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Abstract

Let M be a smooth manifold and let D(M) be the module of first order differential operators on M. In this work, we give
a link between Jacobi manifolds and Contact manifolds. We also generalize the notion of contactomorphism on M and
thus, we characterize the Contact diffeomorphisms.
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1. Introduction

1.1 Jacobi Manifolds

The notion of Jacobi manifolds has been introduced by A. Lichnerowicz (Lichnerowicz, 1978). These manifolds are a
generalization of the notion of locally conformally symplectic manifolds and of contact manifolds (which can be used
in the representation of energy in thermodynamics). A Jacobi structure on a manifold M is a pair (Λ, E) where Λ is a
contravariant skew-symmetric 2-tensor and E is a vector field on M such that

[Λ,Λ] = 2E ∧Λ, θEΛ = [E,Λ] = 0 (1)

with ∧ the Grassmann wedge product and θE the Lie derivative with respect to the vector field E. The bracket defined in
(1) is the Schouten-Nijenhuis bracket on multivectors (Koszul, 1985).

Using the classical Darboux’s theorem, around every point of M there exist canonical coordinates (x1, ...,x2n) and a local
smooth function f on M such that

E = e− f
n

∑
i=1

(
∂ f
∂xi

∂

∂xn+i
− ∂ f

∂xn+i

∂

∂xi
), Λ = e− f

n

∑
i=1

∂

∂xn+i
∧ ∂

∂xi
. (2)

Defining a Jacobi structure on (Λ, E) is equivalent to defining an internal composition law {·, ·} on C ∞(M) such that for
all f ,g ∈ C ∞(M)

{ f ,g}= Λ(d f ,dg)+ f ·E(g)−g ·E( f ) (3)

where d is the exterior differentiation operator (Okassa, 2007). The bracket {·, ·} is skew-symmetric and satisfies the
Jacobi identity if and only if (1) is fulfilled. Furthermore, one has the locality condition

supp{ f ,g} ⊆ supp( f )∩ supp(g). (4)

A natural generalization of Poisson bracket is Jacobi bracket. The only difference is that we only replace the Leibniz rule
by

{ f ,g ·h}= { f ,g} ·h+g · { f ,h}−g ·h · { f ,1} (5)

for all f ,g,h,1 ∈ C ∞(M), where 1 is the unit of C ∞(M).

Proposition 1. The Jacobi bracket {·, ·} defines a Lie algebra structure on C ∞(M), if and only if (1) is satisfied.

The vector field E is the hamiltonian vector field associated with the constant function 1. We have E ( f ) = {1, f}, whence
the Jacobi identity for (1, f ,g) yields

E ({ f ,g}) = {E ( f ) ,g}+{ f ,E (g)}
which equivalent to θEΛ = 0. If the vector field E vanishes, we recover the Poisson bracket.

Remark 2. (Lichnerowicz, 1977) Let (Λ,E) be a Jacobi structure on a manifold M and consider a product manifold

M×R, the bivector Λ̃ given by Λ̃ = e−t
(

Λ+ ∂

∂ t ∧E
)

, where t is the usual coordinate on R. Then, Λ̃ defines a Poisson

structure on M×R. The manifold M×R with the structure Λ̃ is called the poissonization of the Jacobi manifold (M,Λ,E).

Note that a smooth manifold M is a Jacobi manifold when the algebra of numerical functions of class C ∞ on M,C ∞(M)
admits a Jacobi algebra structure (Okassa, 2007).
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1.2 Contact Manifolds

By a contact manifold in this paper, we mean a C ∞ manifold M2n+1 together with a 1-form α such that α ∧ (dα)n , 0. In
particular, α ∧ (dα)n is a volume element on M2n+1, so that a contact manifold is orientable. Also (dα)n has rank 2n on
the Grassmann algebra ΛT ?

p M at each point p ∈M, and thus we have a 1-dimensional subspace,

{X ∈ TpM/dα(X ,TpM) = 0}

on which α , 0 and which is complementary to the subspace defined by α = 0.
Therefore choosing Rp in this subspace normalized by α(Rp) = 1, we have a global vector field R satisfying α(R) = 1
and dα(R,X) = 0. In this case, the C ∞(M)-module of vector fields X(M) admits a inner sum direct decomposition

X(M) = Kerα⊕C ∞(M) ·R,

where, R is called Reeb vector field of the contact structure α . We deduce that θRα = 0 and θRdα = 0.

One denotes by D the contact distribution defined by the space

Dp = {X ∈ TpM/α(X) = 0}= ker(α).

Roughly speaking, the meaning of the contact condition, α ∧ (dα)n , 0, is that the contact subbundle is as far from being
integrable as possible.

By a smooth manifold, we will mean a paracompact connected finite dimensional C ∞ manifold without boundary.

Here one lists a few examples of contact manifolds and Reeb vector field.

(i) The pair (R2n+1,α = dz+
n
∑

i=1
xidyi) is a contact manifold with Reeb vector field ∂

∂ z . Indeed, if R = a ∂

∂ z +bi
∂

∂xi
+ci

∂

∂yi
,

then 1 = α(R) = a−biyi. Also 0 = dα(R, ∂

∂xi
) =

n
∑

i=1
(dxi∧dyi)(R, ∂

∂xi
) gives ci = 0. Similarly, 0 = dα(R, ∂

∂yi
) =

n
∑

i=1
(dxi∧

dyi)(R, ∂

∂yi
) gives bi = 0. Thus a = 1 and R = ∂

∂ z .

(ii) Consider R3 with the contact form α = sin(y)dx+ cos(y)dz. Then the Reeb vector field is R = sin(y) ∂

∂x + cos(y) ∂

∂ z .

Given two contact manifolds (M,α) and (M′,α ′), let h : M −→M′ be a smooth map, that is, differentiable.

The map h is called a morphism of contact manifolds, so long as h∗α ′ = α (Gatsé, 2016).

Given a contact diffeomorphism h, h−1 is also contact, and h is called a contactomorphism, where by definition of the
pullback of a 1-form α

(h∗α)(x)(u) = α(h(x))(dh(x)u)

for x element of M and for any u element of TxM.

The main goal of this paper is to show that the contact manifolds are the Jacobi manifolds. We also will give the general-
ization of the notion of contactomorphism and will characterize the contact diffeomorphisms.

In what follows, M denotes a paracompact and connected smooth manifold, C ∞(M) the algebra of numerical functions
of class C ∞ on M,D(M) the C ∞(M)-module of first order differential operators on C ∞(M) and δ (Okassa, 2008) the
cohomology operator associated with the identically map

id : D(M)−→D(M).

The term "differential operator" will mean "first order differential operator".

2. Link Between Jacobi Manifolds and Contact Manifolds

Let Ω1(M)R be the C ∞(M)-module of differential forms of degree 1 on M which vanish on R. Then the map

kerα −→Ω
1(M)R,X 7−→ iX dα

is an isomorphism of C ∞(M)-modules. Moreover, for any function f ∈ C ∞(M), we obtain the following properties:

(i) θ f ·Rα = d f ,

(ii) θ f ·Rdα = 0,
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(iii) θR ( f α) = R( f ) ·α +d f ,

(iv) θRd ( f α) = (dR( f ))∧α +R( f ) ·dα .

The differential form d f −R( f ) ·α vanishes on R and we have easily

[R,kerα]⊂ kerα.

One notes X f the unique vector field on M belonging to kerα such that

iX f dα = d f −R( f ) ·α.

We notice that

(i) R ∈ ker(iX f dα).

(ii) If f = 0, then X f = 0.

(iii) If f = 1, then X f = R.

A differential operator on M is a R-linear map

ϕ : C ∞(M)−→ C ∞(M)

such that

ϕ( f ·g) = ϕ( f ) ·g+ f ·ϕ(g)− f ·g ·ϕ(1)

for any f ,g ∈ C ∞(M). We verify that the map

ϕ f = R( f )+X f − f ·R : C ∞(M)−→ C ∞(M)

is a differential operator on M. We set

{ f ,g}= ϕ f (g),

we deduce the following results.

Theorem 3. For all f ,g and h in C ∞(M), we get

(i) [X f ,Xg] = X{ f ,g}+ f ·XR(g)−g ·XR( f )+X f (g) ·R.

(ii) { f ,g ·h}= { f ,g} ·h+g · { f ,h}−g ·h · { f ,1}.

(iii) [R,ϕ f ] = ϕR( f ).

(iv) R{ f ,g}= {R( f ),g}+{ f ,R(g)}.

(v) [ϕ f ,ϕg] = ϕ{ f , g}.

Proof. (i) We check that
i[X f ,Xg]−X{ f ,g}− f ·XR(g)+g·XR( f )−X f (g)·Rdα = 0.

(ii) The proof of this assertion is obvious.

(iii) For any f ∈ C ∞(M), we get

[R,ϕ f ] =
[
R,R( f )+X f − f ·R

]
= [R,R( f )]+

[
R,X f

]
− [R, f ·R]

= R(R( f ))+XR( f )−R( f ) ·R
= ϕR( f ).
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(iv) Since

R
(
X f (g)

)
= X f (R(g))+Xg(R( f )),

we deduce that

R{ f ,g}= {R( f ),g}+{ f ,R(g)}.

(v) We calculate

[ϕ f ,ϕg] =
[
R( f )+X f − f ·R,R(g)+Xg−g ·R

]
= X f (R(g))− f ·R(R(g))−Xg (R( f ))+g ·R(R( f ))

+[X f ,Xg]−X f (g) ·R+g · [R,X f ]+ f · [R,Xg]

+Xg( f ) ·R+( f ·R(g)−g ·R( f )) ·R
= R{ f ,g}+X{ f ,g}−{ f ,g} ·R
= ϕ{ f , g}

That ends the proof. �

Proposition 4. The map

C ∞(M)×C ∞(M)−→ C ∞(M),( f ,g) 7−→ { f ,g},

defines a real Lie algebra structure on the contact manifold M.

Proof. We write

{ f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}} = { f ,{g,h}}−{g,{ f ,h}}−{{ f ,g},h}
= ϕ f [ϕg(h)]−ϕg[ϕ f (h)]−ϕ{ f ,g}(h)

= ([ϕ f ,ϕg]−ϕ{ f , g})(h)

= 0.

Hense the assertion is proved. �

Give the foregoing, it is concluded that a contact manifold is a Jacobi manifold.

3. Contactomorphism

If D(M) is the set of differential operators on M and

ω : D(M)×D(M)−→ C ∞(M)

is a nondegenerate skew-symmetric 2-form on M, then the pair (M,ω) is a contact manifold (fore more details, see Okassa,
2011). Let

i1ω : D(M)−→ C ∞(M)

be the 1-form on M such that

i1ω/C ∞(M) = 0.

Proposition 5. (Okassa, 2008) If ω is a nondegenerate skew-symmetric 2-form such that δω = 0, then ω = δ (i1ω).

Proof. For all ϕ and ψ in D(M), we have

0 = (δω)(1,ϕ,ψ)

= ω(ϕ,ψ)−ϕ[(i1ω)(ψ)]+ψ[(i1ω)(ϕ)]+(i1ω)[ϕ,ψ]

= [ω−δ (i1ω)](ϕ,ψ).

We deduce that ω = δ (i1ω). �
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Proposition 6. (Gatsé, 2019) Suppose that f is a diffeomorphism on M. Let ϕ be a differential operator of C ∞(M). Then
the map

f∗ϕ = ( f−1)∗ ◦ϕ ◦ f ∗ : C ∞(N)−→ C ∞(N)

is a differential operator of C ∞(N).

Proposition 7. When ϕ is a differential operator, when f is a diffeomorphism then for any g element of C ∞(M), we obtain

ϕ(g◦ f ) = [( f∗ϕ)(g)]◦ f .

Proof. Let x be an element of M, we write

[ϕ(g◦ f )] (x) = [ϕ [ f ∗(g)]] (x)

= [ f∗ϕ(g)] [ f (x)]

= [[( f∗ϕ)(g)]◦ f ] (x).

Thus ϕ(g◦ f ) = [( f∗ϕ)(g)]◦ f . �

Proposition 8. If f is a diffeomorphism and let ξ be a multilinear p-form on N then for all ψ1,ψ2, ...,ψp ∈D(M),

( f ∗ξ )(ψ1,ψ2, ...,ψp) = [ξ ( f∗ψ1, f∗ψ2, ..., f∗ψp)]◦ f .

Proof. For x element of M, we obtain

( f ∗ξ )(ψ1,ψ2, ...,ψp)(x)

= ( f ∗ξ )(x)(ψ1(x),ψ2(x), ...,ψp(x))

= ξ [ f (x)] [( f∗ψ1, f∗ψ2, ..., f∗ψp)( f (x))]

= [ξ ( f∗ψ1, f∗ψ2, ..., f∗ψp)] ( f (x))

= ([ξ ( f∗ψ1, f∗ψ2, ..., f∗ψp)]◦ f )(x),

then

( f ∗ξ )(ψ1,ψ2, ...,ψp) = [ξ ( f∗ψ1, f∗ψ2, ..., f∗ψp)]◦ f .

That ends the proof. �

Theorem 9. When f is a diffeomorphism then δ and f ∗ commute.

Proof. We have

[δ ( f ∗ξ )] (ψ1,ψ2, ...,ψp,ψp+1)

=
p+1

∑
i=1

(−1)i+1
ψi [( f ∗ξ )(ψ1,ψ2, ..., ψ̂i, ...,ψp,ψp+1)]

+∑
i< j

(−1)i+ j( f ∗ξ )([ψi,ψ j] ,ψ1,ψ2, ..., ψ̂i, ..., ψ̂ j, ...,ψp,ψp+1)

=

[
p+1

∑
i=1

(−1)i+1( f∗ψi) [ξ ( f∗ψ1, f∗ψ2, ..., f∗ψ̂i, ..., f∗ψp+1)]

]
◦ f

+

[
∑
i< j

(−1)i+ j
ξ ([ f∗ψi, f∗ψ j] , f∗ψ1, ..., f∗ψ̂i, ..., f∗ψ̂ j, ..., f∗ψp, f∗ψp+1)

]
◦ f .

On the other hand, we get

[ f ∗(δξ )] (ψ1,ψ2, ...,ψp,ψp+1)

= [(δξ )( f∗ψ1, f∗ψ2, ..., f∗ψp+1)]◦ f

=

[
p+1

∑
i=1

(−1)i+1( f∗ψi) [ξ ( f∗ψ1, f∗ψ2, ..., f∗ψ̂i, ..., f∗ψp+1)]

]
◦ f

+

[
∑
i< j

(−1)i+ j
ξ ([ f∗ψi, f∗ψ j] , f∗ψ1, ..., f∗ψ̂i, ..., f∗ψ̂ j, ..., f∗ψp+1)

]
◦ f .
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That ends the proof. �

Proposition 10. If f is a contactomorphism i.e. f ∗i1ω/X(M) = i1ω/X(M) then f ∗i1ω = i1ω .

Proof. Suppose that f is a contactomorphism then for any vector field X on M, we obtain

[(i1ω)( f∗X)]◦ f = (i1ω)(X).

For any ϕ ∈D(M), ϕ = ϕ(1)+X , and

(i1ω)( f∗ϕ) = (i1ω)( f∗X)

= [(i1ω)(X)]◦ f−1

= [(i1ω)(ϕ)]◦ f−1,

then [(i1ω)( f∗ϕ)]◦ f = (i1ω)(ϕ) so f ∗i1ω = i1ω . �

Theorem 11. The map f is a contactomorphism if and only if f ∗ω = ω .

Proof. Suppose that f is a contactomorphism, for all ϕ,ψ ∈D(M), we have

ω( f∗ϕ, f∗ψ) = [δ (i1ω)( f∗ϕ, f∗ψ)]

= ( f∗ϕ) [(i1ω)( f∗ψ)]− ( f∗ψ) [(i1ω)( f∗ϕ)]− (i1ω) [ f∗ϕ, f∗ψ]

= ϕ [(i1ω)(ψ)]◦ f−1−ψ [(i1ω)(ϕ)]◦ f−1− (i1ω) [ϕ,ψ]◦ f−1

= ω(ϕ,ψ)◦ f−1,

[ω( f∗ϕ, f∗ψ)]◦ f = ω(ϕ,ψ).

Thus f ∗ω = ω .

Conversely let f ∗ω = ω . For ϕ = 1, we have f∗ϕ = 1. For ϕ,ψ elements of D(M), ω( f∗ϕ, f∗ψ) = ω(ϕ,ψ)◦ f−1, then

ω(1, f∗ψ) = ω(1,ψ)◦ f−1

(i1ω)( f∗ψ) = (i1ω)(ψ)◦ f−1.

In particular if ψ = Y , we have

[(i1ω)( f∗Y )]◦ f = (i1ω)(Y ),

then f ∗i1ω/X(M) = i1ω/X(M).

That ends the proof. �

Let D i f fω(M) be the group of C ∞(M)-diffeomorphisms of M, which preserve ω . This group is the automorphism group
of the contact geometry of (M,ω). It acts transitively on the contact manifold (provided that is connected). Hence the
contact manifold (M,ω) can be viewed as a homogeneous space of D i f fω(M).

Theorem 12. Let (M,ω) and (M′,ω ′) be two smooth contact manifolds equipped with contact structures ω and ω ′

respectively. Let γ : M −→ M′ be a bijective map such that for any map f : M −→ M,γ f γ−1 ∈ D i f fω ′(M′) iff f ∈
D i f fω(M). Then γ is a C ∞(M)-diffeomorphism and γ∗ω ′ = ω .

Proof. We use the Taken’s theorem (see Takens, 1979) and the same arguments as in (Banyaga, 1986). �

Theorem 13. Suppose a group isomorphism τ : D i f fω(M)−→D i f fω ′(M′) is also a homeomorphism when D i f fω(M)
and D i f fω ′(M′) are endowed with the point-open topology. Then there exists a C ∞(M)-diffeomorphism γ : M −→ M′

such that τ( f ) = γ f γ−1, for any f ∈D i f fω(M) and γ∗ω ′ = ω .

Proof. Note that, these groups are γ-transitive. There exists a homeomorphism γ : M −→M′ such that τ( f ) = γ f γ−1, for
any f ∈D i f fω(M). Useing the above theorem, we have γ∗ω ′ = ω . �

Corollary 14. When an automorphism of the group of contact diffeomorphisms D i f fω(M) of contact manifold (M,ω) is
also a homeomorphism for the point-open topology, then it is an inner automorphism.
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4. A Characterization of Contact Diffeomorphisms

Let

id : D(M)−→D(M)

be the identically map of D(M). One notes δ = did , the cohomology operator associated with the representation id. Let

ω : D(M)×D(M)−→ C ∞(M)

be a nondegenerate skew-symmetric 2-form on M.

Proposition 15. When

f : M −→M

satisfies f ∗ω = ω , then for every function u ∈ C ∞(M), we have

f∗ϕu = ϕu◦ f .
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