(0) at the mean time when estimating the average treatment
effect.Throughout this paper we shall make the following important assumptions on conditional independence(Rosenbaum
and Rubin, 1983) to solve this difficulty.

ASSUMPTION 1.1 The treatment assignment is said to be strongly ignorable if Yi(1) and Yi(0) are independent of Zi

conditional on

(1) Z ⊥ (Yi(1),Yi(0))|X
(2) 0 < P(Z = 1|X = x) < 1

Using the assumption we may express g(Xi) as

g(Xi) = E[Yi(1)|Zi = 1, Xi] − E[Yi(0)|Zi = 0, Xi] (6)

This last expression seems to suggest that g(Xi) depends on the dimension of covariate Xi.Serious practical problems occur
when the dimension of Xi is large, which is usually the case in many applications involving comparisons of treatment ef-
fects.To reduce the dimension of Xi, we shall use the idea of propensity score proposed by Rosenbaum and Rubin(1983).

DEFINITION 1.1 (PROPENSITY SCORE)The propensity scores are probabilities for receiving the treatment condi-

tional on the covariates, that is

e(Xi) = pr(Zi = 1|Xi), i = 1, · · · , n (7)

By the assumptions 1.1 and definition 1.1 we get

Zi ⊥ (Yi(1),Yi(0))|e(Xi) (8)

and then draw
θ = E[E[Yi(1) − Yi(0)|e(Xi)]] = E[E[Yi(1)|Zi = 1, e(Xi)] − E[Yi(0)|Zi = 0, e(Xi)]] (9)

It can be directly obtained the unbiased estimate of E[Yi(1)|Zi = 1, e(Xi)] and E[Yi(0)|Zi = 0, e(Xi)] if the propensity score
is known, then we naturally obtain the effect estimate of the project, as well as the treatment group.We will apply the
Bootstrap method to estimate the confidence interval of θ.

This paper is organized as follows:In section 2, we briefly introduce the maximum likelihood method to estimate propen-
sity score. In Section 3 we describes two methods to estimate the average treatment effect using propensity score. In
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Section 4 we report the several methods of estimation for Bootstrap confidence intervals. In Section 5, we illustrate the
estimation of the average treatment effect for confidence intervals with simulations of different methods, and make a brief
discussion about the potential utility of the method in practice.

2. Maximum likelihood estimation of propensity score

Since the propensity score e(X) is rarely known, we usually estimate the unknown propensity scores via a logistic model

log
pr(Z = 1|X = x)

1 − pr(Z = 1|X = x)
= xtβ (10)

As (Z, X) follows the logistic model, we drawn a random sample (1, X1), · · · , (1, Xn1 ), (0, Xn1+1), · · · , (0, Xn1+n2 ), which
contains n1 + n2 vectors from the population (Z, X). Then the logarithmic likelihood function is

l(β) =
n1∑
i=1

(β0 + β1xi1 + · · · + βqxiq) −
n1+n2∑

i=1

ln(1 + exp(β0 + β1xi1 + · · · + βqxiq)) (11)

Derivate to parameters like β0, β1, · · · , βq respectively.Using Newton-Raphson iterative method to seek the maximum of
l(β).Maximum likelihood estimation β̂mle of β is available and then estimate the propensity score e(X) as

ê(x) =
exp(β̂0 + β̂1x1 + · · · + β̂qxq)

1 + exp(β̂0 + β̂1x1 + · · · + β̂qxq)
(12)

3. Different methods in estimating average treatment effect

3.1 Propensity Score Method

As described in the introduction we can directly use estimated propensity score considering covariates were known and
the estimation is

θ̂ =
1
n

n1∑
i=1

[
YiZi

ê(Xi)
− Yi(1 − Zi)

1 − ê(Xi)
] (13)

Where ê(Xi) is an estimate of the propensity score e(Xi).

3.2 Propensity Score Subclassification

Using the estimated propensity scores we stratify all the subjects into K subclasses so that the estimated propensity scores
have similar values within each subclass. Let Jim represent the mth subclass’ characteristic function. One way of this
method is to divide the unit into M blocks. The boundary of each block is m

M
,m = 1, · · · ,M − 1, so Jim = I{m−1

M
< e(Xi) <

m
M
} m = 1, · · · ,M has Nwm observations in each subclass, where Nwm =

∑
i

I{Zi = z, Jim = 1}.The estimation of average

treatment effect of a given group is

θ̂m =
1

N1m

N∑
1

JimZiYi − 1
N0m

N∑
1

Jim(1 − Zi)Yi (14)

Then the population average treatment effect is

θ̂block =

M∑
m=1

θ̂m
N1m + N0m

N
(15)

4. Bootstrap method in estimating confidence intervals

Bootstrap method is a better approximation method to estimate the interval structure, and we will introduce two common
methods in Bootstrap interval estimation.

4.1 Percentile Method

Percentile method is also called Bootstrap-p method.Let θ = θ(F) and θ̂ = θ̂(Fn), where θ̂ is the estimate of θ.We want
to find the 1 − 2α confidence interval of θ.If P(θ̂(Fn) ≤ X) = G, then P(G−1

1−α < θ < G−1
α ) = 1 − 2α. We can derive

confidence interval directly by the formula if G is known.If G is unknown, the empirical distribution function Gn of G can
be substituted. Algorithm is as follows:

1. Sample X1, X2, · · · , Xn from F,and calculate θ̂ = θ̂(X1, X2, · · · , Xn)
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2. Draw Bootstrap data sets X∗
1, X

∗
2, · · · , X∗

n from Fn generated by X1, X2, · · · , Xn

3. Calculate θ̂∗ = θ̂(X∗
1, X

∗
2, · · · , X∗

n)

4. Compute the Bootstrap replication θ̂∗
b
= θ̂(X∗

b1, X
∗
b2, · · · , X∗

bn
) , b = 1, 2, · · · , B as step 2 and 3,and obtain θ̂∗(1) ≤ θ̂∗(2) ≤

· · · ≤ θ̂∗(B) in the ordered list of B replications of θ̂∗
b

5. The required confidence interval is (θ̂[αB], θ̂[(1−α)B])

4.2 BCa Method

BCa method is the abbreviation standing for bias-corrected and accelerated method, which is defined more complicated
than the percentile method.

1. Obtain B θ̂∗
b
, b = 1, 2, · · · , B as described in the previous section

2. The bias-correction constant z0 is computed as

z0 = Φ
−1(
�{θ̂∗

b
< θ̂}

B
) (16)

where Φ−1 is the inverse function of the standard normal distribution.�{θ̂∗
b
< θ̂} denotes the times of θ̂∗

b
< θ̂, b =

1, 2, · · · , B
3. Compute the acceleration parameter a.There are various ways to compute the acceleration parameter a.The easiest to

explain is given in terms of the jackknife values.G(i) denotes the sample with the ith observation removed form the
original sample G, and θ̂(i) = θ̂(G(i)), then

a =

n∑
i=1

(θ̂(·) − θ̂(i))3

6{ n∑
i=1

(θ̂(·) − θ̂(i))2} 3
2

(17)

where θ̂(·) =
n∑

i=1

θ̂(i)
n

4. The resulting 1 − 2α confidence interval is defined as

BCa : (θ̂lo, θ̂up) = (θ̂∗(α1), θ̂∗(α2)) (18)

where α1 = Φ(ẑ0 +
ẑ0+z(a)

1−â(ẑ0+z(a)) ), α2 = Φ(ẑ0 +
ẑ0+z(1−a)

1−â(ẑ0+z(1−a)) ), Here Φ(·) is the standard normal cumulative distribution
function and z(a) is the α percentile point of a standard normal distribution.

Notice that if â and ẑ0 equal zero, then α1 = Φ(z(a)) = α and α2 = Φ(z(1−a)) = 1 − α, so that the BCa interval is the same
as the percentile interval.

We calculate the 100(1 − 2α)% BCa confidence interval of the average treatment effect following Hall and Martin.The
bias-correction constant is computed as

d̂ = Φ−1(
�[θ̂ < θ̂b]

B
) (19)

where Φ(·) is the cumulative distribution function of the standard normal distribution. The two-sample acceleration
parameter is computed as

â =
1
6
σ̂−

3
2 (n−2

t r̂t − n−2
c r̂c) (20)

where σ̂2 = σ̂2
t jack

n−1
t + σ̂

2
c jack

n−1
c ; we use the jackknife variance estimates here from original sample σ̂2

t jack
and σ̂2

c jack
to

estimate the unknown variances of the two treatment groups, according to the method of Efron and Tibshirani(1993);r̂t

and r̂c are the sample skewnesses of the respective groups.

Sorting the Bootstrap treatment effect estimates into increasing order, θ̂(1) ≤ θ̂(2) ≤ · · · ≤ θ̂(B), the resulting 100(1 − 2α)%
confidence interval is defined as (θ̂[B(β̂a(α))], θ̂[B(β̂a(1−α))]),where β̂a(α) = Φ{d̂ + (d̂ + zα)[1 − â(d̂ + zα)]−1} and [x] is the largest
integer less than or equals to x.
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5. Simulation and discussion

We re-introduce the notation with the subscription reserved for the subject to better describe the proposed Bootstrap
procedure: Let n = nt + nc be the total number of subjects;(Yi, Xi,Zi) contain the response variable, the covariate vector
for the true propensity model, and the treatment assignment for the ith subject, where i = 1, · · · , n. Our procedure begins
with the fitting of propensity model from using the original sample (Xi,Zi) for i = 1, · · · , n. We estimate the propensity
score of each subject after fitting the model.

a) Obtain the average treatment effect using propensity score:

θ̂ =
1
n

n∑
i=1

[
YiZi

ê(Xi)
− Yi(1 − Zi)

1 − ê(Xi)
] (21)

b) We stratify the subjects into K homogeneous subclasses based on these estimates. Then the post-stratification balance
of each covariate is then examined.A point estimate for the average treatment effect is obtained as

θ̂block =

M∑
m=1

θ̂m
N1m + N0m

N
(22)

We re-sample with replacement nt treated and nc control subjects separately from the treated and control subjects in the
original sample for each bootstrap iteration. Let (Y (b)

i′ , X
(b)
i′ ,Z

(b)
i′ ) be the bth bootstrap, i′ = 1, · · · , n, n = nt + nc. By

using the re-sampled data (X(b)
i′ ,Z

(b)
i′ ), we re-fit the same logistic model and re-estimate the propensity score for each of

the re-sample subjects,ê(b)
i′ . We then stratify the bootstrapped responses Y

(b)
i′ , and compute the mean treatment effect, and

denote it as θ̂b.

We conducted two simulation studies to assess the finite sample performance of the proposed procedure.Firstly, we gen-
erate the covariates X.We consider a logistic regression propensity model with three covariates in our simulation:

1) There are continuous covariates X1,X2 and X3.We compare the confidence intervals of percentile method and the BCa
method simulated by propensity score.

To simulate different situations of the covariate distributions systematically in the two treatment groups, we generate
the covariate deviates for the treatment and control groups separately: For the control group(Z = 0), we assume
that X1 ∼ N(0, σ2

1), X2 ∼ N(0, σ2
1) and X3 ∼ N(0, σ2

1);for the treatment group (Z = 1), we assume that X1 ∼
N(d, σ2

1), X2 ∼ N(d, σ2
1) and X3 ∼ N(d, σ2

1).

2) A continuous covariate X1 and two binary covariates X2 and X3. We estimate the average treatment effect using
percentile method and propensity score subclassification method and obtain the confidence interval by the two
methods.

To simulate different situations of the covariate distributions systematically in the two treatment groups, we generate
the covariate deviates for the treatment and control groups separately: For the control group(Z = 0), we assume
that X1 ∼ N(0, σ2

1), X2 ∼ Bernoulli(p2c) and X3 ∼ Bernoulli(p3c);for the treatment group (Z = 1), we assume that
X1 ∼ N(d, σ2

1), X2 ∼ Bernoulli(p2t) and X3 ∼ Bernoulli(p3t).We would be able to simulate situations of varying
level of differential covariate distributions by controlling d and the probabilities p2c, p2t, p3c and p3t in the Bernoulli
distributions.

With the pseudo-random covariate deviates X and the treatment assignment Z, we obtain responses Y from a linear rela-
tionship Y = Zδ+Xtβ+ε by giving values of δ and β and the independently generated normal errors ε ∼ N(0, σ2

ε). Here, δ
represents the true treatment effect. As covariates X have different distributions in the two treatment groups, the effect of
the treatment δ can not be directly estimated from the response Y before the first adjusting for the effects of X. For simplic-
ity, throughout the simulation we set the coeffcients of the covariates to be 1)(β1, β2, β3) = (0.5, 0.4, 0.4);2)(β1, β2, β3) =
(0.5, 0.4, 1.5).

The other values of the parameters that we used in the simulation are listed in Table 1 and 2. It should be noted that several
factors lead to the extend of confounding effects of X on Y , including: 1) numbers of β1, β2, β3, which have direct effects
on the level of confounding;and 2) the differential distributions of X in the two treatment groups, which affect the level of
confounding indirectly.

For each parameter structure,we conduct 1000 simulations in an iterative model. We use 2000 Bootstrap to construct 95%
and 90% confidence intervals within each iteration. The empirical coverage probabilities under different parameter con-
figurations are reported to assess of the performance of the proposed procedure.In order to understand how the coverage
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property changes in different sample size situations, we consider sample sizes as nc = nt = 500, for each of the parameter
settings in Table 1 and 2. The simulation results are reported in Table 3-1 and 3-2, the results of simulation 1, and Table
4-1 and 4-2, the results of simulation 2.L̄, Ū denote the mean lower and upper confidence limit in 1000 simulation, and
E(θ̂) is the mean estimate of θ.B-p means the Bootstrap-p method and B-S means Bootstrap stratified method.

Propensity score methodology has been applied to many clinical and epidemiological studies successfully since Rubin
and Rosenbaum’s early creative work.It has become a widely used tool to reduce the potential bias in treatment effect
estimation during observational data analysis.We have proposed a Bootstrap method based on inference procedure for the
treatment effect within the framework of propensity score and propensity score subclassification in this paper.

Our study shows that the proposed method provides valid causal inferences in large observational studies.It has several
advantages in summary: First, it does not require a variance estimation. Our experience suggests that it is difficult to
directly estimate the analytical derivation of the variance in the treatment effect estimate generally, if not entirely impos-
sible.Secondly, it does not rely on any restrictively distributional assumption on the covariates.This method is particularly
important in practice because there are rarely explanatory variables, all of which are normally distributed. Thirdly, the
Bootstrap intervals consider the variation that arises from the estimation of propensity scores, and they accommodate
the dependency among the responses both within and between subclasses due to the ordering structure introduced by the
subclassification. Finally, it is relatively easy to implement the new Bootstrap procedure in most computing platforms.

Our simulation suggests that the empirical coverage of the procedure are reasonable. While the empirical coverage of
the probabilities are below the nominal level (95% and 90%), they are closer to the nominal level when the sample
sizes are greater than 1000 per group. The simulation results also show that the BCa confidence interval is slightly
better than percentile method on the coverage probability, as well as the accuracy of estimated intervals. Propensity
score subclassification is better than percentile method in the two aspects. The size of the treatment effect is an additive
component in a linear model; δ only stands for a shift in the central locations between the two treatment groups when
the responses are generated from this model.The simulation also shows that when all of the covariates are used in the
logistic regression model to estimate the unknown propensity scores, the proposed method adjusts for the effects with the
systematically different covariates quite effectively.

Although the first simulation results are promising, more extensive simulation studies are apparently needed to establish
the operating characteristics of the proposed method for various practical data situations.In this case, the current simulation
has several limitations: First, it only considers balanced designs while few observational data have balanced group sizes.
For example, the sample nc = nt = 500 is used to reduce the imbalance.Second, the values range of the parameters used
in the current simulation is still limited. For example, only values of β in linear relationship Y = Zδ + Xtβ + ε are used
to produce random responses. Since β has a direct effect on the level of confounding between the observed covariates X

and the treatment assignment X, it is interesting to examine the performance of the proposed method under many different
values of β.

A smaller value of β decreases the level of confounding when we hold other parameters constant(in the most extreme case
of β = 0, we have Y = Zδ+Xtβ+ε, indicating no confounding effects from X. In addition, parameters p2c, p2t, p3c and p3t

control the different distributions between the treatment groups for a set of pre-selected β values. The size of d, and the
difference between p2c and p2t(or that between p3c and p3t) reflect the separation of covariate distribution between the two
treatment groups.In the current simulation, we only consider one d value, and a limited number of binomial probabilities.
We feel that further investigation is certainly necessary to have a more comprehensive understanding of the new method’s
operating characteristics according to these observations.

Our current work pays more attention on a re-sampling based on the approach for constructing a simple confidence
interval of an unknown treatment effect.Several related issues have yet to be explored.Treatment effects estimated by
other measures, such as Stratified Matching Method and Stratifying Regression Method, also necessary to be discussed.
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Table 1. The parameters used in simulation 1

δ d σ1 σε
1 0.0 0.5 1.0 1.0
2 0.5 0.5 1.0 1.0
3 1.0 0.5 1.0 1.0
4 2.0 0.5 1.0 1.0

Table 2. The parameters used in simulation 2

δ d σ1 σε p2c p3c p2t p3t

5 0.0 0.5 1.0 1.0 0.3 0.7 0.8 0.4
6 0.5 0.5 1.0 1.0 0.3 0.7 0.8 0.4
7 1.0 0.5 1.0 1.0 0.3 0.7 0.8 0.4
8 2.0 0.5 1.0 1.0 0.3 0.7 0.8 0.4

Table 3-1. The results of simulation 1

95% 90% E(θ̂)
Y = Zδ + Xtβ + ε BCa B-p BCa B-p

1 δ = 0 0.956 0.959 0.918 0.932 0.0170
2 δ = 0.5 0.955 0.956 0.922 0.930 0.5156
3 δ = 1 0.962 0.967 0.934 0.943 1.0143
4 δ = 2 0.964 0.966 0.942 0.942 2.0116

Table 3-2. The results of simulation 1

95%L̄ 95%Ū 90%L̄ 90%Ū

Y BCa B-p BCa B-p BCa B-p BCa B-p
1 -0.32598 -0.39608 0.27252 0.31729 -0.29360 -0.36158 0.29122 0.33494
2 0.14824 0.11755 0.82780 0.81168 0.21355 0.10527 0.78369 0.76705
3 0.68547 0.61868 1.27195 1.31832 0.71072 0.64612 1.28670 1.33300
4 1.65617 1.58623 2.30806 2.36419 1.67832 2.32286 2.32286 2.37897

Table 4-1. The results of simulation 2

95% 90% E(θ̂)
Y B-p B-S B-p B-S B-p B-S

5 δ = 0 0.972 0.949 0.953 0.892 -0.00172 -0.00148
6 δ = 0.5 0.972 0.949 0.956 0.892 0.49842 0.49852
7 δ = 1 0.974 0.947 0.958 0.895 0.99856 0.99852
8 δ = 2 0.976 0.943 0.965 0.894 1.99884 1.99852

Table 4-2. The results of simulation 2

95%L̄ 95%Ū 90%L̄ 90%Ū

Y B-p B-S B-p B-S B-p B-S B-p B-S
5 -0.24714 -0.16471 0.24533 0.16471 -0.20785 -0.14095 0.20530 0.13782
6 0.23904 0.33266 0.76260 0.66471 0.28032 0.35905 0.71938 0.63782
7 0.72102 0.83266 1.28436 1.16471 0.76487 0.85902 1.28436 1.13782
8 1.67559 1.83266 2.33764 2.16471 1.72594 1.85305 2.28089 2.13782
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