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Abstract

A survey of recent studies in neutral impulsive differential equations reveals that most of such works revolve around the
quest for oscillatory conditions for linear impulsive differential equations. The development of oscillatory and nonoscilla-
tory criteria for nonlinear impulsive differential equations has so far attracted very little attention. In this paper, we obtain
sufficient conditions for the existence of oscillatory and nonoscillatory solutions for nonlinear first order neutral impulsive
differential equations with constant delays.
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1. Introduction

Research about oscillations for linear neutral impulsive differential equations with or without delays has enjoyed unprece-
dented patronage in recent times (Isaac and Lipcsey, 2009b, c; Isaac and Lipcsey, 2010a, b; Graef et al, 2002; Graef
et al, 2004; El-Morshedy and Gopalsamy, 2000; Luo et al, 2000; Giang and Gyori, 1993). Unfortunately, there appear
to be limited investigations about oscillations for nonlinear neutral impulsive differential equations which underline the
foundation of modern applications. Even the limited studies are mainly concerned with linearization techniques (Isaac
and Lipcsey, 2009a; Berezansky and Braverman, 1996). Worse still, the concept of nonoscillations for nonlinear neutral
impulsive equations presently suffers almost complete neglect. In this study, we make a deliberate attempt to clear these
obstacles and extend the concepts beyond the existing boundaries.

We begin with the discussion on the existence of nonoscillatory solutions for first order nonlinear neutral impulsive
differential equations

[y(r) — ﬁl POy =) + Fty(E =0y M=) =0, 1% 1
=t (1.1)
Aly(ty) - ; pit)y(te — )] + gti, Yt —01), - Yt — 0,)) =0, VE =14

fort >ty > 0and k : 1, > tp > O identifying some essential sufficient criteria. Next, we study the oscillations of the
nonlinear neutral impulsive equation

0 + POYE =TV + 40| TT (o)~ (mr“] sign () =0 r#x
T, (1.2)
Aly(to) + P(ry(t = )] + g [ Ty - m»)r”] sign /(1) =0, Vi =1,

obtaining some new conditions for all solutions of Equation (1.2) to be oscillatory.
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Our conditions are ”sharp” in the following sense. If Equations (1.1) and (1.2) are linear with constant coefficients, the
conditions become both necessary and sufficient. In what follows, we recall some of the basic notions and definitions that
will be of importance as we advance through the article.

The solution y(¢) for t € [y, T) of a given impulsive differential equation or its first derivative ys(f) is a piece-wise
continuous function with points of discontinuity # € [#),T), #x # t, 0 < k < co. Consequently, in order to simplify the
statements of our assertions later, we introduce the set of functions PC and PC” which are defined as follows:

Letr e N,D :=[T,o0) C Rand let the set S := {;},_n be fixed. Except stated otherwise, we will assume that the elements
of § are moments of impulse effect and satisfy the property:

Cl10<t<tp<---and lim f; = +oo.

—+00

We denote by PC(D, R) the set of all functions ¢ : D — R, which are continuous for all t € D, t ¢ S. They are continuous
from the left and have discontinuity of the ﬁrst kind at the points for which ¢ € S, while by PC"(D, R), we denote the set

4
of functions ¢ : D — R having derivative #j& € PC(D,R), 0 < j < r (Bainov and Simeonov, 1998).

To specify the points of discontinuity of functions belonging to PC or PC", we shall sometimes use the symbols PC(D, R; S)
and PC"(D,R;S),r € N.

Definition 1.1
A solution y(#) of Equation (1.1) or (1.2) is said to be

(i)  Finally positive (finally negative) if there exists 7 > O such that y(¢) is defined and is strictly positive (strictly
negative) for t > T;

(i)  Oscillatory, if it is neither finally positive nor finally negative; and

(iii)  Nonoscillatory, if it is either finally positive or finally negative (Bainov and Simeonov, 1998; Isaac and Lipcsey,
2010b).

2. The Existence of Nonoscillatory Solutions
We return to Equation (1.1) and introduce Conditions C2.1 — C2.4:
C21 Ifr;>0,i€l,={1,2,--- ,m}; 0,20, (€l ={1,2,--+ ,mj}.
C22  pi(n) € PC'([to, T),R); pix 20, i € Ly, k € Z; f, g € C([10,T) X R, R).
C23 pi(v) =2 0, Z pi(t) < A; Z pir = Ar, (0 < A, Ay < 1), k € Z for all sufficiently large ¢ and there exit
pi(t) = ap > Oandp,k > ao > 0, for some i€el,, keZ.

Sy, un) 20, gtk ur, - sumy) 20if up 20, €€ Ly;

C24  (ftur,- o um) 2 [ Vm)s 8t tn, e ) 2 (T Vis e+ 3 Vi)

ifuc>ve>0 forallt €ly, keZ.

Definition 2.1

A family of functions ¥ is said to be quasi-equicontinuous in [fy, T') if for each £ > 0 there exists ¢ > 0 such that if
VYEF,keZ,t', t" €ti_1,tp) N[ty, T)and |t' —t”| < u, then |y(¢') — y(¢'")| < & (Bainov and Simeonov, 1998).

Definition 2.2
A set 7 c PC([ty, T), R) is relatively compact if the following conditions hold:
(i) ¥ isbounded, i.e., |y(r)] < M forally € F, t € [ty, T) and some M > 0.
(i)  F is quasi-equicontinuous in [y, T).
Theorem 2.1 Assume that Conditions C2.1 — C2.4 hold. Let
Ipi(t") = pit") < holt’ = 1”), |pity) = pit;)| < holt, —t//], 2.1
where hj is a constant and there exists another constant /; > 0 such that
sup f(t, exp(=hi(t = 071)), -+ ,exp(=hi(t — 0y))) = D < o0
>ty 2.2)
sup g(t, exp(=hi(ty — 1)), - -+, exp(=hi(ty — 0,))) = Dy < o0

1>t
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and
;1 pi(exp(hyt;) + exp(hit) ;1 pixexp(=hy(t — 7))+
T
+exp(d) [ f(s,exp(=hi(s = o), exp(=hi(s = op,)))ds+ (23)

texp(t) ¥ gtk exp(=h(ty — 1)), -+, exp(=hi(tx — o)) < 1

<t <T

for all sufficiently large . Then Equation (1.1) has a nonoscillatory solution which converges to zero as t — co.
Proof. We return to the family of quasi-equicontinuous functions ¥ and set

exp(—hat) < y(t) < exp(—hit)

F =y(@) € PC([t,T),R) :
’ ’ {Iy(t’) =yl < LIt =1"}; y(t) =yl < Ll — 1]

fort’ <t” < tyand k: t; <t/ < to, where hy is sufficiently large such that s, > iy,

> piexpthot) + expha) Y. puexplha(y — 1) 2 1,

i=1 i=1

k € Z; L > max{ho, hy}

m

and

D D
A+Ak+—+—k<1.
L L

Let us denote by A, all bounded piece-wise continuous functions in PC([#y, T)) and define a norm in Ag as follows:

lIyll == sup [y(?)I.

>ty

Endowed with this norm, A is a Banach space and 7 is a bounded convex closed set in Ag.

We define a mapping ¢ as follows:
‘21 piOy(t — 1)) + Zl Pyt — i)+
i= i=

T
+ ff(s,y(s =), V(s = omy))ds+

(en)(@) == (2.4)
+ 2 gyt —o), Yt —om)), t 2T,
1<y <T
exp(l"(%#), to<t<T,
where T is sufficiently large. Precisely,
T 2t +max{Ty, -+, Tm 01, O}
Clearly by virtue of the proposed value of T above, Inequality (2.3) holds and
Y Pt + Y exp(-h(t' =)+ 2 <L, fort'>1 >T,
i=1 i=1 (25)

L
m m D [t —r|
7 ’ k ! ’” /
z;l pit)) + Z:l exp(hi(t, — 7)) + 7 < AT’ forg/ 21 >2T.

At this point, we need to prove the following facts:

@ ¢f CF;

(b) If lim|ly; —yll =0, theny € ¥, where y; € ¥ is a sequence;
Jj—oo

(¢) @7 isrelatively compact.
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Let us now examine their verification one after the other.

(@) Fort>T andk: t; > T, we obtain, fory € F,

@O < Y pinexp(—hi(t =) + Y. piexp(—h(t =) +
i=1 i=1

T
+ ff(s, exp(=hi(s —01)), -+ ,exp(=hi(s — om))ds +

) gt exp(—n(i = o), exp(=hi(t = o))

t<p<T

= exp(=n) | Y pidexpnT) + expni) ), puexp(=hi(tx = T))+

i=1 i=1

T
+exp(h1) ff(s, exp(=hi(s = 1)), ,exp(=hi(s — om,)))ds+
t

+exp(hit) Z 8t exp(=hi(tx = 01)), -+, exp(=hi(tx = o))

1<ty <T

exp(—ht).

IN

The first inequality is due to Equation (2.4) and the definition of ¥ and the last inequality is because of Inequality (2.3).
At the same time, using analogous reasoning, we obtain

@O = ) pildexp(~ho(t =) + ), pexp(~halti = 77)
i=1 i=1

= exp(—hat)| ) piltexp(homy) + exp(han) ), puexp(~halt = 7))
i=1 i=1

exp(—hat).

v

Consequently,
exp(=hyT) < (ey)(T) < exp(=h,T)

which is equivalent to

_hzswg_
T

hy. (2.6)
Expressions (2.4) and (2.6) imply that (¢y)(¢) € PC([tp, T)) and

exp(—hat) < (py)(t) < exp(—hit), Yt > ty and t, > ty.
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Fort” >¢ > T andk: ;) > 1, > T, we obtain

() = @< Y I =) + Py =) = pit W' = 77) =
i=1

p
—pit)y(t, — )l + ff(S,)’(—hl(S =o)L, Y(=hi(s — ow)))ds +
Y

+ > gy = 0), (it = )

r<p<t”
= {i[lji(f”) +exp(=hi (¢ - n))]} L -]+
i=1
¥ {i[m(ﬁ!) +exp(=hi(f n))]} Ll — ]+
i=1
+ S{‘:;) {f(S, exp(=hi(s —o1)), - ,exp(=hy(s — O—m/)))} It -]+
+sup {g(t, exp(=h(t = o))+ exp(=h(t = o D} =1
s Zm: pit”) + i exp(=h (' — 1)) + % Lt — 7| +
i=1 i=1

+ L) — 1]

Z Pt + Z} exp(=h(t =)+ 7

i=
thu _ t,| . L|l” _ t’l
h 2

— L|t// _ t’l,

where the first inequality is given using the Triangle inequality. The following is based on the definition of # and the
Mean Value Theorem. The next step is due to Equation (2.2) and the last step from Equation (2.5). Additionally, for
to <t <t” <T,the Mean Value Theorem can be applied to Equation (2.4) leading to the result

'exp (ln(wy)(T) t,,) ~exp (ln(say)(T) t,)‘
T T

mlt”" =1 < LIt - 7).

[(e)(2") = (@@

IA

Thus,

[(e)(@”) = (@)@ < LIt — ']

fort” >t > ty. Therefore, ¢y € F.

(b) By definition, ¢ is a piece-wise continuous mapping. Assume the existence of a sequence y; € F such that

fim [ly; (@) = y®ll = 0, (2.7)

theny € F.
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Indeed, for ¢t > T and k such that ¢, > T,
ey = @O D pildlyit =) =yt =7l +
i=1

m
+ > iyl = ) =yt = ) +
i=1

+f|f(sayj(5—0'1),"'»)’j(S—O'mj))—

_f(s’)’(s - U—l)r e ,}’(S - O—m/))lds +
+ 18ty = ),y = o)) -

1<t <0

=8, Yyt — o),y — O-m,))|

2 POSIDly (1 =) =yt = 7] +

<
i=1 =lo
m
+ Z pilyj(te — 1) =yt — )| +
i=1
+ f F(8 255 = 1) Y5 = Omy) =
T
—f (s, 3(s = 1)+ s )(s = DIl +
+ 18ty = o), Lyt = o) -
T<ty<co
=8t Yt — 1), Yt — o))
m
< =)=y =Tl + Y palyilte = ) =yt = ) +

i=1

o

+ f Fi(sds+ > Gyt
T T<ty<co
where
Fj(s) = |f(5’y](s - O—l)’ e ’)’j(s - O-m,)) - f(s,)’(s - O—l)’ e ’y(s - O—mj))l
and

Gi(t) =18k, itk — 1)y =+, Yt = o) — &l Ytk — 1), YTk — o))
The first inequality is obtained from Equation (2.4) and the last steps are because of the definition of a norm in Ag.
Obviously,
m

lim F(s) = 0; lim G;(#) = 0 and lim Z Piklyj(te — 1) = y(tx — ) = 0.

Jj—oo Jj—oo Jj—oo =
However, expresion

Fi(s) = 2f(s,exp(=hi(s — 01)), - -, exp(=hi (s — o))

Therefore, in view of Equation (2.7) and Lebesgues dominated convergence theorem, we can assert that

0o

Jlgg Z Piklyj(tc — i) =yt — )| + fFj(S)dS + Z G(t)].
i=0 T T<ty<co
Consequently
}LII(}Q (Su;) [y (@) — (soy)(t)l) =0. (2.8)
>
Hence
}i_,l?o [(@y)(T) = (py)(T)] = 0. (2.9)
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Whenever 1y < t < T, the following condition holds:

. 1 (T n(py
lim [y~ (0] = |0 - gDl

T (2.10)
< ln(py)(T) = In(py)(T).
The combination of Equations (2.9) and (2.10) gives
lim ( sup |(@y)(1) — (wy)(t)l) =0. (2.11)
I \tg<t<T

Therefore from Equations (2.8) and (2.11), it follows that
/113; lley; — @yl =0
which implies y € F.

(c) Inthis final stage, we show that ¢F is relatively compact. Obviously from the proofs of (a) and (b) above, ¢F is
uniformly bounded and quasi-equicontinuous in [#y, 7). This implies that for each y € ¥,

[(ey)(@®)| < bo,

where by > 0 and
@y (") = ()] < LIt” = 7|

fort” 2t >ty and k: #;/ > #; > tp. Without loss of generality, we set

by = exp(—hit), t > t.

Hence, for any arbitrarily pre-assigned small positive number &, there exists a sufficiently large 7’ > #; such that whenever
exp(—ht) < %,
@) = (@) <€ fort, 4t >T', " >¢ >T and k: 1 > 1, >T". (2.12)

On the other hand, if we set § = # and assume that [f" —#'| < ¢, then forall #p < ¥ <’ < T"andk: to <7, <t/ < T’ it
becomes clear that
l(@y)(t”) = ()] < &. (2.13)

Thus, from Conditions (2.12) and (2.13), we can affirm that ¢F is quasi-equicontinuous in [#y, T) and hence, ¢F is
relatively compact. By virtue of Schauder Tikhonov Fixed Point Theorem, the mapping ¢ has a fixed point y*(#) € 7
which is a nonoscillatory solution of Equation (1.1) and converges to zero when t — oco. This completes the proof of
Theorem 2.1. m]

Corollary 2.1 Assuming that the function p;(¢) satisfies Conditions C2.2 and C2.3 as well as ¢;(r) € PC(R;,R,) and
qjk = 0, the following two conditions hold. If p;(f) < p;, q;(¢) < g; and there exists a positive A such that

Zl piexp(At)) +  exp(lr) Zl picexp(=A(t — 7))+
i= i=

N (2.14)
+ 2 gjexp(do;) [% + > exp(=Ay)| <1
j=1 <t <oco
then equation
@) = 2 pi)yE =)' + X gyt —0)) =0, 1¢S§
= = (2.15)

Aly(t) — 21 pixy(te — )] + '21 gyt —oj) =0, Vi €S
i= Jj=

has a nonoscillatory solution which converges to zero as t — co.

Remark 2.1 When p;(t) = p; and ¢;(t) = g, Inequality (2.14) is equivalent to the characteristic system of Equation (2.15)
which has no solutions in R, X [0, 1). Therefore, Inequality (2.14) is a necessary and sufficient condition for Equation
(2.15) with constant coefficients to have a nonoscillatory solution (Bainov and Simeonov, 1998).
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Corollary 2.2 Consider the equation

[y(@® - f piOy(t =)l + Z q;(1) [H (@) - trjf)l"f’] sign(p()) =0 1¢S
i=1 B J=111 f;l%l (2.16)
Aly () - 21 Pyt — 7)) + Zl 9k [1‘[1 y () — aja)l“ff] sign(y(t)) =0, Vi €S
= J= =

fort >t > 0andk: # > 1o > 0. In Equation (2.16), it is assumed that 7; > 0, 07jr 2 0 (i € Ly, j € I, and € € I,,; =
{1,2,---,m;}); pi(?) satisfies Conditions C2.2 and C2.3; ¢;(t) € PC(R.,R.) and gjx > 0. If there exist a small positive
number A such that for some sufficiently large T,

qj(texp (—/l 21 a/j[t)

sup <oco, Vjel,, t¢S
>T

mj
sup |gjkexp (—/lk > ozjgtk) <oo, Vjel,, Vi €S
n>T (=1

and

n mj
sup {Pi(f)exl?(—/l‘fi) + X exp (/1 > ajé’o'jl) *
=T =1 =1

o0 s
*qu(s)exp [—/l(zf @jes — s)] ds} <1,t¢S
=1
t . "
sup§ pixexp(—A4T;) + 3, exp (/lk > a/jf(rj{g) *
42T j=1 (=1

* ) qjkexp [—/lk(zl ety — l‘k)] ds} <1, Vi eS
t=1

1<t <00

then Equation (2.16) has a nonoscillatory solution which converges to zero as t — oco.
3. Oscillatory Conditions

We now consider the nonlinear neutral delay impulsive differential equation with variable coefficients

@) - ipf(t)y(t - 1)1 +q() ﬁ (@) —aol* | sign(y()) =0 ¢S

‘ 3.1
m m;
Aly(t) — Zl Pyt — )] + qx ng () — ool | sign(¥() =0, Yy €S
i= —
fort >ty > 0and Yk : 1, > 1y > 0. We introduce Conditions C3.1 to C3.4:
C31 O0<7 <1< <1y, lim (-1 = +c0;
t—+00
C32 O<oy<oa<---<op, tlim(t—crg): +00; ay > 0 and Z‘: ar=1;
—+00 =1
C3.3 pi(H) e PC'(R,,R,)and py € R, k€ Z;
C34 qj'(l) € PC(R,,R.) and qjk = 0, ke Z.
Denote ¢ = max  {1;,0¢}. If m; = 1, Equation (3.1) can be reduced to
1<i<m; 1<<m;
@ = X piyt =) + gyt —0) =0 1¢S§
i=1 (3.2)

Aly(t) — ; Pyt =)+ @yt — o) =0, VYHeS

Next, we establish the following lemmas which will be useful in the proof of the main result.

m

Lemma 3.1 Assume that Condition C3.4 is satisfied with ) p;(f) bounded and non-negative, and there exists ¢* > f, such
i=1
that

Dbt +nm) <1, n=0,1,00- (3.3)

i=1
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Let y(¢) be a finally positive solution of Equation (3.1). The function z(¢) is defined as follows
21 = y(0) = ), pilt)y(t = 7). (34)
i=1

Then finally z(r) > 0 with 2 (r) < 0 and Az(#) < 0.

Proof. From Equation (3.1) we can affirm that z’() < 0 and Az(#) < O finally. It remains to show that z(¢) > O finally.
By contradiction, we assume that z(7) is finally negative. This implies that there exist a sufficiently large 7 such that
z(t) < —=d < Ofor all r > T, where d is a positive constant. Hence

y(t) < —-d+ Z piOy(t — 1)), forallt>T.

i=1

In particular,
Y&+ m+N)1) <-nd+yt"+(N-Dt),i€l,, n=12,---.
if ¥ + Nt; > T. Hence, y(f) cannot be finally positive. This contradicts the initial assumption of the Lemma and hence

completes the proof.

Lemma 3.2 Assume that Conditions C3.2 and C3.4 with the inequalities

AR e = (3.5)

() R
t}grgolnf Sa—on STes 1

{nminf W <

are fulfilled. Further, let us suppose that
t
liminf [ g(s)ds >0
t—o00
o (3.6)
lim inf [ g(s)ds>0
[k*)DO

y—0o¢

and the solution of Equation (3.1) be such that the solution (A(7), 4;) of the associated generalized characteristic system
satisfies the inequalities

At) > q(t)exp( ft /l(s)ds] T a- /lj)’l, (=)

t—0¢<t;<t

et 3.7
A > qkexpL f /l(s)ds) [ -2 = .
e k=0 <1<l
Then
1
lim inf{( [ /l(s)ds] [ a —/l,-)“} <o
—o0 “oe t—0¢<t;<t
‘ (3.8)
lim inf{| [ A()ds| [1 (=27} <oo.
fp—00 0 tk—a'gﬁtj<tk

Proof. If we define
t
Q) := [q(s)ds, t > 1y

Iy
73

Q) := [ q(s)ds, 1 = to,

fo

then Inequality (3.6) implies that
lim Q() = +co, lim Q(t;) = 400
—00 f—00

and Q(1), Q(t;) are strictly increasing. Then Q' (¢) and Q' (#;) are well defined, strictly increasing and
lim Q7'(r) = +oo, lim 07'(1) = +o0
t—o0 f—00

Indeed, Inequality (3.6) means there exist b, by > 0 and T > 1, such that
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0N~ QUt~0ap) =5, V=T
Qt) = Qi — o)) = %, Ve = T

and thus,

o' (o - %)zt VST
0 (0 - %) >t~ e, Vi > T.

Now set

A(t)=exp( f A(s)ds) 1 a-2)

T<tj<t

(3.9)
Ay = exp[—fxl(s)ds) [T (1-2).
T T<tj<ty
Inequality (3.7) involves
N (@) < —qOANE —o0y¢), Vi =T (3.10)
AAN(ty) < =@t — op), Vi > T. '
By virtue of Inequality (3.5), the ratios A(/’\_(gf) and A(I’\"&T ) are bounded above under Inequality (3.6). This implies that

Inequality (3.8) is valid and completes the proof.
Let us now prove the following result.

Theorem 3.1 Let Conditions C3.1 — C3.4 be fulfilled. In addition, let us assume that Inequality (3.6) is satisfied, and
either

lim inf {mf ns Pl - o'p)qg(_[;)exp(/lr,-)(l — )T+

=00 0]e=1i=1
} > 1
m; (3.11)

[l'[l Zl Pt = o) s exp(ur)(l = i) T+
=11
} > 1

lim inf {inf H Z p[ “(t —opexp (/l f q(s)ds](l —y) i+
t—o0 >0 | =1 j=

} -
lim inf{inf H Z D; Tty — ap)exp [/lk f q(s)ds)(l —y) i+

tp—00 >0 =1 i=1 nt,
i
o1

Proof. We first assume that Condition (3.11) is satisfied. Without loss of generality, assume that Equation (3.1) has a
finally positive solution y(¢). Let y(t) > 0, y(r —¢) > 0, fort > T} > ty. Then, by Lemma 3.1, z(r) > 0, 2 < 0 and
Az(ty) < Ofort > Ty and Vk : t; > T}, where z(¢) is defined by Equation (3.4). For t > T, t # t; and from Equation (3.1),
we have

+Mexp (/l Z‘: Q’[G’[) (1 =)

lim mf{mf

tr—00 >0

+4exp (/lk 5 04[0'{) A=
(=1

or

+

—exp[AZae f q(s)ds)(l Y

=0y

(3.12)

+exp [ak > @ f q(s)ds](l -y

=1 f-o¢

Then every solution of Equation (3.1) is oscillatory.

(1)

—q(1) 1:[)’ “t—oy)

—q(®) mH (t—o) + Z pilt = o)yt —o¢ — T,)]
(3.13)

IA

—q(1) L_Hl (-0 + 1_[ Z Pt = Uf)gyaf(f -0 - Ti)]

i q(r) o o
~a) [ =0+ 7295 11 8 pe-o0z-),
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Notice that the first equation is due to the definition of z(¢) in Equation (3.4). The following inequality represents an upper
estimate of the expansion on the left side and the last equation is based on Equation (3.1). Using analogous reasoning, we
obtain the following result fot the corresponding impulsive part:

mj

Az(t) = —qx c—Hl Yt = 07¢)

—qk IJI [Z(fk —o¢)+ ’Zn: pilty — o)yt — o¢ — Ti)]

< =gk [H 2ty — o) + H Z P (e —o¢) H Yty — o = Tz)]
m;j m
= —qk H (- o)+ Gl l_[ Z P (e — o)Azt — 7))
forallk: # > Ty. Set A(r) = =% and 4, = 2% for each t > T and k: # > T. Therefore taking Inequality (3.7) into

. . EG) (1)
account, Equation (3.13) is reduced to

AN = At - Ti)qg(_ti) H Z Pt —opexp [f /l(s)ds] *

—7;

(3.14)
* [ (A-2)) +q(t)exp(zla/[f/l(9)ds) I (1—/11,)71

1—1;<t<t -0 [=oestj<t

and

Az At = 7)) s H 2= o-f»)exp( / /l(s)dsJ*

k= Ti

I | O +qkexp(zla5f/1(s)ds] [1 a-ay™"

=T <t;<ty t—0¢ =0 <tj<ty.
It is obvious that A(¢) > 0 and A; > O for each # > T and for all k: # > 7. From Inequality (3.14), we have
t
A1) = g(Hexp (a i ﬂ(s)ds) M a-a)"
P t—0* <tj<t

Ak>qkexp[ fA(s)ds] Mm a-a™,

0 (=0t Stj<iy

where 0 = min {0/} and @ = min {a,}. In view of Lemma 3.2, we have
1<t<m; 1<t<m;

1
lim inf{(f /l(s)ds) 1 a —Aj)‘} <o
1—00 gy =0 <tj<t

lim inf{( f /l(s)ds] I (l—ﬂ_f)‘1}<oo

f—00 g =0 <t <ty

which implies that lim inf A(f) < oo and lim inf 4x < co. Now we show that lim inf A(#) > 0 and lim inf 4z > 0. By
t—o0 fr—00 t—oo fr—00
contradiction, if
lim inf A(r) = 0
t—o0
lim inf 4, =0,
fp—00
then there would exist sequences {#,} and {¢,} such that #,, t,, > T, 11m t, = co and 11m tu = oo for all k € N. What is
more, A(t,) < A(t) and A(t,x) < A, for t € [Ty, t,] and 1, € [T, ti] respectlvely Using Inequahty (3.14) again, we obtain
mj m
Aty) = /l(tn)% {1:[1 _Zl Pty — op)exp(At,)T)(1 — pj) ™"+
=1i= "
+q(tn)exp(A(t,)) Z aeoe(1 = )™

At = Aty 7242 n z Py (i = 0 )exp(Altu)T)(1 = 1) 71+

+q(t)exp(Atur)) [21 aeo (1 —pp)™".
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Hence

A T S 410 = eap(A )T =)

+q(t'l)exp(/l(tn)) [;l a’fO'[(l — /,[j)“"l' <1

mj m
gty T2 P ok = )expAa)m(1 = py) 7+

mj
+q(tn)exp(Atu)) {g}l aeoe(l —pj)™7 < 1
which contradicts Inequality (3.11). Therefore,
(3.15)

0< hm inf A(t) = hy < 0.

tp—00

{o < lim inf A1) = h < 0

From Inequality (3.11), there exists ¢ € (0, 1) such that

[ 5 PG - )% exp(Ar)(1 - )+

=1i=1
ba
(3.16)

Ty exp(uT)(1 — )7+

bo

1—00

o lim inf {mf

+@exp (/l > am'{) (1=

o lim 1nf{1nf H Z pl‘(tk —07)

f—e0 0le=1im1 q("

+texp (ﬂk 2. 0100'5)(1 -
=1

By virtue of Equation (3.15), we have

{/l(t) > 6h, t > T (.17)

A > Ohy, ty > Ts.
Substituting (3.17) into Inequality (3.14), we obtain

mpom
A1) = 6h 12 j1p> Pt = aexp(Ght)(1 — p) i+
=1i=

+q(Dexp (6h s am) (1 =y

Ay > Shy gl H Z Pt — ao)exp(hyT)(1 — )i+

+qrexp (5hk 2‘1 Qé’a'é’) (I =)t

fort > T, + ¢ and for all k: #; > T, + {. Hence

mj m
h > lim inf {5h 4 ns Pt = aexp(@ht)(1 — )i+
- =1i=1

+q(Dexp (6h 5 am) a —ﬂ)"‘}

hy > lim inf {5hk Y H Z P; Yt — op)exp(ShyT)(1 — )i+

t—00

+qrexp (5hk j o 5) (1- ﬂ)‘”} .
=

If we set A* = 6h and A} = Shy, then

A* > (511m inf {/l* 5(2) H Z pl[(t —opexp(A (1 — )i+
+q(exp (/1* > ww)(l ON ‘”}
f 1

206 hm inf /lz pr T) H Z P (e — oexp(AT)(1 — )™+

+qrexp (ﬂi El am) - u)“”}
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which comes into contradiction with Inequality (3.16). This completes the proof of Theorem 3.1 under Inequality (3.11).

If Condition (3.12) holds, we set A(f)g(t) = —ZZ%) and Ayqy = —Azixg). Then Equation (3.13) becomes

A 2 At - 7)) H Z pi(t- w)EXPLf ﬂ(S)q(S)dS] [ -G+

7 =T <tj<t

+q(r>exp[zlaz f A(s)q(s)ds] [ a-@gy!

—o¢ =0 <t;<t

(3.18)
Ak 2 Aty — 77) H Z Pt — w)exz?[ f /l(S)q(S)dS]r l'[t ,(1 - )~'+
—Ti k—Ti< <tk
+qkexp[z ar f A(s)q(s)ds] M (-
=1 y—oy t=0 <<ty
By Lemma 3.2, we know that
t
lim inf f A(s)g(s)ds < oo

(3.19)

11m inf f A($)g(s)ds < oo.

n—o*

Therefore, using Inqualities (3.6) and (3.19), we conclude that

lim inf A < oo.

t—00

{lim inf A(f) < oo
1—o00

From Inequality (3.18), A(f) > 1, 4; > 1 and hence

{0 < liminf A(f) = A < oo
11—

0 < lim inf A(t) = A < oo.
f—00

Thus, by virtue of Inequality (3.12), there exists § € (0, 1) such that

6 lim inf {inf H Z Pt —opexp [/l f q(s)ds] (I =)™+

t—0co >0 | =1 =1 s
} .

5 lim inf{inf n z Pty — o)exp [ak f q(s)dsJ(l — )i+

1r—00 A>0 =1 =1 P
} l,

where 1 = (Ag);. Using a reasoning analogous to that given in the proof of Inequality (3.16), we reach a contradiction.
This completes the proof of Theorem 3.1.

+jexp(/l Zlag f q(s)ds](l— )¢

1—oy

—exp(ﬂkzaf f q(s)ds)(l— )

=1 -0,

Corollary 3.1 Assume the fulfilment of Conditions C3.1 — C3.4 and Inequality (3.6) with

lim inf 1nf Z pi(t — o) 40 exp(At)(1 = A;)7"+

t—o00 q(t-7;)

+‘1<’)exp(/10')(1 > 1

lim inf mf [Z pi(ty — o) ———=exp(4T)(1 — 1;)7"+

f—00 Q(lk T)
+Lexp(o)(1 = )|} > 1
Then every solution of equation (3.2) is oscillatory.
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