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Abstract  

An alternative way of calculating the Gauss curve of the surface in the Cartesian coordinates in a three-dimensional case 

has been proposed, and its generalization in the n- dimension case of measuring Euclidean space has been given. 
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1. Introduction 

The issue that is touched upon in this work is directly related to differential geometry, and it is related to the common 

properties of smooth surfaces. It must be said that in this direction there are a lot of original publications and monographs 

(see, for example, Mac Connell (1957), Rashevsky (1967), Fihtenholtz (1969), Deepmala (2015), Kisi, et all (2016), 

Sezgin Buyukkutuk, et. all (2016), Laurian-Ioan, et. all (2017), Vandana, et. all (2016), Laurian-Ioan, et. all (2017)) in 

which all the basic properties of surfaces are presented in great detail and with strict mathematical evidence, including 

detailed calculations of their curvature radius R . 

However, the approach that will now be demonstrated is very different from the methodical approach outlined in the 

classical monograph Rashevsky (1967), and it is based on a qualitatively different assumption. 

The essence of it is this. As is customary in differential geometry, all calculations are reduced to an analysis of 

dependency not by the curvature radius R , but by the curvature k  associated with R  a simple inversion 
1

k
R

  

conversion, in the case of a flat task. In a three-dimensional case, the curvature is usually introduced in a slightly 

different way, namely, in the form of 2

1
K

R
 .  

In this work, we will approach this problem, based on the idea of a large-scale theory, which allows using a simple 

algorithm to offer a very compact and strict conclusion for the curvature of the surface K , allowing to bring its 

generalization to case n  of measuring Euclidean space.  

This task will be part of the first part of this work. In the second part of the article, we will give a simple summary of the 

proposed approach for the case of arbitrary curved coordinates. 

1. Euclidean n  Is a Dimensional Space 

Recall at first some commonly used formulas from the theory of differential geometry. As the main calculation formula 

for solving various tasks from mechanics and physics related to the theory of two-dimensional curved motion, as a rule, 

the expression is used  

 
3

2 2

1

1

y
k

R
y


 


,                                    (1) 

where  y y x   is the trajectory of the body in the coordinates x y  and strokes traditionally indicates the 

appropriate derivatives.   

The formula (1) is easily derived from a simple large-scale identity 

1 d
k

R dl


  ,                                      (2) 

where 21dl dx y    is a curve arc length element, and the angle   is a sharp angle between the tangent drawn to 
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this element of the arc dl  and the absciss axis x .    

Thus, it becomes quite clear that if we are talking about a three-dimensional case, instead of equality (2) we should 

write a ratio 2R d dS  , where sind d d      is the element of the body angle, and dS   is the surface element 

corresponding to this element of the body angle, with the radius of curvature R .   

This means that the curvature in three-dimensional space we can enter as a fraction 

2
2 2

2

1 d
K

R dS


  .                                       (3) 

It is quite clear that by following the algorithm of composing expressions (2) and (3) they can be easily summarized in 

case of space of arbitrary dimension n , and write down the general expression for curvature in the form of 

1
1 1

1

1 n
n n

n

d
K

R d

 
 



 


,                                    (4) 

where 1nd    is body angle element covering the surface element 1nd   of the n  dimensional space.  

An element 1nd   calculates perfectly trivial, as well as the hypersurface element 1nd  , which we will now 

demonstrate on a simple example of three-dimensional Euclidean space.   

With this goal let's use a simple geometric interpretation. Indeed, let the surface be set by a clear equation  ,z z x y .  

Then from the decomposition the radius - vector on a single orthogonal basis , ,i j k  in the accordance to the 

expression  ,x y z x y  r i j k , follows that the slanted base on the surface  ,z z x y  is 

1

2

,

,

x

y

z
x

z
y


   




   


r
e i k

r
e j k

                                    (5) 

where the cuts are introduced ,x y

z z
z z

x y

 
 
 

 and 1 2 0 e e .   

Therefore, the surface element will be 

2 2

1 2 1 x ydS dxdy z z dxdy qdxdy     e e .                         (6) 

As to the element of the bodily angle 2d  we have 

2 sind d d    .                                      (7) 

Calculating the expression (7) is quite simple. Really, the projections of the curvature radius on the corresponding axis 

coordinates are 

sin cos ,

sin sin ,

cos ,

x

y

z

R R

R R

R R

 

 



 







                                     (8) 

where the angles ,   are respectively azimuth and polar angles and, as usual, they are enclosed in segments 

0 , 0 2           

On the other side, the projection of the single normal vector to the surface dS  is defined as 
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sin cos ,

sin sin ,

1
cos .

x x
x

y y

y

z
z

R z
n

R q

R z
n

R q

R
n

R q

 

 




   




   



  


                                 (9) 

Where does it come  

2 2

,

1
cos .

1

y

x

x y

z
tg

z

z z










 
  


                                  (10) 

This means that Jacobians moving from variables ,   to variables ,x y  can be easily calculated by following the 

formula 

x y
I

x y

 

 

 

 

 

 

.                                         (11) 

With the help expr. (10), performing a simple differentiation, we find that 

  2 2 2 2

3 2

cos

sin

x y xx yy xy

x

z z z z z
I

q z





 
 .                               (12) 

Substituting (12) in expr. (7) and expressing cos   through tg  according to (10), for the element of the bodily angle 

come to the next expression 

 

 

2

2 33
2 2 2

sin

1

xx yy xy xx xy

xy yy

x y

z z z z zdxdy
d d d dxdy

z zq
z z

  


   

 
.            (13) 

This means that the desired curvature of the surface according to (3) taking into account (6) and (13) will be such as  

 
2 22 2 2

1 1

1

xx xy

xy yy
x y

z z
K

z zR z z
 

 
.                            (14) 

Note that the formula (14) has exactly the same look as Rashevsky (1967). That is the approach we have outlined is quite 

correct.   

It is quite clear that in a four-dimensional case, if the three-dimensional surface is set as a clear dependence 

 , ,u u x y z , the element of the bodily angle will be 

 
2

3 2
2 2 2

sin sin
1

xx xy xz

yx yy yz

x y z
zx zy zz

u u u
dxdydz

d d d d u u u
u u u

u u u

      
  

.                 (15) 

Conversions are set in the form of 
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sin sin cos ,

sin sin sin ,

sin cos ,

cos .

x

y

z

u

R R

R R

R R

R R

  

  

 










 

                                 (16) 

By putting here 
2


  , we come to transformations (8). Jacobian crossing here, obviously is 2 2sin sinI R   . That's 

why the body angle element 

2

3 sin sind d d d      .                               (17) 

This is reflected in the formula (15). The three – dimensional hypersurface element according to (6) in the accordance 

with the designations (4) is 

  2 2 2

3 1 2 3 31 x y zd dxdydz u u u dxdydy q dxdydz        e e e ,            (18) 

Hence due to the determination (4) curvature will be determined privately from expressions (15) and (18). That is 

 

3
3 53

2 2 23 2

1 1

1

xx xy xz

yx yy yz

x y z zx zy zz

u u u
d

K u u u
R d

u u u u u u


  


  

.                 (19) 

Thus, the curvature computation algorithm is generally absolutely clear, and we can summarize the formulas (13), (15) 

and (19) in case of n  arbitrary dimensional Euclidean space. 

Indeed, if we are enter designations for independent variables in the form of a vector x  with coordinates 

 1 2 3 1, , ,... nx x x x x ,                                (20) 

and set the surface with a clear equation 

 u u x ,                                       (21) 

that instead of (14) and (19) we will have 

 

1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 1

3 1 3 2 3 3 3 1

1 2 3 1

1 1 1 2 1 3 1 1

1 11
2 2 2 2 2

...

...
1 1

...

1 ... ... ... ... ... ...

...

n

n

n

n

n n n n n

x x x x x x x x

x x x x x x x x

n x x x x x x x xnn

x x x x

x x x x x x x x

u u u u

u u u u

K u u u u
R

u u u u

u u u u









    

 
 

   

.      (22) 

Since we are interested in the curvature that can be written in the form 
2

1
K

R
 , according to (22) it can be imagined as 

 

1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 1

3 1 3 2 3 3 3 1

1 2 3 1

1 1 1 2 1 3 1 1

2

1

12
2 2 2 2 1

...

...
1 1

...

1 ... ... ... ... ... ...

...

n

n

n

n

n n n n n

n
x x x x x x x x

x x x x x x x x

x x x x x x x xn

n
x x x x

x x x x x x x x

u u u u

u u u u

K u u u u
R

u u u u

u u u u









    







 

   

        (23) 

Formula (23) adequately responds to the question of the curvature radius of any  n  dimensional Euclidean surface set 

by an explicit equation (21) set at the beginning of the article. 
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As an example, consider the three-dimensional of the sphere of radius b , the implicit equation of which will be set in the 

form of 

2 2 2 2x y z b   .                                  (24) 

Because 

2 2 2 2

3 3 3
, , , ,x y xx yy xy

x y y b x b xy
z z z z z

z z z z z

 
        , 

then, substituting them in the formula (14), we are immediately come to the desired answer R b . As it should be. Let's 

move on to the second part of the work now.  

3. Curved Coordinates 

In this section, we'll elaborate on calculating the curvature of the surface in a three-dimensional case, if the coordinate 

conversions are set in a parametric form, just as in the Rashevsky (1967), Fichtenholtz (1969)  

     u,v , u,v , u,vx x y y z z   .                      (25) 

As a result, the base vectors on the surface are 

1

2

,
u u u

v v v

x y z

x y z

  
     


     

   

e i j k

e i j k

                              (26) 

and the surface element 

2 1 2 udv udvdS d Dd  e e ,                           (27) 

where  

2 2 2

1 2 3D I I I   ,                                 (28) 

where abbreviated designations are introduced as  

 

 

 

 

 

 1 2 3

, , ,
, ,

u, v u, v u, v
x y z

y z x z x y
I n I n I n

  
      

  
.                (29) 

And the expressions of the type 
 

 

,

u, v

x y


 are nothing more than Jacobian transitions, that is,

 

 

,

u, v u v v u

x y x y x y    
 

    
. 

Next. Because a single normal vector to the surface is defined as 

 1 2 3

1
I I I

N D
   

N
n i j k ,                               (30) 

the projections of the normal vector will be 

1

2

3

sin cos ,

sin sin ,

cos .

x
x

y

y

z
z

R I
n

R D

R I
n

R D

IR
n

R D

 

 




  




  



  


                              (31) 

Therefore, for angular variables, we have 
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2

1

3

,

arccos .

I
arctg

I

I

D









                                     (32) 

Thus, the Jacobians transition from angular variables ,   to new variables u, v  we carry out according to the 

formula 

 

 

 
     2u 1 1u 2 3v 3 v 2v 1 1v 2 3u 3 u3

2 2 2
1 2

,

u, v u v v u

1
.

I

I I I I I D I D I I I I I D I D

D I I

         
   
    

       


       (33) 

where lower u, v  indices mean appropriate according private derivatives. 

Therefore, the element of the bodily angle will be 

 
     

2

2u 1 1u 2 3v 3 v 2v 1 1v 2 3u 3 u2 2 2

1 2

sin sin u v

1
u v.

d d d Id d

I I I I I D I D I I I I I D I D d d
D I I

      

       


      (34) 

Therefore, taking into account the surface element (27) curvature there is 

 
     

2
2 2

2

2u 1 1u 2 3v 3 v 2v 1 1v 2 3u 3 u3 2 2

1 2

1

1

d
K

R dS

I I I I I D I D I I I I I D I D
D I I


  

       


.        (35) 

(cf. with a similar formula given in the Rashevsky (1967) see also the works Gladkov (2019)). 

The formula (34) answers the question of the element of the bodily angle, the expression for which we have not found in 

the literature we know, as well as for expressions (13), (17), (19) and (22). 

4. Conclusion 

Ending this short message, once again it is worth noting a few main points. 

1. An alternative calculation of gauss curvature by calculating the element of the bodily angle is proposed;   

2. Shows the complete correspondence of the results obtained with its help with the classic; 

3. Summary of formula for curvature of an arbitrary surface for an n  dimensional case.  
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