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Abstract

This paper is devoted to the study of pollutant transport model by water in dimension one. The model studied extend the
results obtained in ( Roamba, Zabsonré & Zongo, 2017) . However, our model does not take into account cold pressure
term and the quadratic friction term as in (Roamba, Zabsonré & Zongo, 2017) which are considered regularizing terms to
show the existence of global weak solutions of your model. Without these regularizing terms, we show the existence of
global weak solutions in time with a periodic domain.
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1. Introduction

In this paper, we are interested to the study of a pollutant transport model in one dimension.

As a reminder, several studies are being done on pollutant transport models. The authors in ( Fernandez-Nieto, Narbona-
Reina & Zabsonré, 2013) were the pawns in the formal derivation of a bilayer model coupling shallow water and Reynolds
lubrication equations. From this derivation, the authors prove that our model verify a dissapative entropy inequality up
to a second’order term. They compare the numerical results with the viscous bilayer shallow water model proposed in (
Narbona-Reina, Zabsonré, Fernandez-Nieto & Bresch ).

The authors in (Roamba, Zabsonré & Zongo), have proven the existence of global weak solution of a similar model
derived in ( Fernandez-Nieto, Narbona-Reina & Zabsonré, 2013). To achieve this, the authors have made a technical
hypothesis on the height of water, namely the water layer is more important than the layer of the pollutant in the form

h2 ≤ h1, (1)

where h1, h2 represent respectively the pollutant and the water height.

And to overcome this condition, they have resorted to the addition of regularizing terms such as Van Der waals force in
(Kitavsev, Laurençot & Niethammer (2011)) and laminar friction term see (Marche (2005); Mellet & Vasseur (2007);
Roamba, Zabsonré & Traoré (2016)) to show the existence of global weak solutions of the models considered. The model
studied in (Roamba, Zabsonré & Zango (2017)) are read:

∂th1 + ∂x(h1u) = 0, (2)

∂t(h1u) + ∂x(h1u2) +
1
2

g∂xh2
1 − 4ν∂x(h1∂xu) +

u1

β
− h1∂x(σ∂2

xh1 − V(h1))

rgh1∂xh2 + rgh2∂x(h1 + h2) + r1h1|u|2u = 0. (3)

∂th2 + ∂x(h2u1) − ε∂2
xh2 − ∂x

(
(ah2

2 + ch2
3)∂x p2

)
= 0. (4)

with

∂x p2 = ρ2g∂x(h1 + h2) and V(h1) =
1
h3

1

−
α

h4
1

(α > 0), (5)

where (t, x) ∈ (0,T )×]0, 1[,
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and h1, h2 are respectively, the water and the pollutant heights, u is the water velocity. The ratio of densities is denoted
r =

ρ2

ρ1
where ρ1 and ρ2 are respectively the densities of the water and the pollutant. ν is the kinematic viscosity; g is the

constant gravity.

The coefficients σ, r1 and β are respectively the coefficients of the interfaz tension, quadratic friction and positive slip
length parameters. a and c are constants. α and ε are positive constants.

The model studied in this paper does not take into account cold pressure term (Van Der Waals force) and the quadratic
friction term as in (Roamba, Zabsonré & Zango (2017)). It is written as follows:

∂th1 + ∂x(h1u) = 0, (6)

∂t(h1u) + ∂x(h1u2) − 4ν∂x(h1∂xu) + rg∂x[h1(h2 +
1
2r

h1)] +
1
2

rg∂xh2
2 − σh1∂

3
xh1 + au = 0, (7)

∂th2 + ∂x(h2u) − ε∂2
xh2 = 0. (8)

where (t, x) ∈ (0,T )×]0, 1[.

There are many results on the existence of solutions of the one-dimensional Navier Stokes equations. In (Bresch &
Desjardins (2003)), the authors proved the existence of global weak solutions for 2D viscous Shallow Water equations
and convergence to quasi-geotrophic model. In the paper, the authors shown the control of the vaccum thanks to an
entropy named BD-entropy, which was introduced firstly in (Bresch, Desjardins & Lin (2003)). We note that the authors
in (Bresch, Desjardins & Gérard-Varet (2007); Toumbou, Roux & Sene (2007)) have used this BD-entropy to get existence
result of global weak solutions for Shallow-Water and viscous compressible Navier-Stokes equations. We have used this
entropy in our work.

The authors in (Haspot (2018)) have proved a result of global strond solutions to the Navier-Stokes system with degenerate
viscosity coefficient. This work has been developed in (Kang & Vasseur (2020)).

We integrate their ideas to limit the water height.

We draw on the work done in (Constantin, Drivas, Nguyen & Pasqualotto (2020); Haspot (2018); Kang & Vasseur (2020))
to improve the results obtained in (Roamba, Zabsonré & Zango (2017)), by showing global existence of weak solutions
of one-dimensional pollutant transport model without resorting to cold pressure term and regularizing terms.

The rest of paper is organized as follows: In the Section 2, we give firstly the definition of global weak solutions,
secondly we establish a classical energy inequality and the ”mathematical BD entropy”, which give some regularities on
the unknowns. We also give an existence theorem of global weak solutions in the same section. The Section 3 contains
the proof of the energies estimates and main existence result theorem.

We complete the system studied with the initial conditions

h1(0, x) = h10 (x), h2(0, x) = h20 (x), (h1u)(0, x) = m0(x) in ]0, 1[. (9)

h10 ∈ L2(0, 1), |h10 + h20 | ∈ L2(0, 1), ∂x(h10 ) ∈ L2(0, 1),

∂xm0 ∈ L1(0, 1), m0 = 0 if h10 = 0, (10)

|m0|
2

h10

∈ L1(0, 1), log h10 ∈ L1(0, 1).

2. Mains Results

Definition 1. We say that (h1, h2, u) is a weak solution of (6)-(8), with the initial conditions (9)-(10), verifying the entropy
inequalities (14) and (16) if for all smooth test function φ = φ(t, x) with
φ(T, .) = 0, we have:

h10φ(0, .) −
∫ T

0

∫ 1

0
h1∂tφ −

∫ T

0

∫ 1

0
h1u∂xφ = 0, (11)

−h20φ(0, .) −
∫ T

0

∫ 1

0
h2∂tφ −

∫ T

0

∫ 1

0
h2u∂xφ + ε

∫ T

0

∫ 1

0
∂xh2∂xφ = 0, (12)

h10 u0φ(0, .) −
∫ T

0

∫ 1

0
h1u∂tφ −

∫ T

0

∫ 1

0
h1u2∂xφ + 4ν

∫ T

0

∫ 1

0
h1∂xu∂xφ
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+σ

∫ T

0

∫ 1

0
(∂2

xh1∂xh1)φ + σ

∫ T

0

∫ 1

0
h1∂

2
xh1∂xφ + a

∫ T

0

∫ 1

0
uφ

−rg
∫ T

0

∫ 1

0
h1h2∂xφ −

1
2

g
∫ T

0

∫ 1

0
h2

1∂xφ −
1
2

rg
∫ T

0

∫ 1

0
h2

2∂xφ (13)

Lemma 1. (Energy inequality) For classical solutions of the system (6) − (8), the following inequality holds:

d
dt

∫ 1

0

[1
2

h1|u|2 +
1
2

g(1 − r)|h1|
2 +

1
2

rg|h1 + h2|
2 +

1
2
σ|∂xh1|

2
]

+ 4ν
∫ 1

0
h1|∂xu|2

+a
∫ 1

0
|u|2 +

1
2

grε
∫ 1

0
|∂xh2|

2 ≤
1
2

rgε
∫ 1

0
|∂xh1|

2. (14)

Remark 1. Notice that the term in the right of (14) can be controlled using Gronwall’s lemma.

Corollary 1. Let (h1, h2, u) be a solution of model (6) − (8). Then, thanks to Lemma 1 we have:√
h1u is bounded in L∞(0,T ; L2(0, 1)),

√
h1∂xu is bounded in L2(0,T ; L2(0, 1)),

u is bounded in L2(0,T ; L2(0, 1)), (h1 + h2) is bounded in L∞(0,T ; L2(0, 1)),

∂xh1 is bounded in L∞(0,T ; L2(0, 1), ∂xh2 is bounded in L2(0,T ; L2(0, 1)),

h1 is bounded in L∞(0,T ; L2(0, 1)), h2 is bounded in L∞(0,T ; L2(0, 1)).

Corollary 2. (see(Haspot (2018)))

There exists a constant C > 0 such as
h1 ≥ C. (15)

We will need in the following some additional regularity on h1 and this will be achieved through an additional BD entropy
inequality presented in the next lemma

Lemma 2. (BD-entropy) For smooth solutions (h1, h2, u) of model (6) − (8) satisfying the classical energy equality of the
Lemma 1, we have the following mathematical BD entropy inequality:

d
dt

∫ 1

0

[1
2

h|u + 4ν∂x log(h1)|2 − 4νa log(h1) +
1
2

g(1 − r)|h1|
2 +

1
2

rg|h1 + h2|
2 +

1
2
σ|∂xh1|

2
]

+a
∫ 1

0
|u|2 + 4ν

∫ 1

0
(g + gr

h2

h1
)|∂xh1|

2 + rg
∫ 1

0
(ε + 4ν

h2

h1
)∂xh∂xh2

+4σν
∫ 1

0
|∂2

xh1|
2 + grε

∫ 1

0
|∂xh2|

2 ≤
1
2

rgε
∫ 1

0
|∂xh1|

2. (16)

While waiting to give the proof of the Lemma 2, we show how to control the term
∫ T

0

∫ 1

0
(ε + 4ν

h2

h1
)∂xh∂xh2, then all

the others are good sign.

Indeed,

We have,
h2

h1
∂xh1∂xh2 = (∂x log h1)h2∂xh2, we can write:

∫ T

0

∫ 1

0
|
h2

h1
∂xh1∂xh2| ≤

1
2

∫ T

0

∫ 1

0
|∂x log(h1)|2 +

1
2

∫ T

0

∫ 1

0
|h2∂xh2|

2.

We will now look at the two terms to the right of the above inequality separately. For the first one, we have:

∫ T

0

∫ 1

0
|∂x log(h1)|2 =

∫ T

0

∫ 1

0

| ∂xh1 |
2

h2
1

≤
1

C2

∫ T

0

∫ 1

0
| ∂xh1 |

2 ( see equation (15)).
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So
∂x(log h1) is in L2(0,T ; L2(0, 1)).

For the second one, since h2 ∈ L∞(0,T ; H1(0, 1)) and ∂xh2 ∈ L2(0,T ; L2(0, 1)) then, h2∂xh2 ∈ L2(0,T ; L2(0, 1)) (By
Sobolev embedding (see (Marche (2005)) for instance)) which completes the proof.

Corollary 3. Let (h1, h2, u) be a solution of model (6) − (8).

Then, thanks to Lemma 2, we have:√
h1, ∂x

√
h1 are bounded in L∞(0,T ; L2(0, 1)) and ∂2

xh1 is bounded in L2(0,T ; L2(0, 1))

Remark 2. In the Corollary 1, the estimate√
h1u is bounded in L∞(0,T ; L2(0, 1)),

implies,
h1u is bounded in L∞(0,T ; L2(0, 1)),

this lead us
∂th1 is bounded in L∞(0,T ; W−1,2(0, 1)),

h1 and
√

h1 are bounded in L∞(0,T ; L∞(0, 1)).

Corollary 4. The Remark 2 and the Corollary 2, allows us to state the following result, there exists constants 0 < C and
R, such as:

0 < C ≤ h1 ≤ R.

Remark 3. We have the following additional regularities:

1. h2 is bounded in L2(0,T ; L∞(0, 1)) ∩ L∞(0,T ; L2(0, 1)),

2. u is bounded in L2(0,T ; L∞(0, 1)) ∩ L∞(0,T ; L2(0, 1)).

Theorem 1. There exists a global weak solutions to the system (6)-(8) with initial data (9)-(10), and satisfying energy
enequalities (14) and (16).

3. Proof of the Energies Inequalities and Theorem 1

In this section we give proof of some results.

3.1 Proof of Lemma 1

First, we multiply the momentum equation by u and we integrate from 0 to 1.∫ 1

0

1
2
∂t(h1u2) +

1
2

∫ 1

0
gu∂xh2

1 − 4
∫ 1

0
u∂x(νh1∂xu) + rg

∫ 1

0
h1u∂xh2

+rg
∫ 1

0
h2u∂x(h1 + h2) + a

∫ 1

0
|u|2 = 0. (17)

We use the mass conservation equation (6) for simplification. Then, we obtain:

• −4
∫ 1

0
u∂x(νh1∂xu) = 4ν

∫ 1

0
h1(∂xu)2

• −σ

∫ 1

0
h1u∂3

xh1 = σ

∫ 1

0
∂x(h1u)∂2

xh1

= −σ

∫ 1

0
∂th1∂

2
xh1

= σ

∫ 1

0
∂xth1∂xh1

=
1
2
σ

∫ 1

0
∂t |∂xh1|

2.
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• rg
∫ 1

0
h1u∂xh2 = −rg

∫ 1

0
h2∂x(h1u) = rg

∫ 1

0
h2∂th1.

•
1
2

g
∫ 1

0
u∂xh2

1 =
1
2

g
∫ 1

0
∂t |h1|

2.

• rg
∫ 1

0
h2∂x(h1 + h2)u = −rg

∫ 1

0
(h1 + h2)∂x(h2u).

The equation for the thin film flow give us : ∂x(h2u) = −∂th2 + ε∂2
xh2 and we have:

• rg
∫ 1

0
h2∂x(h1 + h2)u = rgε

∫ 1

0
∂xh1∂xh2 + rgε

∫ 1

0
|∂xh2|

2 +
1
2

rg
d
dt

∫ 1

0
|h2|

2 + rg
∫ 1

0
h1∂th2

Substituting all these terms in (17), we get (14) by integrating under 0 to T .

3.2 Proof of Lemma 2

Let us multiply (7) by 4ν∂x log(h), integrate with respect to x and use an integration by parts. Thanks to the equation (6)
and the initial conditions (9) − (10), we have:

4ν
∫ 1

0
(∂tu + u∂xu)∂xh1 + 4νg

∫ 1

0
|∂xh1|

2 + 16ν2
∫ 1

0
h1∂xu∂x

(
∂xh1

h1

)
+ 4aν

∫ 1

0

u∂xh1

h1
+ 4σν

∫ 1

0
|∂2

xh1|
2+

+4ν1rg
∫ 1

0
∂xh2∂xh1 + 4ν1rg

∫ 1

0

h2

h1
|∂xh|2 + 4νrg

∫ 1

0

h2

h1
∂xh2∂xh1 = 0. (18)

On the one hand, a further integration by parts of the first term in (18), equation (6), and the energy inequality (14) give:

4ν
∫ 1

0
(∂tu + u∂xu)∂xh1

= 4ν
( d
dt

∫ 1

0
u∂xh1 −

∫ 1

0
u∂xth1 +

∫ 1

0
u∂xu∂xh1

)
= 4ν

( d
dt

∫ 1

0
u∂xh1 −

∫ 1

0
∂xu∂x(h1u) +

∫ 1

0
u∂xu∂xh1

)
= 4ν

( d
dt

∫ 1

0
u∂xh1 −

∫ 1

0
h1(∂xu)2

)
=

d
dt

∫ 1

0

[
4νu∂xh1 +

1
2

h1|u|2 +
1
2

g(1 − r)|h1|
2 +

1
2

rg|h1 + h2|
2 +

1
2
σ|∂xh1|

2
]

+ a
∫ 1

0
|u|2 + rgε

∫ 1

0
∂xh1∂xh2 + rgε

∫ 1

0
|∂xh2|

2.

(19)

We can write the third and the fourth term in (18) as follow:

• 16ν2
∫ 1

0
∂x

(
∂xh1

h1

)
∂xuh1 =

1
2

d
dt

∫ 1

0
h1|4ν log(h1)|2

• 4aν
∫ 1

0

u∂xh1

h1
= 4aν

∫ 1

0

∂x(uh1)
h1

− 4aν
∫ 1

0
∂xu

= −4aν
d
dt

∫ 1

0
log(h1) (See ([?]) .

Substituting finally the last three identities into (18), we obtain (16).

3.3 Proof of Theorem 1

This section is devoted to the prove of Theorem 1. Let (hk
1, h

k
2, u

k) be a sequence of weak solutions with initial data

hk
1 |t=0 = hk

10
, hk

2 |t=0 = hk
20
, (hk

1uk)|t=0 = mk
0

such that
hk

10
−→ h10 in L1(Ω), hk

20
−→ h20 in L1(Ω), mk

0 −→ m0 in (L1(Ω))2,
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and satisfies

4ν
∫ 1

0
∂x log(hk

10
) +

∫ 1

0

[
hk

10

∣∣∣uk
0

∣∣∣2 +
1
2

g(1 − r)
∣∣∣hk

10

∣∣∣2 +
1
2

rg
∣∣∣hk

10
+ hk

20

∣∣∣2 +
1
2
σ
∣∣∣∂xhk

10

∣∣∣2] ≤ C.

Such approximate solutions can be built by a regularization of capillary effect.

3.3.1 Strong Convergence of
√

hk
1, hk

1 and hk
2

We first give the spaces in which
√

hk
1 is bounded.

By integrating the mass equation, we obtain :
√

hk
1 in L∞(0,T ; L2(0, 1)).

As Remark 3 gives us ∂x

√
hk

1 in L∞(0,T ; L2(0, 1)),

so √
hk

1 is bounded in L∞(0,T ; L∞(0, 1)). (20)

Moreover, still using the mass equation, we obtain the following equality:

∂t

√
hk

1 =
1
2

√
hk

1∂xuk − ∂x(
√

hk
1uk),

=
1
2

√
hk

1∂xuk − uk∂x

√
hk

1 −

√
hk

1∂xuk

which gives that ∂t

√
hk

1 is bounded in L2(0,T ; L2(0, 1)).

Applying Aubin-Simon lemma (Lions (1969); Simon (1987)), we can extract a subsequence, still denoted (hk
1)1≤k, such

that √
hk

1 strongly converges to
√

h1 in L2(0,T ; L2(0, 1)).

According to the Corollary 4, we show that∣∣∣∣∣hk
1 − h1

∣∣∣∣∣ ≤ √c2

∣∣∣∣∣ √hk
1 −

√
h1

∣∣∣∣∣⇒ ∣∣∣∣∣hk
1 − h1

∣∣∣∣∣2 ≤ c2

∣∣∣∣∣ √hk
1 −

√
h1

∣∣∣∣∣2.
This ensure

hk
1 strongly converges to h1 in L2(0,T ; L2(0, 1)).

We have hk
2 ∈ L2(0,T ; L∞(0, 1)). Moreover, we have ∂th2

k = −∂x(hh
2uk) + ε∂2

xh2.

We have hk
2 ∈ L∞(0, 1) and uk ∈ L2(0, 1), so hk

1uk ∈ L2(0, 1), according to the Sobolev embeddings, we show that the first
term is in W−1,2(0, 1). By analogy we prove that the last term is in the same space and we also get ∂thk

2 in this space.
Thanks to the Aubin-Simon lemma, we find:

hk
2 strongly Converges to h2 in L2(0,T ; W−1,2(0, 1)).

3.3.2 Strong Convergence of hkuk
1 and uk

We have hk
1 that’s bounded in L∞(0,T ; L∞(0, 1)) and uk that’s bounded in L2(0,T ; L∞(0, 1)), What gives us hk

1uk is bounded
in L2(0,T ; L∞(0, 1)).

Let’s look now ∂x(hk
1uk). We have:

∂x(hk
1uk) = hk

1∂xuk + uk∂xhk
1,

based on the estimates obtained on hk
1 in Remark 3, we get:

(hk
1uk

1)k bounded in L2(0,T ; W1,2(0, 1)).

Moreover, the momentum equation (7) enables us to write the time derivation of the water discharge:

∂t(hk
1uk) = −∂x(hk

1uk
1

2
) −

1
2

g∂xhk
1

2
+ 4ν1∂x(hk

1∂xu) − auk + σhk
1∂

3
xhk

1 − rghk
1∂xhk

2 − rghk
2∂x(hk

1 + hk
2)
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we then study each term:

• ∂x(hk
1(uk)2) = ∂x(hk

1uk(uk)) which is in L2(0,T ; W−1,2(0, 1)).

• as hk
1 is in L∞(0,T ; L∞(0, 1)), and ∂xhk

1 is in L2(0,T ; L2(0, 1)) and we can write the following relation :

• ∂x[(hk
1)2] is bounded in L2(0,T ; L2(0, 1)).

• ∂x(hk
1∂xuk) is bounded in L2(0,T ; W−1,2(0, 1)).

• The last four terms are bounded in L∞(0,T ; W−1,2(0, 1)).

Then, applying Aubin-Simon lemma, we obtain,

(hk
1uk)k stongly Converges to h1u in C0(0,T ; W−1,2(0, 1)).

3.3.3 Strong Convergence of uk, hk
1∂xuk and

√
hkuk

Thanks to Corollary 4 and Remark 3, we have uk and ∂xuk are bounded in L2(0,T, L2(0, 1)). In order to obtain new
estimates on uk, we are going to control the right hand side of the following equation:

∂tuk = −uk∂xuk + 4ν∂x log hk
1∂xuk + 4ν∂2

xuk − g∂xhk
1 − rg∂xhk

2 − rghk
2∂x log hk

1 − rg
h2

h1
∂xhk

2 + σ∂3
xhk

1.

Thanks to the estimates obtained on hk
1, hk

2 and uk, all the terms to the right of equality except the last term are in
L2(0,T, L2(0, 1)).

On the other hand, ∂2
xhk

1 is bounded in L2(0,T, L2(0, 1)), this lead us to ∂3
xhk

1 is bounded in L2(0,T,W−1,2(0, 1)) Aubin
Simon’s lemma leads us to the following result:

(uk)k stongly converges to u in L2(0,T ; W−1,2(0, 1)).

However, the function (hk
1, ∂xuk) 7−→ hk

1∂xuk is continous in L∞(0,T ; L∞1(0, 1)) × L2(0,T ; L2(0, 1)) to L2(0,T ; L2(0, 1)).

So,
hk

1∂xuk weakly converges to h1∂xu in L2(0,T ; L2(0, 1)).

Thanks to the Corollary 4, we say that’s exists constants 0 < α and β < +∞ such as α ≤ hk
1 ≤ β.

For all constant k > β, we have the following norm:

∫ T

0

∫ 1

0

∣∣∣∣∣ √hk
1uk −

√
h1u

∣∣∣∣∣2 ≤ κ∫ T

0
|uk − u|2 −→ 0.

So, √
hk

1uk strongly converges to
√

h1u in L2(0,T ; (L2(Ω))2).

3.3.4 Strong Convergence of ∂xhk
1, hk

2∂xhk
1, ∂2

xhk
1, hk

1∂
2
xh1 and ∂xhk

1∂
2
xhk

1

• We have ∂xhk
1 bounded in L2(0,T ; H1(0, 1)) and ∂t∂xhk

1 is bounded in L∞(0,T ; H−2(0, 1)) since ∂thk
1 is bounded in

L∞(0,T ; H−1(0, 1)). Thanks to compact injection of H1(0, 1) in L2(0, 1) in one dimension, we have:

∂xhk
1 strongly converges to ∂xh in L2(0,T ; L2(0, 1))

• The bound of ∂2
xhk

1 in L2(0,T ; L2(0, 1)) and ∂xhk
2 in L2(0,T ; L2(0, 1)) gives us:

∂2
xhk

1 weakly converges to ∂2
xh1 in L2(0,T ; L2(0, 1)),

∂xhk
2 weakly converges to ∂xh2 in L2(0,T ; L2(0, 1)).

• Thanks to the strong convergence of hk
1, hk

2, ∂xhk
1 and the weak convergence of ∂2

xhk
1, we have:

hk
2∂xhk

1 strongly converges to h2∂xh1 in L1(0,T ; L1(0, 1)),
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hk
1∂

2
xhk

1 strongly converges to h1∂
2
xh in L1(0,T ; L1(0, 1)),

∂xhk
1∂

2
xhk

1 strongly converges to ∂xh1∂
2
xh1 in L1(0,T ; L1(0, 1)),

hk
1∂xhk

2 strongly converges to h1∂xh2 in L1(0,T ; L1(0, 1)),

hk
2∂xhk

2 strongly converges to h2∂xh2 in L1(0,T ; L1(0, 1)),

(hk
1)2 strongly converges to h1

2 in L1(0,T ; L1(0, 1)).

3.3.5 Convergences of hk
2uk and ∂2

xhk

We know that ∂xhk
2 is bounded in L2(0,T ; L2(0, 1)) this implies ∂2

xhk
2 is in L1(0,T ; W−1,2(0, 1)).

So,
∂2

xhk
2 weakly converges to ∂2

xh2 ∈ L1(0,T ; W−1,2(0, 1))

To end we have uk weakly converges to u in L2(0,T ; L2(0, 1)) and the strong convergence of hk
2 to h2, gives us:

hk
2uk weakly converges to h2u in L1(0,T ; L1(0, 1)).

4. Conclusion

In this paper, we show the existence of global weak solutions of a 1D pollutant transport model. We note that, for the
model studied in this paper we did not take into account regularizing terms (cold pressure and quadratic friction terms)
as in ( Roamba, Zabsonré & Zongo, 2017) and we considered a better transport equation than that used in ( Roamba,
Zabsonré & Zongo, 2017).
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