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Abstract

In this paper, we propose the solution of some nonlinear partial differential equations of fractional order that modeled
diffusion, convection and reaction problems. For the solution of these equations we will use the SBA method which is a
method based on the combination of the Adomian Decomposition Method (ADM), the Picard’s principle and the method
of successive approximations.
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1. Introduction

The modeling of different phenomena leads in most cases to equations. These equations, mainly functional, are of several
types: differential, integral, integro-differential, partial integro-differential and partial derivative (ABBAOUI, K. 1994;
ABBAOUI, K. & CHERRUAULT, Y. 1995; BAKARI, A. & et al., 2006; MAMPASSI, B. & et al. 2003) . In recent years,
engineers have been opting much more for fractional equations models because the description of systems is more accurate
when the fractional derivative is used (KHALOUTA, A. & KADEM, A , 2019; HAMMOUCH, Z. & MEKKAOUI, T.,
2012; KHALOUTA, A. & KADEM, A, 2019) . The modeling of systems constited certainly a great progress. However
the resolution of different models has created new challenges, which have led researchers to develop several methods of
resolution. Among these methods we have analytical methods, discretization methods, asymptotic methods. A particular
interest of fractional derivation is related to mechanical modeling of gums and rubbers, in short, all kind of materials that
retain the memory of past deformations and whose behaviour is said to be visco-elastic (KHALOUTA, A. & KADEM,
A , 2019; N’GUEREKATA, G. M., 2009; KILBAS, A. A. & et al., 2006) The Som Blaise-Abbo (SBA) method is
a combination of two methods and a principle: Adomian Decomposition Method (ADM), the method of successive
approximations and the Picard’s principle. The fundamental idea of this method is the construction of a solution at each
step in the form of a series that approaches the exact solution of the given problem. The terms of this series are determined
using an iterative scheme called algorithm (ABBAOUI, K. 1994; ABBAOUI, K. & CHERRUAULT, Y. 1995; BAKARI,
A. & et al., 2006; YOUSSOUF, P. & et al., 2019)

2. Preliminaries and Definition

In this section, we present some basic definitions and properties of the fractional calculus theory which are used further
in this paper ( KHALOUTA, A. & KADEM, A , 2019; HAMMOUCH, Z. & MEKKAOUI, T., 2012; KHALOUTA, A. &
KADEM, A , 2019; N’GUEREKATA, G. M., 2009; KILBAS, A. A. & et al., 2006) .

Definition 2.1. The Euler Gamma function is defined by:

Γ(z) =

∫ +∞

0
tz−1e−tdt (1)

with z is any complex number such that Re(z) > 0. The function is strictly decreasing on ]0; 1].

Definition 2.2. The Beta function is defined by:

β(u, z) =

∫ 1

0
(1 − t)u−1tz−1dt (2)

with Re(z) > 0, Re(u) > 0.

The relation between the beta function and the gamma function is given by :
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β(u, z) =
Γ(u)Γ(z)
Γ(u + z)

. (3)

This relation allows us to conclude that β(u, z) = β(z, u)

Definition 2.3. The Mittag-Leffter function is defined by :

Eα(z) =

+∞∑
k=0

zk

Γ(kα + 1)
(4)

where z is a complex, α is a strictly positive real.

Definition 2.4. Let f ∈ C([a, b]). The operator Iαa defined on [a; b] by:

(In
ah)(t) =

1
Γ(α)

∫ t

a
(t − x)α−1h(x)dx (5)

is called Riemann-Liouville fractional integral of order α > 0.

Propriety 2.1. Let α and β two complex numbers, f ∈ C([a, b]).

i) Iαa (Iβa f ) = Iα+β
a , Re(α) > 0, Re(β) > 0

ii)
d
dt

(Iαa f )(t) = (Iα−1
a f )(t) , Re(α) > 1

iii) lim
α→0+

Iαa f ) = f (t) , Re(α) > 0

Definition 2.5. The (left-sided) Caputo-type fractional, derivative of order α > 0 of a function f ∈ Cm
−1 (m = 1, 2, ....) is

given by: 
cDα = In−αu(n) =

∂αu(x, s)
∂sα

=
1

Γ(n − α)

∫ t

a
(t − s)n−α−1 ∂

nu(x, s)
∂sn ds, i f n − 1 < α < n

dm

dtm f , i f α = n

(6)

where n = [α] + 1 is the integer part of the real number

3. Description of SBA Method

Consider the following functional equation (ABBAOUI, K. 1994; ABBAOUI, K. & CHERRUAULT, Y. 1995; BAKARI,
A. & et al., 2006; YOUSSOUF, P. & et al. 2019 ) :

Au = f (7)

where A : H → H is either a linear operator or not ; H is a real Hilbert space ; u ∈ H and f ∈ H.

By setting : A = L − R − N, where L is a linear operator assumed to be invertible ; R a linear operator and N a non-linear
operator.

The result is :

Lu − Ru − Nu = f (8)

By applying L−1, the inverse of L to (7), the following canonical Adomian form is obtained:

u = θ + L−1( f ) + L−1(R(u)) + L−1(N(u)) (9)

where θ is such that L(θ) = 0.

Applying the method of successive approximations (9) we get :

uk = uk(0) + L−1( f k) + L−1(R(uk)) + L−1(N(uk−1)), k ≥ 1 (10)
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From (10) we obtain the following Adomian algorithm, also known as the SBA algorithm:
uk

0 = uk(0) + L−1( f k) + L−1(N(uk−1)), k ≥ 1

uk
n = L−1(R(uk

n−1)), n ≥ 1
(11)

Thus, we combine ideas taken from these two classical techniques in order to derive an approximate schematic.

Then the solution at each step will be calculated by :

uk =

+∞∑
n=0

uk
n, k ≥ 1

The approximate solution u is given by :

u = lim
k→+∞

uk

An important step in the SBA numerical method is the choice of the first iteration term u0 of the successive approximation
scheme.

Thus, the following principle, called Picard’s principle, is proposed.

Picard’s principle : choice of u0 The principle consists in choosing the first iteration term u0 of the approximation
scheme in order to obtain algorithms that converge faster to the exact solution. Let’s choose u0 such that N(u0) = 0.

This choice allows in the first iteration to solve only one linear problem and this principle will be checked at each iteration
before moving on the calculations.

Convergence :

Let’s consider the following non-linear fractional problem:

(P)


cDα

t u = L(u) + N(u)

u0 = f
(12)

where u : H → H is a known function; f is a continuous function given in the Hilbert space H; L is a linear operator and
N is a non-linear operator.

Theoreme 3.0.1.
The SBA algorithm associated with problem (P) is defined for k ≥ 1 by

(Pk
S BA)


uk

0 = f + ˜N(uk−1)

uk
n = Iαt (uk

n−1), n ≥ 1
(13)

where Iαt (.) =
1

Γ(α)

∫ t

0
(t − s)α−1(.)ds and Ñ(uk−1) = Iαt (N(uk−1))

Assuming that the following assumptions are verified :

H1: there is u0 ∈ H such that Ñ(u0) = 0

H2: the algorithm:

(P1)


u1

0 = f

u1
n = Iαt (u1

n−1), n ≥ 1
(14)

converges to the u1 solution.

H3: the solution u1 ∈ H is such that Ñ(u1) = 0 ∀k ≥ 2 the :

(Pk
S BA)


uk

0 = f , k ≥ 2

uk
n = Iαt (uk

n−1), n ≥ 1
(15)
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converges to the solution u1 = uk, ∀k ≥ 2 and u = lim
k→+∞

uk is the only solution to the problem.

Proof:

- Under hypothesis H1, it u0 ∈ H such that N(u0) = 0.

- And under the H2 hypothesis the :

(P1)


u1

0 = f

u1
n = Iαt (u1

n−1), n ≥ 1
(16)

converges to the u1 solution.

- Under the assumption H3, we have Ñ(u1) = 0 and the algorithm :

(P2
S BA)


uk

0 = f

u2
n = Iαt (u2

n−1), n ≥ 1
(17)

is equivalent to the algorithm (P1
S BA) which converges to the solution u1 = u2.

Thus we have : Ñ(u1) = Ñ(u2) = 0
- In step k = p, we have Ñ(up−1) = 0 and the algorithm :

(P2
S BA)


uk

0 = f

u2
n = Iαt (u2

n−1), n ≥ 1
(18)

converges to up = u1, because the algorithms (P1
S BA),(P2

S BA),...,(Pp
S BA) are equivalent.

Thus with these hypotheses we have Ñ(u1) = Ñ(u2) = · · · = Ñ(up) = 0
- In step k = p + 1, we have Ñ(up) = 0 and the algorithm :

(Pp+1
S BA)


up+1

0 = f

up+1
n = Iαt (up+1

n−1 ), n ≥ 1
(19)

converges to up+1 = u1, because the algorithms (P1
S BA),(P2

S BA),· · · , (Pp
S BA) are equivalent.

The different Pk
S BA for k ≥ 1 being equivalent, we have: u1 = u2 = · · · = up and u = lim

k→+∞
uk

Uniqueness of the solution

Assuming that problem (P) admits two distincts solutions u and v , let w = u − v and let’s apply the SBA algorithm with
the previous assumptions.
In this case we have:

(Pk
S BA)


wk

0 = 0, k ≥ 1

wk
n = Iαt (wk

n−1), n ≥ 1
(20)

- In step k = 1, we have the algorithm :

(P1
S BA) :


w1

0 = 0, k ≥ 1
w1

1 = 0
w1

2 = 0
...
w1

n = 0

(21)

which converges towards w1 = 0.

- In step k = 2, we have the algorithm :

(P2
S BA) :


w2

0 = 0, k ≥ 1
w2

1 = 0
w2

2 = 0
...
w2

n = 0

(22)
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which converges towards w2 = 0:

- So the solution to the problem :

(Pk
S BA) :


wk

0 = 0, k ≥ 1

wk
n = Iαt (wn−1), n ≥ 1

(23)

at each step k is wk = 0.

The solution of the problem is given by : w = lim
k→+∞

wk = 0.

This result leads to u = v which is absurd. Hence the uniqueness of the solution

4. Applications

Exemple 4.1.
Let’s consider the problem of nonlinear temporal fractionnal convection-reaction given by :


cDα

t u = λu + um −
(
x
∂u
∂x

)2
um−2

u(x, 0) = x

(24)

where 0 < α ≤ 1, x ∈ R and t > 0. m is integer greater than or equal to 2.

By setting :

Lu =c Dα
t u, L−1

t u = Iαt , Ru = λu, Nu = um −
(
x
∂u
∂x

)2
um−2

We obtain :

Ltu = Ru + Nu (25)

By applying L−1
t from Lt to (25) we get the canonical form of the problem written us :

u(x, t) = u(x, 0) + L−1
t (Ru(x, t)) + L−1

t (Nu(x, t)) (26)

where L−1
t = Iαt is the fractional integral.

By applying the method of successive approximations to (26) we obtain :

uk(x, t) = uk(x, 0) + L−1
t (Ruk(x, t)) + L−1

t (Nuk−1(x, t)), k ≥ 1 (27)

By applying the Adomian algorithm to (27 ) we get :


uk

0(x, t) = uk(x, 0) + Iαt (Nuk−1(x, t)), k ≥ 1

uk
n(x, t) = Iαt (Ruk

n−1(x, t)), n ≥ 1
(28)

The solution at each step is given by :

uk(x, t) =

+∞∑
n=0

uk
n(x, t), k = 1; 2; 3; ... (29)

Let’s apply the Picard principle: By choosing u0 = 0 we have : Nu0 = 0.

• First step k = 1 : derivation of u1(x, t)
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we have: 

u1
0(x, t) = cos x

u1
1(x, t) = Iαt (u1

0(x, t)) =
xλtα

Γ(α + 1)

u1
2(x, t) = Iαt (u1

1(x, t)) =
xλ2t2α

Γ(2α + 1)

u1
3(x, t) = Iαt (u1

2(x, t)) =
xλ3t3α

Γ(3α + 1)
.
.
.

u1
n(x, t) = Iαt (u1

n−1(x, t)) =
x(λ)ntnα

Γ(nα + 1)

(30)

The solution of the problem in step k = 1 is :

u(x, t) =

+∞∑
n=0

u1
n(x, t) (31)

= cos x
+∞∑
n=0

(λ)ntnα

Γ(nα + 1)

= xEα(λtα)

where Eα(λtα) is the Mittag-Leffter function.

• Second step k = 2: derivation of u2(x, t)

Let’s compute u2 using the following algorithm :
u2

0(x, t) = u2(x, 0) + Iαt (Nu1(x, t))

u2
n(x, t) = Iαt (Ru2

n−1(x, t)), n ≥ 1
(32)

Let’s calculate: N(u1(x, t))

N(u1(x, t)) =(xEα(λtα))m −
(
x
∂(xEα(λtα))

∂x

)2
(xEα(λtα))m−2 (33)

=xm(Eα(λtα))m − xm(Eα(λtα))m = 0

This leader to : 

u2
0(x, t) = x

u2
1(x, t) =

xλtα

Γ(α + 1)

u2
2(x, t) =

xλ2t2α

Γ(2α + 1)

u2
3(x, t) =

xλ3t3α

Γ(3α + 1)
.
.
.

u2
n(x, t) =

x(λ)ntnα

Γ(nα + 1)

(34)
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The solution of the problem in step k = 2 is :

u2(x, t) =

+∞∑
n=0

u2
n(x, t) (35)

= x
+∞∑
n=0

(λ)ntnα

Γ(nα + 1)

= xEα(λtα)

where Eα(λtα) is the Mittag-Leffter function.

Therefore ∀k ≥ 3, by recurrence we can obtain for each step the solution :

uk(x, t) = xEα(λtα) (36)

Conclusion: The exact solution to the problem is :

uk(x, t) = xEα(λtα) (37)

The exact solution of the problem for α = 1 is :

u(x, t) = xE1(λt) = xeλt. (38)

Numerical analysis:

In this example we analyze the exact solution for α = 1 and the approximated solution for some values of λ and α. We
obtain an exact solution defined with the help of the Mittag-Leffter function. The last box of the tables represents the error
between the exact solution for α = 1 and the approximate solution of order 5 for α = 1.

(a) Approximate solution for λ = 1, α = 0.5 (b) Exacte solution for λ = 0.5, α = 1

(c) Approximate solution for λ = 1, α = 0.9 (d) Exacte solution for λ = 1, α = 1

Figure 1. Graphs representing the exact solution for α = 1 and the approximate solution for different values of α and λ.
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Table 1. Table of numerical values for different values of α ,with λ = 0.03 and x = 1

t α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1 uexacte | uexacte − u |
0.1 1.0170 1.0108 1.0066 1.0039 1.0030 1.0030 0
0.2 1.0210 1.0153 1.0108 1.0074 1.0060 1.0060 0
0.3 1.0238 1.0188 1.0143 1.0106 1.0090 1.009 0
0.4 1.0260 1.0218 1.0176 1.0138 1.0121 1.0121 0
0.5 1.0278 1.0244 1.0206 1.0169 1.0151 1.0151 0
0.6 1.0294 1.0268 1.0234 1.0199 1.0182 1.0182 0
0.7 1.0309 1.0290 1.0262 1.0229 1.0212 1.0212 0

Table 2. Table of numerical values for different values of α ,with λ = 1 et x = 1

t α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1 uexacte | uexacte − u |
0.1 2.0515 1.4866 1.2556 1.1408 1.1052 1.1052 0
0.2 2.5567 1.7973 1.4595 1.2805 1.2214 1.2214 0
0.3 3.0094 2.1015 1.6679 1.4305 1.3499 1.3499 0
0.4 3.4407 2.4144 1.8890 1.5937 1.4918 1.4918 0
0.5 3.8616 2.7420 2.1268 1.7724 1.6487 1.6487 0
0.6 4.2775 3.0876 2.3845 1.9685 1.8220 1.8221 10−4

0.7 4.6911 3.4530 2.6643 2.1842 2.0136 2.0138 2.10−4

Exemple 4.2.
Let’s consider the problem of nonlinear gas-dynamics according to

cDα
t u = λu − u2 −

1
2
∂(u2)
∂x

u(x, 0) = e−x

(39)

where 0 < α ≤ 1, x ∈ R and t > 0. By setting :

Lu =c Dα
t u, L−1

t u = Iαt , Ru = λu, Nu = −u2 −
1
2
∂(u2)
∂x

We obtain :

Ltu = Ru + Nu (40)

By applying L−1
t from Lt to (40) we get the canonical form of the problem written us :

u(x, t) = u(x, 0) + L−1
t (Ru(x, t)) + L−1

t (Nu(x, t)) (41)

where L−1
t = Iαt is the fractional integral.

By applying the method of successive approximations to (41) we obtain :

uk(x, t) = uk(x, 0) + L−1
t (Ruk(x, t)) + L−1

t (Nuk−1(x, t)), k ≥ 1 (42)

By applying the Adomian algorithm to (42) we get :
uk

0(x, t) = uk(x, 0) + Iαt (Nuk−1(x, t)), k ≥ 1

uk
n(x, t) = Iαt (Ruk

n−1(x, t)), n ≥ 1
(43)
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The solution at each step is given by :

uk(x, t) =

+∞∑
n=0

uk
n(x, t), k = 1; 2; 3; ... (44)

Let’s apply the Picard principle: By choosing u0 = 0 we have : Nu0 = 0.

• First step k = 1 : derivation of u1(x, t)

we have:



u1
0(x, t) = e−x

u1
1(x, t) = Iαt (u1

0(x, t)) =
e−xλtα

Γ(α + 1)

u1
2(x, t) = Iαt (u1

1(x, t)) =
e−xλ2t2α

Γ(2α + 1)

u1
3(x, t) = Iαt (u1

2(x, t)) =
e−xλ3t3α

Γ(3α + 1)
.
.
.

u1
n(x, t) = Iαt (u1

n−1(x, t)) =
e−x(λ)ntnα

Γ(nα + 1)

(45)

The solution of the problem in step k = 1 is:

u(x, t) =

+∞∑
n=0

u1
n(x, t) (46)

= e−x
+∞∑
n=0

(λ)ntnα

Γ(nα + 1)

= e−xEα(λtα)

where Eα(λtα) is the Mittag-Leffter function.

• Second step k=2: Calculation of u2(x, t)

let’s u2 using the following algorithm :


u2

0(x, t) = u2(x, 0) + Iαt (Nu1(x, t))

u2
n(x, t) = Iαt (Ru2

n−1(x, t)), n ≥ 1
(47)

Let’s calculate : (Nu1(x, t)

Nu1(x, t) = − (e−xEα(λtα))2 −
1
2
∂(e−xEα(λtα))2

∂x
(48)

= − e−2x(Eα(λtα))2 + e−2x(Eα(λtα))2 = 0
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This leader to : 

u2
0(x, t) = e−x

u2
1(x, t) =

e−xλtα

Γ(α + 1)

u2
2(x, t) =

e−xλ2t2α

Γ(2α + 1)

u2
3(x, t) =

e−xλ3t3α

Γ(3α + 1)
.
.
.

u2
n(x, t) =

e−x(λ)ntnα

Γ(nα + 1)

(49)

The solution of the problem in step k = 2 is :

u2(x, t) =

+∞∑
n=0

u2
n(x, t) (50)

= e−x
+∞∑
n=0

(λ)ntnα

Γ(nα + 1)

= e−xEα(λtα)

where Eα(λtα) is the Mittag-Leffter function.

Therefore ∀ k ≥ 3, by recurrence we can obtain for each step the solution :

uk(x, t) = e−xEα(λtα) (51)

Conclusion : The exacte solution of the problem is :

u(x, t) = lim
k→+∞

uk(x, t) = e−xEα(λtα) (52)

The exacte solution of the problem for α = 1 is :

u(x, t) = e−xE1(λt) = eλt−x. (53)

Numerical analysis In this example we analyze the exact solution for α = 1 and the approximated solution for some
values of λ and α. We obtain an exact solution defined with the help of the Mittag-Leffter function. The last box of the
tables represents the error between the exact solution for α = 1 and the approximate solution of order 5 for α = 1.

(a) Approximate solution for λ = 0.8, α = 0.5 (b) Exacte solution for λ = 0.8, α = 1
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(c) Approximate olution for λ = 1, α = 1 (d) Exacte solution λ = 1, α = 1

Figure 2. Graphs representing the exacte solution for α = 1 et de approximation solution for different values of α and λ

Table 3. Table of numerical values for different values of α,with λ = 0.4 and x = 1

t α = 0.4 α = 0.6 α = 0.8 α = 0.9 α = 1 uexacte | uexacte − u |
0.1 0.4692 0.4253 0.4009 0.3928 0.3867 0.3867 0
0.2 0.5115 0.4600 0.4276 0.4160 0.4066 0.4066 0
0.3 0.5463 0.4911 0.4536 0.4393 0.4274 0.4274 0
0.4 0.5775 0.5207 0.4795 0.4633 0.4493 0.4493 0
0.5 0.6066 0.5496 0.5058 0.4880 0.4724 0.4724 0
0.6 0.6343 0.5782 0.5327 0.5136 0.4966 0.4966 0
0.7 0.6610 0.6069 0.5603 0.5402 0.5220 0.5220 0

Table 4. Table of numerical values for different values of α, α, with λ = 1 and x = 1

t α = 0.4 α = 0.6 α = 0.8 α = 0.9 α = 1 uexacte | uexacte − u |
0.1 0.6249 0.4964 0.4375 0.4197 0.4066 0.4066 0
0.2 0.7700 0.5882 0.4994 0.4711 0.4493 0.4493 0
0.3 0.9076 0.6802 0.5641 0.5262 0.4966 0.4966 0
0.4 1.0451 0.7764 0.6337 0.5863 0.5488 0.5488 0
0.5 1.1852 0.8789 0.7091 0.6520 0.6065 0.6065 0
0.6 1.3291 0.9887 0.7914 0.7242 0.6703 0.6703 0
0.7 1.4775 1.1068 0.8815 0.8035 0.7408 0.7408 0

Exemple 4.3.
Let’s consider the problem of nonlinear diffusion given by:

cDα
t u = λ

∂2u
∂x2 + u3 +

(∂2u
∂x2

)2

u(x, 0) = cos x

(54)

where 0 < α ≤ 1, x ∈ R and t > 0.:

By setting :

Lu =c Dα
t u, L−1

t u = Iαt , Ru = λ
∂2u
∂x2 , Nu = u3 +

(∂2u
∂x2

)3
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We obtain :

Ltu = Ru + Nu (55)

By applying L−1
t from Lt to (55) we get the canonical form of the problem written us

u(x, t) = u(x, 0) + L−1
t (Ru(x, t)) + L−1

t (Nu(x, t)) (56)

where L−1
t = Iαt is the fractional integral.

By applying the method of successive approximations to (56) we obtain :

uk(x, t) = uk(x, 0) + L−1
t (Ruk(x, t)) + L−1

t (Nuk−1(x, t)), k ≥ 1 (57)

By applying the Adomian algorithm to (57) we get :
uk

0(x, t) = uk(x, 0) + Iαt (Nuk−1(x, t)), k ≥ 1

uk
n(x, t) = Iαt (Ruk

n−1(x, t)), n ≥ 1
(58)

The solution at each step is given by :

uk(x, t) =

+∞∑
n=0

uk
n(x, t), k = 1; 2; 3; ... (59)

Let’s apply the Picard principle: By choosing u0 = 0 we have : Nu0 = 0.

• First step k = 1 : derivation of u1(x, t)

we have: 

u1
0(x, t) = cos x

u1
1(x, t) = Iαt (u1

0(x, t)) =
− cos xλtα

Γ(α + 1)

u1
2(x, t) = Iαt (u1

1(x, t)) =
cos xλ2t2α

Γ(2α + 1)

u1
3(x, t) = Iαt (u1

2(x, t)) =
− cos xλ3t3α

Γ(3α + 1)
.
.
.

u1
n(x, t) = Iαt (u1

n−1(x, t)) =
cos x(−λ)ntnα

Γ(nα + 1)

(60)

The solution of the problem in step k = 1 is :

u(x, t) =

+∞∑
n=0

u1
n(x, t) (61)

= cos x
+∞∑
n=0

(−λ)ntnα

Γ(nα + 1)

= cos xEα(−λtα)

where Eα(λtα) is the Mittag-Leffter function.

• Second step k=2: derivation of u2(x, t)

let’s u2 using the following algorithm : 
u2

0(x, t) = u2(x, 0) + Iαt (Nu1(x, t))

u2
n(x, t) = Iαt (Ru2

n−1(x, t)), n ≥ 1
(62)
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Let’s calculate : (Nu1(x, t)

Nu1(x, t) =(cos xEα(−λtα))3 +
(∂2(cos xEα(−λtα))

∂x2

)3
(63)

= cos3 x(Eα(−λtα))3 − cos3 x(Eα(−λtα))3 = 0

This leader is: 

u2
0(x, t) = cos x

u2
1(x, t) =

− cos xλtα

Γ(α + 1)

u2
2(x, t) =

cos xλ2t2α

Γ(2α + 1)

u2
3(x, t) =

− cos xλ3t3α

Γ(3α + 1)
.
.
.

u2
n(x, t) =

(−λ)ntnα

Γ(nα + 1)

(64)

The solution of the problem in step k = 2 is :

u2(x, t) =

+∞∑
n=0

u2
n(x, t) (65)

= cos x
+∞∑
n=0

(−λ)ntnα

Γ(nα + 1)

= cos xEα(−λtα)

where Eα(λtα) is the Mittag-Leffter function.

Therefore ∀ k ≥ 3, by recurrence we can obtain for each step the solution:

uk(x, t) = cos xEα(−λtα) (66)

Conclusion : The exacte solution of the problem is :

u(x, t) = lim
k→+∞

= cos xEα(−λtα) (67)

The exacte solution of the problem for α = 1 is :

u(x, t) = cos xE1(−λt) = cos xe−λt. (68)

Numerical analysis: In this example we analyze the exact solution for α = 1 and the approximated solution for some
values of λ and α. We obtain an exact solution defined with the help of the Mittag-Leffter function. The last box of the
tables represents the error between the exact solution for α = 1 and the approximate solution of order 5 for α = 1.

(a) Approximation solution for λ = 0.7, α = 0.6 (b) Approximation solution forλ = 0.7, α = 1
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(c) Approximation solution for λ = 1, α = 1 (d) Exacte solution for λ = 1, α = 1

Figure 3. Graphs representing the exacte solution for α = 1 and approximation for different values of α and λ

Table 5. Table of numerical values for different values of α,with λ = 0.4 and x = 1

t α = 0.3 α = 0.5 α = 0.8 α = 0.9 α = 1 uexacte | uexacte − u |
0.1 0.4400 0.4711 0.5050 0.5128 0.5191 0.5191 0
0.2 0.4216 0.4465 0.4806 0.4903 0.4988 0.4988 0
0.3 0.4096 0.4289 0.4599 0.4699 0.4792 0.4792 0
0.4 0.4006 0.4150 0.4416 0.4510 0.4604 0.4604 0
0.5 0.3933 0.4033 0.4250 0.4335 0.4424 0.4424 0
0.6 0.3871 0.3932 0.4097 0.4170 0.4250 0.4250 0
0.7 0.3817 0.3843 0.3956 0.4015 0.4084 0.4084 0

Table 6. Table of numerical values for different values of α, with λ = 1 and x = 1

t α = 0.3 α = 0.5 α = 0.8 α = 0.9 α = 1 uexacte | uexacte − u |
0.1 0.3378 0.3909 0.4572 0.4744 0.4889 0.4889 0
0.2 0.3018 0.3473 0.4056 0.4245 0.4424 0.4424 0
0.3 0.2732 0.3180 0.3652 0.3826 0.4003 0.4003 0
0.4 0.2461 0.2948 0.3319 0.3464 0.3622 0.3622 0
0.5 0.2190 0.2745 0.3036 0.3147 0.3277 0.3277 0
0.6 0.1909 0.2553 0.2792 0.2868 0.2965 0.2965 0
0.7 0.1616 0.2361 0.2576 0.2620 0.2682 0.2683 10−4

5. Conclusion

The SBA numerical method allowed us to solve some partial differential equations of fractional order modeling diffusion,
convection and reaction problems such as the gas dynamics equation. It is a very powerful numerical analysis tool
for solving this type of problems. This method accelerates the convergence towards the solution and avoids adomial
polynomial calculations.
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