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Abstract

A fractal mobile-immobile (MIM in short) model for solute transport in heterogeneous porous media is investigated from
numerics. An implicit finite difference scheme is set forth for solving the coupled system, and stability and convergence
of the scheme are proved based on the estimate of the spectral radius of the coefficient matrix. Numerical simulations
with different parameters are presented to reveal the solute transport behaviors in the fractal case.
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1. Introduction

Solute transport in porous media is a complicated process involving in physical/chemical and biological reactions with
fluid mechanics, and the traditional models are the advection-dispersion equations and the MIM solute transport models.
The MIM model describes the hydrodynamic behavior in the mobile zone and the mass transfer process between the
mobile zone and the immobile zone, which can characterize the physical/chemical non-equilibrium of solute transport in
heterogeneous porous media. Although the physical and chemical non-equilibrium models are based on different concepts,
they can be described by the same mathematical equation in dimensionless form, see Pang and Close (1999), Toride, Leij
and Van Genuchten (1995) for instance. A MIM solute transport undergoing linear sorption without degradations and
source/sink reactions in the studied region is given as follows (Benson and Meerschaert (2009), Li, Wen, Zhu and Jakada
(2020), Lu, Wang, Zhao and Rathore et al (2018), Schumer and Benson (2003), Van Genuchten and Wagenet (1989)): βR ∂C1

∂t =
1
P
∂2C1
∂x2 − ∂C1

∂x − ω(C1 −C2),
(1 − β)R ∂C2

∂t = ω(C1 −C2),
(1.1)

where C1,C2 are the dimensionless solute concentrations in the equilibrium and non-equilibrium sites respectively, P > 0
is the Pelect number, and R ≥ 1 is the retardation factor due to the sorption, and β ∈ (0, 1) is a partitioning coefficient
between the equilibrium and non-equilibrium phases, and ω > 0 is the first-order mass transfer rate.

The system (1.1) is a classical integer-order MIM model for solute transport in porous media which has been studied and
applied widely by hydrogeologists not only in laboratory but also in field tests. However, there were some researches in the
last decades constantly indicated that fractional differential equations could be more suitable than those of classical models
to describe non-Darcian flow or anomalous diffusion in some special environment, especially in low-permeability porous
media, see Caputo and Plastino (2004), Hansbo (2001), Miller and Low (1963), Obembe, Hossain and Abu-Khamsin
(2017), Raghavan (2011), Zhou, Yang and Zhang (2018) for instance. The solute mass transfer or the chemical reaction
in a heavy heterogeneous porous media is not an instantaneous process but a longtime dynamical behavior due to the
memory effect, in which case fractional diffusion equations incorporating with the memory effect are expected to describe
the anomalous diffusion processes in the porous media, see Baeumer and Meerschaert (2007), Benson, Wheatcraft and
Meerschaert (2000), Gerolymatou, Vardoulakis and Hilfer (2006), Kelly and Meeschaert (2019), Zhang, Benson and
Reeves (2009), Zhou, Yang and Zhang (2019), for instance.

Also by dimensionless we consider a modified model of (1.1) in the unit domain (0, 1) for 0 < t < T by replacing the
first-order derivatives on t > 0 in (1.1) with the corresponding fractional derivatives respectively. Assume that there are
the first-order degrading reactions in the solute transportation, and we encounter with the following fractal MIM solute
transport system: {

βR1∂
α
t u = 1

P
∂2u
∂x2 − ∂u∂x − ω(u − v) − λu,

(1 − β)R2∂
γ
t v = ω(u − v) − µv, (1.2)

where u = u(x, t) and v = v(x, t) are solute concentrations in the mobile and immobile zones respectively, and (x, t) ∈
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(0, 1) × (0,T ); R1,R2 ≥ 1 are the retardation factors, λ, µ > 0 are the degradation coefficients in the mobile and immobile
respectively; and P > 0 also denotes the Pelect number, β ∈ (0, 1) the partitioning coefficient, and ω > 0 the mass transfer
rate. In addition, ∂αt (0 < α < 1), ∂γt (0 < γ < 1) denote the Caputo fractional derivatives on t > 0, which defined by

∂αt u(·, t) = 1
Γ(1 − α)

∫ t

0

∂u(·, s)
∂s

ds
(t − s)α

, (1.3)

and Γ(·) denotes the Gamma function. See the definition of fractional calculus by Kilbas, Srivastava and Trujillo (2006),
Podlubny (1999).

The initial value condition is assumed to be

u(x, 0) = 0, v(x, 0) = 0, 0 ≤ x ≤ 1, (1.4)

which means the solute concentration in the mobile and immobile zones are both zero at the initial stage. The boundary
condition at x = 0 is given as

u(0, t) = 1, v(0, t) = 0, 0 < t ≤ T, (1.5)

which implies that the left-hand side of the region in the mobile is a source, and keeps a constant distribution. The
condition at x = 1 is impermeable, which is given by

∂u
∂x

(1, t) = 0,
∂v
∂x

(1, t) = 0, 0 ≤ t ≤ T. (1.6)

As a result we get a determined system composed by (1.2) with (1.4)-(1.6), which is a novel fractal MIM model for
describing reactive solute transport processes with dynamical sub-diffusion behaviors. Its solution can be expressed by
the inverse Laplace transform, but the computational cost is very expensive. The finite difference methods are usually
utilized for solving fractional differential equations, see Du, Gunzburger, Lehoucq and Zhou (2012), Li, Sun, Jia and Du
(2016), Liu, Zhuang, Anh, Turner and Burrage (2007), Liu, Zhuang and Burrage (2014), Meerschaert and Tadjeran (2004),
for instance. As for the fractal MIM solute transport system (1.2), there are no studies not only for the solution’s properties
in mathematics but also for numerical methods. The motivation of this paper is to set forth a numerical method and give
numerical simulations for the coupled system. By discretizing the fractional derivatives and integer-order derivatives in
(1.2), an implicit finite difference scheme is established, and the unconditional stability and convergence of the scheme
are proved by estimating the spectral radius of the coefficient matrix under natural conditions, and numerical simulations
are performed with different parameters to reveal the subdiffusion behaviors of the solute in fractal cases.

The rest of the paper is organized as follows.

In section 2, an implicit finite difference scheme for solving the system (1.2) is put forward, and the stability and conver-
gence of the scheme are proved in Section 3, and numerical simulations are presented in Section 4. Concluding remarks
are given in section 5.

2. The Finite Difference Scheme

Let m, n be positive integers, and h = 1/m, τ = T/n be grid steps to discretize the domain. Denote xi = ih(i =
0, · · · ,m), tk = kτ(k = 0, · · · , n) as the grid points, and ui,k

1 ≈ u(xi, tk), vi,k ≈ v(xi, tk) as the approximations. By the
general finite difference method as used to fractional diffusion equations (Li, Sun, Jia and Du (2016), Liu, Zhuang, Anh,
Turner and Burrage (2007), Meerschaert and Tadjeran (2004)), we have

βR1
ταΓ(2−α)

k∑
j=0

[ui, j+1 − ui, j][(k + 1 − j)1−α − (k − j)1−α]

= 1
P

ui+1,k+1−2ui,k+1+ui−1,k+1

h2 − ui,k+1−ui−1,k+1

h
−ω(ui,k+1 − vi−1,k+1+vi+1,k+1

2 ) − λui,k+1 + O(hτα + τα+1),

(2.1)

and
(1−β)R2
τγΓ(2−γ)

k∑
j=0

[vi, j+1 − vi, j][(k + 1 − j)1−γ − (k − j)1−γ]

= ω( ui−1,k+1+ui+1,k+1

2 − vi,k+1) − µvi,k+1 + O(τγ+1).
(2.2)

We denote r1 =
ταΓ(2−α)
PβR1h2 , r2 =

τγΓ(2−γ)
(1−β)R2

, and A = τ
αΓ(2−α)
βR1h + r1, C = r1, D = ωτ

αΓ(2−α)
2βR1

, E = r2ω
2 ;

B = 1 + A +C + 2D + τ
αΓ(2−α)
βR1

λ, F = 1 + 2E + r2µ.
(2.3)
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By omitting the truncated terms we get an implicit difference equations given as

−Aui−1,k+1 + Bui,k+1 −Cui+1,k+1 − Dvi−1,k+1 − Dvi+1,k+1

= ui,k −
k−1∑
j=0

(ui, j+1 − ui, j)[(k + 1 − j)1−α − (k − j)1−α],

−Eui−1,k+1 − Eui+1,k+1 + Fvi,k+1

= vi,k −
k−1∑
j=0

(vi, j+1 − vi, j)[(k + 1 − j)1−γ − (k − j)1−γ].

(2.4)

Denote
Uk = (u1,k, u2,k, · · · , um−1,k, v1,k, v2,k, · · · , vm−1,k)T , k = 1, 2, · · · , n,

and the initial boundary value conditions are discretized as

U(0) = (u1,0, u2,0, · · · , um−1,0; v1,0, v2,0, · · · , vm−1,0)T

= (0, 0, · · · , 0; 0, 0, · · · , 0)T ,

and
u0,k = 1, v0,k = 0, k = 0, 1, · · · , n;

um−1,k = um,k, vm−1,k = vm,k, k = 0, 1, · · · , n.
By rearranging (2.4) we get the difference scheme in the matrix form:

MU1 = U0,

MUk+1 = NUk +
k−1∑
j=1
Ψk

jU
j + N0U0, k = 1, 2, · · · , n − 1, (2.5)

where the coefficient matrix M is a 2(m − 1)-order matrix defined by

M =
(

M11 M12
M21 M22

)
, (2.6)

where M11,M12,M21 and M22 are all m − 1-order matrices given by

M11 =



B −C 0 · · · 0
−A B −C · · · 0
...
. . .

. . .
. . .

...
0 · · · −A B −C
0 · · · 0 −A B −C


,M12 =



0 −D 0 · · · 0
−D 0 −D · · · 0
...

. . .
. . .

. . .
...

0 · · · −D 0 −D
0 · · · 0 −D −D


,

M21 =



0 −E 0 · · · 0
−E 0 −E · · · 0
...
. . .

. . .
. . .

...
0 · · · −E 0 −E
0 · · · 0 −E −E


,M22 =



F 0 0 · · · 0
0 F 0 · · · 0
...
. . .

. . .
. . .

...
0 · · · 0 F 0
0 · · · 0 0 F


.

And the matrices N and N0 in (2.5) are all 2(m − 1)-order defined by

N =


(
2 − 21−α

)
I O

O
(
2 − 21−γ

)
I

 ,N0 =

(
ξkI O
O ζkI

)
, (2.7)

where I is the m − 1-order identity matrix, O denotes the m − 1-order zero matrix, and

ξk = (k + 1)1−α − k1−α, k = 1, · · · , n − 1, (2.8)

and
ζk = (k + 1)1−γ − k1−γ, k = 1, · · · , n − 1. (2.9)

And the matrix Ψk
j is defined by

Ψk
j =

(
bk

1, jI O
O bk

2, jI

)
, (2.10)

33



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 3; 2021

where
bk

1, j = 2(k + 1 − j)1−α − (k − j)1−α − (k − j + 2)1−α, (2.11)

and
bk

2, j = 2(k + 1 − j)1−γ − (k − j)1−γ − (k − j + 2)1−γ, (2.12)

for j = 1, · · · , k − 1 and k = 2, · · · , n − 1.

3. Stability and Convergence

According to the background of solute transport in porous media and the physical/chemical laws, the model parameters
satisfy the following condition:

0 < γ, α < 1, 0 < β < 1, R1,R2 ≥ 1, P > 0, ω > 0, λ, µ > 0. (3.1)

Under the natural condition (3.1), we will prove the coefficient matrix M given by (2.6) is strictly diagonal dominant, and
the finite difference scheme (2.5) is uniquely solvable, and the stability and convergence of the scheme are obtained by
estimating the spectral radius of the coefficient matrix.

3.1 Preliminary Lemmas

Lemma 3.1 (Jia and Li (2016)) For k = 1, 2, · · · , and 0 < γ, α < 1, there hold

2kα − (k − 1)α − (k + 1)α > 0, (3.2)

and
2kγ − (k − 1)γ − (k + 1)γ > 0, (3.3)

and the coefficients bk
1, j, b

k
2, j given in (2.11) and (2.12) respectively are all positive.

By Lemma 3.1, we can easily get the following assertions.

Lemma 3.2 For the coefficients ξk, and ζk, k = 1, 2, · · · defined by (2.8) and (2.9) respectively, there holds

0 < ξk, ζk < 1. (3.4)

Lemma 3.3 Assume 0 < γ, α < 1 and k = 1, 2, · · · , there hold

ξk +

k−1∑
j=1

bk
1, j = 21−α − 1, (3.5)

and

ζk +

k−1∑
j=1

bk
2, j = 21−γ − 1, (3.6)

and there are bk
1, j < 1 and bk

2, j < 1 for j = 1, · · · , k − 1 and k = 1, 2, · · · .
The following proposition gives the basis for stability and convergence of the difference scheme (2.5).

Proposition 3.1 For the coefficient matrix M given by (2.6), there holds

Mii > 1 +
2m−2∑
j=1, j,i

∣∣∣Mi j

∣∣∣ (3.7)

with
∑2m−2

j=1, j,i Mi j < 0 for i = 1, 2, · · · , 2m − 2.

Proof Obviously, the coefficients A, B,C,D, E, and F defined in (2.3) are all positive under the natural condition (3.1),
and the assertion is valid by the following verifications.

(i) i = 1. Noting M11 = B > 0 and
∑2m−2

j=2 M1 j = −C − D < 0, there is

M11 = 1 + A +C + 2D +
ταΓ(2 − α)
βR1

λ > 1 +
2m−2∑

j=2

∣∣∣Mi j

∣∣∣ .
(ii) i = 2, · · · ,m − 2. Noting Mii = B > 0 and

∑2m−2
j=1, j,i Mi j = −A −C − 2D < 0, we also get the assertion (3.7).
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(iii) i = m − 1. Since Mii = B −C = 1 + A + 2D + τ
αΓ(2−α)
βR1

λ > 0 and
∑2m−2

j=1, j,m−1 Mm−1 j = −A − 2D < 0. We have

Mii = 1 + A + 2D +
ταΓ(2 − α)
βR1

λ > 1 +
2m−2∑

j=1, j,m−1

∣∣∣Mm−1 j

∣∣∣ .
(iv) i = m. Since Mmm = F = 1 + 2E + r2µ > 0 and

∑2m−2
j=1, j,m Mm j = −E < 0, there holds

Mmm = 1 + 2E + r2µ > 1 +
2m−2∑

j=1, j,m

∣∣∣Mm j

∣∣∣ .
(v) i = m + 1, · · · , 2m − 2. Noting Mii = 1 + 2E + r2µ > 0 and

∑2m−2
j=1, j,i Mi j = −2E < 0, follows that the assertion (3.7) is

valid too, and the proof is completed.

Corollary 3.1 By this proposition, the coefficient matrix M of the difference scheme (2.5) is strictly diagonal dominant,
and the difference scheme is uniquely solvable.

By this proposition we also get an estimates of the spectral radius of the matrix M by direct computations.

Lemma 3.4 For the coefficient matrix M given by (2.6) there hold

1 < ρ(M) < 2∥M∥∞ − 1, (3.8)

and
1

2∥M∥∞ − 1
< ρ

(
M−1

)
< 1, (3.9)

here ∥M∥∞ = max1<i<2m−2 {Mii}, and ρ(M) is the spectral radius of M, and there exists a matrix norm ∥ · ∥∗ such that∥∥∥M−1
∥∥∥∗ < 1, (3.10)

where M−1 denotes the inverse matrix of M.

3.2 Stability and Convergence

In this subsection, we discuss the stability and convergence of the difference scheme (2.5) utilizing the norm ∥ · ∥∗ given
in Lemma 3.4, and we denote it as ∥ · ∥ for convenience of writing.

Theorem 3.1 Under the natural condition (3.1), the implicit finite difference scheme (2.5) is of unconditional stability.

Proof By the linear difference scheme (2.5), we get{
ME1 = E0, E0 = Ũ0 − U0,

MEk+1 = NEk +
∑k−1

j=1 Ψ
k
jE

j + N0E0,
(3.11)

where Ũ0 denotes the initial function with noises, Ek = Ũk − Uk denotes the solutions difference at the k-th level, and
k = 0, 1, · · · .
By (3.11) and Lemma 3.4, there holds ∥∥∥E1

∥∥∥ ≤ ∥∥∥M−1
∥∥∥ ∥∥∥E0

∥∥∥ < ∥∥∥E0
∥∥∥ . (3.12)

Suppose that there are
∥∥∥E j

∥∥∥ < ∥∥∥E0
∥∥∥ for j = 1, 2, · · · , k. Then we get also by (3.11) and Lemma 3.4

∥∥∥Ek+1
∥∥∥ ≤ ∥∥∥M−1

∥∥∥
∥∥∥∥∥∥∥∥NEk +

k−1∑
j=1

Ψk
jE

j + N0E0

∥∥∥∥∥∥∥∥
<

∥∥∥∥∥∥∥∥NEk +

k−1∑
j=1

Ψk
jE

j + N0E0

∥∥∥∥∥∥∥∥
<

∥N∥ + k−1∑
j=1

∥∥∥Ψk
j

∥∥∥ + ∥N0∥
 ∥∥∥E0

∥∥∥ .
(3.13)
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On the other hand, for given α, γ ∈ (0, 1), by Lemmas 3.2-3.3, the sum of norms ∥N∥∞ + ∥N0∥∞ +
∑k−1

j=1 ∥Ψk
j∥∞ is bounded

independent of k ∈ N, and thanks to the equivalence of the norm in finite-dimensional space, there exists a positive
constant C > 0 such that ∥∥∥Ek+1

∥∥∥ ≤ C
∥∥∥E0

∥∥∥ , (3.14)

which implies that the assertion of this theorem is valid by the inductive principle. The proof is over.

Denote the errors in the solutions by

ek =
(
u (x1, tk) − u1,k, u (x2, tk) − u2,k, · · · , u (xm−1, tk) − um−1,k

v (x1, tk) − v1,k, v (x2, tk) − v2,k, · · · , v (xm−1, tk) − vm−1,k
)T
,

(3.15)

for k = 1, 2, · · · , n, where u (xi, tk) , v (xi, tk) and ui,k
j , v

i,k
j j = 1, 2, are the exact and numerical solutions at (xi, tk) of the

problem respectively.

Theorem 3.2 The difference solution of (2.5) is convergent to the exact solution as h, τ→ 0 for any finite time T < ∞,
and there holds

∥ek∥ ≤
 CT γ

(
hτα−γ + τ + τ1+α−γ

)
, 0 < γ ≤ α < 1,

CTα
(
h + τ + τ1+γ−α

)
, 0 < α ≤ γ < 1,

(3.16)

where C also denotes positive constant independent of k ∈ N.
Proof Also by the difference scheme (2.5), and noting to (2.1) and (2.2), we have{

Me1 = R1,

Mek+1 = Nek +
∑k−1

j=1 Ψ
k
je

j + Rk+1,
(3.17)

where Rk, k = 1, 2, · · · , denote the truncated terms in the solutions’ approximation satisfying∥∥∥Rk
∥∥∥ ≤ C

(
hτα + τ1+α + τ1+γ

)
, k = 1, 2, · · · , (3.18)

here C > 0 also denotes a positive constant independent of k ∈ N.

By (3.17) and Lemma 3.4, there holds∥∥∥e1
∥∥∥ ≤ ∥∥∥M−1

∥∥∥ ∥∥∥R1
∥∥∥ ≤ C

(
hτα + τ1+α + τ1+γ

)
. (3.19)

Assume that ∥∥∥e j
∥∥∥ ≤ C

(
hτα + τ1+α + τ1+γ

)
, j = 1, 2, · · · , k. (3.20)

We have also by (3.17) and Lemma 3.4

∥∥∥ek+1
∥∥∥ ≤ ∥N∥ ∥∥∥ek

∥∥∥ + k−1∑
j=1

∥∥∥Ψk
j

∥∥∥ ∥∥∥e j
∥∥∥ + ∥∥∥Rk+1

∥∥∥ . (3.21)

Consider the case of 0 < γ ≤ α < 1. By Lemma 3.2, and noting that ξk ≤ ζk for 0 < γ ≤ α < 1, we have

0 < ∥N0∥∞ = ζk < 1. (3.22)

Together with (3.21) and (3.20) and Lemma 3.3, we get

∥∥∥ek+1
∥∥∥ ≤ ∥N∥ ∥∥∥ek

∥∥∥ + k−1∑
j=1

∥∥∥Ψk
j

∥∥∥ ∥∥∥e j
∥∥∥ + ∥N0∥

∥∥∥Rk+1
∥∥∥ / ∥N0∥

≤ C
ζk

∥N∥ + k−1∑
j=1

∥∥∥Ψk
j

∥∥∥ + ∥N0∥
 (hτα + τ1+α + τ1+γ

)
≤ C

(k + 1)1−γ − k1−γ

(
hτα + τ1+α + τ1+γ

)
=

C
(k + 1)1−γ − k1−γ τ

γ
(
hτα−γ + τ + τ1+α−γ

)
.

(3.23)
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Figure 1. Numerical solutions of u and v in Ex.1

Noting τ = T/n and n ≥ k, we have∥∥∥ek+1
∥∥∥ ≤ CT γ[

(k + 1)1−γ − k1−γ] kγ
(
hτα−γ + τ + τ1+α−γ

)
(3.24)

Combining with the limitation
lim
k→∞

[
(k + 1)1−γ − k1−γ

]
kγ = 1 − γ,

we get the assertion (3.16) in the case of 0 < γ ≤ α < 1. Similarly we can prove the assertion for 0 < α ≤ γ < 1. This
ends the proof of this theorem.

4. Numerical Tests

In this section we give numerical simulations using the finite difference scheme (2.5) for the fractal MIM solute transport
model, and we will investigate on the transport behaviors by taking different model parameters. It is noted that the
computational cost is O(m3) for solving a m-order matrix equation, and it becomes O(m3n2) for the scheme (2.5) for
solving the fractal MIM model due to the time-fractional derivatives, where m, n are the numbers of the discretized space
and time domains, respectively.

4.1 Example 1

The model parameters are chosen as P = 1, β = 0.5, ω = 0.5, λ = 0.05, µ = 0.5, R1 = R2 = 2 and α = γ = 0.5. Taking
the space and time steps as h = 1/20 and τ = 1/20, the finite difference scheme (2.5) is applied to solve the system,
and numerical solutions are plotted in Figure 1. In order to observe the solute transport behaviors in the fractal cases, we
choose h = 1/20, τ = 1/100 and α = γ = 0.5, and the system is solved numerically with different partition parameters
and mass transfer rates, and the simulation results are plotted in Figures 2-3.

From Figures 2-3 it can be seen that the partition parameter and the mass transfer rate both have important influences on
the solute transport process. The variation of v increases largely and u decreases largely when the partition parameter goes
to large. In addition, the mass transfer rate has a great impact on the immobile zone. As the mass transfer rate decreases,
the peak value of the variation of v gradually goes down.
Next, we investigate on the dynamics of the system with long time transport. Let β = 0.5, ω = 0.5 and h = 1/20, τ = 1/20.
By fixing the fractional order in immobile zone be γ = 0.5, and taking the mobile fractional order be α = 0.2, 0.4, 0.6 and
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Figure 2. Transport behaviors with partition parameters (ω = 0.5) in Ex.1
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Figure 3. Transport behaviors with mass transfer rates (β = 0.5) in Ex.1
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Figure 4. Long time behaviors of the solute transport with γ = 0.5 in Ex.1

α = 0.8 respectively, the solute concentration at x = 0.5 during the time interval of [0, 50] are plotted in Figure 4, as well
as the case of taking α = 1 where the solute transport in the mobile zone is assumed to be governed by the integer-order
diffusion.
From Figure 4 it can be seen that the solute transport becomes slow as the fractional order α goes to small, especially
when the transport time t > 5. It is worth noting that the peak value also decreases as the differential order α decreases.
Finally, the solute concentration at x = 0.5 during the time interval of [0, 50] are plotted in Figure 5, where we fix the
fractional order in the mobile zone be α = 0.5, and take the immobile fractional orders be γ = 0.2, 0.4, 0.6 and γ = 0.8
respectively. As we can see, the immobile fractional order also plays an important role in the solute transport, and the
peak value of the solute concentration in the immobile also decreases as the order γ becomes small.

4.2 Example 2

In this example the model parameters are chosen as P = 1, β = 0.5, ω = 1.5, λ = 0.05, µ = 0.1, R1 = R2 = 2 and
α = 0.8, γ = 0.5. By using the same time-space steps as done in Ex.1, the numerical solutions are plotted in Figure 6, and
the solute transport behaviors are plotted in Figures 7-8 with different partition parameters and mass transfer rates, and
the long time behaviors with different fractional orders at x = 0.5 for t ∈ [0, 50] are plotted in Figures 9-10, respectively.

5. Conclusion

A fractal MIM model for reactive solute transport in heterogeneous porous media is investigated from numerics. A stable
and convergent finite difference scheme for solving the forward problem is established, and numerical simulations under
different conditions are presented. The numerical computations show that the fractal MIM model can be utilized to
characterize the subdiffusion behaviors of a solute transport in a long time interval, and the fractional order, the partition
parameter and the mass transfer rate all have important influences on the solute transportation. In other words, the fractal
transport model is more suitable for describing a long time subdiffusion process, and the solute transport in the immobile
zone can not be ignored when coping with heavily heterogeneous porous media. We are to deal with 2D fractal MIM
model and focus on inverse problems related with the fractal MIM solute transport models in the near future.
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Figure 5. Long time behaviors of the solute transport with α = 0.5 in Ex.1

0
1

0.2

0.4

1

0.6

0.8

0.8

0.5 0.6

1

0.4
0.2

0 0

(a) u

0
1

0.2

1

0.4

0.8

0.6

0.5 0.6

0.8

0.4
0.2

0 0

(b) v

Figure 6. Numerical solutions of u and v in Ex.2
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Figure 7. Transport behaviors with partition parameters (ω = 1.5) in Ex.2
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Figure 8. Transport behaviors with mass transfer rates (β = 0.5) in Ex.2
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Figure 9. Long time behaviors of the solute transport with γ = 0.5 in Ex.2
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Figure 10. Long time behaviors of the solute transport with α = 0.8 in Ex.2
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