
Journal of Mathematics Research; Vol. 12, No. 6; December 2020

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

50

An Improved Secant Algorithm of Variable Order to Solve Nonlinear

Equations Based on the Disassociation of Numerical Approximations and

Iterative Progression

Christian Vanhille

Correspondence: NANLA research group, Universidad Rey Juan Carlos, Tulipán s/n, Móstoles, Madrid 28933, Spain.

E-mail: christian.vanhille@urjc.es

Received: September 11, 2020 Accepted: October 15, 2020 Online Published: October 29, 2020

doi:10.5539/jmr.v12n6p50 URL: https://doi.org/10.5539/jmr.v12n6p50

Abstract

We propose an iterative method to evaluate the roots of nonlinear equations. This Secant-based technique approximates

the derivatives of the function numerically through a constant discretization step h disassociated from the iterative

progression. The algorithm is developed, implemented, and tested. Its order of convergence is found to be h-dependent.

The results obtained corroborate the theoretical deductions and evidence its excellent behavior. For infinitesimal

h-values, the algorithm accelerates the convergence of the Secant method to order 2 (the one of the Newton-Raphson

method) with no need for analytic expression of derivatives (the advantage of the Secant method).

Keywords: nonlinear functions, improved secant method, disassociate numerical iterative algorithm

1. Introduction

Finding the zeros of nonlinear functions has been of interest for a long time (Mathews & Fink, 1999; Dahlquist & Björck,

2008). Regarding graphical and analytic techniques, iterative numerical methods enhance the precision of the results and

make it easier for the user to solve practical situations, especially when the nonlinear equations include high-degree terms

or transcendental functions.

The Newton-Raphson method was developed in 1669 by Newton, and independently by Raphson in 1690 (Ypma, 1995).

Based on the approximation of a root in the iterative sequence from the previous one following the tangent at the curve up

to its intersection with the abscissa axis, this algorithm is probably the most used in the world to find the zero of a

nonlinear function, from undergraduate and postgraduate students to researchers in sciences and technologies. The

potential issue of this technique is that it can be difficult to obtain the analytic expression of the derivative of some

functions, which is mandatory to approximate the root at each iteration of the sequence.

Although it was developed in 1665 by Newton, the Secant method is known to overcome this drawback (Ypma, 1995).

This adaptation of the Newton-Raphson method changes the analytic evaluation of the derivative of the function for a

backward finite-difference formula based on the two previous points obtained in the root sequence. This makes it much

easier for the user. However, this substitution leads to a loss in the order of convergence. The quadratic convergence of the

Newton-Raphson algorithm drops down to 1.618 (the golden ratio) when substituted by the Secant algorithm.

Since then, many other formula for solving nonlinear equations have been developed, including the ones deduced in 1694

by Halley, all of them with their own positive and negative aspects. Beside Newton-based techniques, Adomian

decomposition method, homotopy perturbation method were used to develop numerical schemes for finding the zeros of

nonlinear functions (Gander, 1985; Abbasbandy, 2006; Pakdemirli & Boyac, 2007; Javidi, 2007; Albeanu, 2008;

Dehghan & Hajarian, 2010; Noor, Noor, & Waseem, 2012; Kang, Rafiq, & Kwun, 2013; Kang, Nazeer, Tanveer,

Mehmood, & Rehman, 2015; McDougall, Wotherspoon, & Barker, 2019; Vanhille, 2020). Some iterative schemes need

to express the derivatives to determine the zeros of the function and some do not.

The Secant method approximates the slope of the tangent at a point of the graph of the function by using the slope given

by the straight passing by this point and the previous point evaluated by the algorithm. This fact, when the distance

between these two points is large in relation to the curvature of the graph, reduces the convergence speed and increases the

number of iterations required to fully verify the stop criterion imposed by the tolerance set by the user.

The algorithm developed by Viète in 1664, denoted here by VM, has some common points with ours. Both start from one

initial estimation of the root and depend on a step h. However, unlike our technique, VM considers variations of this

parameter with iterations. Initially, VM was applied to monic polynomial equations only. Since the method adds a new

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

51

digit to the approximate solution at each iteration, it is seen as a finite-difference derivative-based technique for which the

variable step size hn is large at the beginning and decreases with the progress of iterations. Thus, unlike the method

proposed here, the evaluation of derivatives is not separated from the iterative process. The approximation of the

derivative is not as local as with our method, at least during the first iterations of the procedure. For a more detailed

description of this technique, which has had a low impact on the scientific community, see Ypma (1995). Besides,

Abbasbandy, Tan, & Liao (2007) introduced a new auxiliary parameter in the homotopy analysis method, which allows

them to unify different methods.

The Newton-Raphson and Secant methods became a paradigm in numerical analysis. Their current importance in sciences,

and especially in applied mathematics, is obvious (Mathews & Fink, 1999; Ypma, 1995; McDougall, Wotherspoon, &

Barker, 2019). Thus, any improvement is clearly of interest.

The objective of this work is to develop a technique able to increase the order of convergence of the Secant method by

maintaining the finite-difference concept for the derivatives and thus the user-friendly character of the method, avoiding

the need for finding the derivative of the function defining the equation. To this end, we develop a new kind of algorithms

by introducing a constant parameter, similar to a discretization step for the definition of the backward finite-difference

formula, which is disassociated from the sequence of roots obtained by the iterations. The convergence of the new

algorithm depends on the value of this parameter. The analysis shows that this technique allows us to improve the results

obtained in terms of convergence regarding the Secant method and can even match the order of convergence of the

Newton-Raphson method.

Section 2 develops the new algorithm, evaluates its order of convergence, and describes its computational implementation.

Section 3 tests this algorithm by solving several nonlinear equations, discusses the results and gives the conclusions of this

work.

2. Method

2.1 Second-Order Iterative Method

We consider the nonlinear function :f C  of the variable x , assumed to be sufficiently differentiable on the

open interval C, and the simple root 0x in C of the equation

  0f x  . (1)

An iterative numerical method evaluates an approximation of 0x at each iteration n, 0

nx , from the preceding one at

iteration n-1,
1

0

nx 
, which is then known, and starting from an initial estimation of the root,

0

0x (Mathews & Fink,

1999). This procedure ends after N iterations by finding the approximate root 0

Nx that verifies the given tolerance

criterion for the first time:
1

0 0

N Nx x   .

The Taylor expansion of f is written in the following form at the point 0

nx from the point
1

0

nx 
:

 
   

 
1

0 1

0 0 0

0 !

i n
i

n n n

i

f x
f x x x

i








  , (2)

in which the upper-index (i) means the derivative of order i. Note that in the following the first, second, and third-order

derivatives of f will be denoted by 'f , ''f , and '''f . The truncation of second and higher-order terms in Eq. (2),

once inserted in Eq. (1), leads to the well-known second-order Newton-Raphson iterative method (Mathews & Fink,

1999), denoted by NRO2 here:

 
 

 
1

201 1

0 0 0 01

0'

n

n n n n

n

f x
x x O x x

f x



 


    . (3)

This equation means that the root at each iteration is given by the intersection of the tangent of the function (first

derivative) and the x-axis, i.e., by the linearization of the function.

2.2 First-Order Finite-Difference Algorithm for the Second-Order Iterative Method

The major drawback of the method described in Section 2.1, as well as for all the iterative methods for which the roots

are dependent on the derivatives of the function f, is the analytic expression of the derivatives of f. The numerical

approximation of the derivatives involved in these methods is an option to get rid of this drawback.

The substitution of the first derivative of f in the NRO2 formula, Eq. (3), by a first-order backward finite-difference

formula (Smith, 1986),  1 2

0 0

n nO x x  , between two consecutive iterative points leads to the well-known Secant

algorithm (Mathews & Fink, 1999), denoted by o1NRO2 here:

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

52

 
   

1 2
1 1 0 0

0 0 0 1 2

0 0

n n
n n n

n n

x x
x x f x

f x f x

 
 

 


 


. (4)

This method requires two initial estimation roots,
0

0x and
1

0x , and starts the evaluation of the approximations from the

2nd iteration.

2.3 Disassociation of Discretization and Iterations

In o1NRO2, Eq. (4), the discretization used for the calculation of the derivatives is imposed by the iterative process.

This discretization is not constant during the entire procedure, it changes from one iteration to another, and thus it is not

controlled by the user. It can even lead to very bad approximations and erroneous evaluations of the derivative when

both consecutive iteration points are separated by a large distance; in this case, the finite-difference approximation

cannot approximate the local character of the derivative.

We propose an alternative for this method to get rid of this major drawback. It consists of the disassociation of the

discretization for the finite-difference approximation from the iterative progression. This technique allows us to

approximate the required derivative during the current iteration through an imposed discretization step, h, controlled by

the user, only from the last value of the approximate root, evaluated during the precedent iteration. Thus, this h-based

discretization makes it possible to conserve the local character of the derivative during the approximation by using two

proximate points given by the discretization step h. It thus gets rid of an important drawback of o1NRO2, i.e., its

dependence on the arbitrary difference between several values of the approximate root, evaluated during several former

iterations, for the evaluation of this derivative.

We apply this development to the o1NRO2 method, Eq. (4), by considering the two equidistant points belonging to the

same iteration, i.e., the initial estimation is set,
0

0x , and the other initial point is evaluated from this point by

considering the discretization step h for finite differentiations,
0 0

1 0x x h  . These two points,
0

0x and
0

1x , are used

during the first iteration to find the approximation
1

0x . After each completed iteration giving the new approximate root

0

nx , the other point is set by 1 0

n nx x h  , and these two points are used during the following iteration to find the

approximation
1

0

nx 
. With this concept, an extra point is set before each iteration to evaluate the discrete derivative,

 O h . The formula is thus:

 
   

 
   

1 1
1 1 1 10 1

0 0 0 0 0 01 1 1 1

0 1 0 1

,
n n

n n n n n n

n n n n

x x h
x x f x x x f x

f x f x f x f x

 
   

   


   

 
. (5)

This method is named ho1NRO2.

2.4 Order of Convergence

The convergence of NRO2, Eq. (3), is known to be of order 2. The convergence of o1NRO2, Eq. (4), is known to be of

order 1.618 (golden ratio) (Mathews and Fink, 1999). Now the order of convergence of the disassociated technique

ho1NRO2, Eq. (5), is analyzed.

The development in Section 2.3 gives rise to a two-parameter dependence of the method, on  1

0 0

n nx x  and h, for

which the approximation is respectively  
2

1

0 0

n nO x x  and  O h . Thus, the convergence rate of ho1NRO2 depends

on two different concepts, the progression of
1

0 0

n nx x  throughout iterations n and the definition of the derivatives

at each iteration of the numerical scheme using the new parameter h. It is thus expected that the order of convergence of

the algorithm will be h-dependent as well.

Definition 1. Considering the convergent sequence  0

nx to 0x , if the real positive constant 0K  and the exponent

0k  exist such that

1

0 0

0 0

lim

n

kn n

x x
K

x x









, (6)

then k is the order of convergence of the sequence and K is the asymptotic error constant.

Theorem 1. Let f be a sufficiently differentiable real function of variable x, at least  3 ,C C , defined on the open

interval C, :f C  , and 0x C be the simple root of the nonlinear equation   0f x  , then the convergence

of the h-dependent ho1NRO2 algorithm, Eq. (5), is of order 1 (linear convergence) for finite h values and order 2

(quadratic convergence) for infinitesimal h values.

Proof of Theorem 1. We define the error made at the nth iteration by using the ho1NRO2 formula between the

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

53

approximation obtained 0

nx and the root of the nonlinear equation 0x , 0 0

n

nE x x  , and the error made by using the

ho1NRO2 formula between the approximation defined by the step 0 1

n nh x x  used at the nth iteration 1

nx (see

Section 2.3) and the root of the nonlinear equation 0x , 1 1 0 0 0

n n

n nE x x x h x E h       . The Taylor expansion of
f at 0

nx around 0x is

       
 

 
 

 

 
 

 

 

 

2 3

0 0 0 0

0 0 0 0 0 0 0

2 3
0 0

0

0 0

' '' '''
2 6

'' '''
0 ' ,

2 ' 6 '

n n

n n

n n
n

x x x x
f x f x x x f x f x f x

f x f xE E
f x E

f x f x

 
     

 
      

 

note that by definition  0 0f x  , and the Taylor expansion of f at 1

nx around 0x is

       
 

 
 

 

 
 

 

 

 

2 3

1 0 1 0

1 0 1 0 0 0 0

2 3
0 01 1

0 1

0 0

' '' '''
2 6

'' '''
0 ' .

2 ' 6 '

n n

n n

n n
n

x x x x
f x f x x x f x f x f x

f x f xE E
f x E

f x f x

 
     

 
      

 

After subtracting 0x from both of its sides the ho1NRO2 scheme, Eq. (5), written at
0

1nx 
 is thus

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

2 3
0 0

0

0 0

1 2 3 2 3
0 0 0 01 1

0 0 1

0 0 0 0

'' '''
'

2 ' 6 '
,

'' ''' '' '''
' '

2 ' 6 ' 2 ' 6 '

n n
n

n n

n n n n
n n

f x f xE E
f x E

f x f x
E E h

f x f x f x f xE E E E
f x E f x E

f x f x f x f x



 
   

  
   

         
   

and after defining the constants    2 0 0'' 'c f x f x ,    3 0 0''' 'c f x f x , …, the above expression becomes

3 4 2 3 2 3
2 1 1

2 3 1 2 3 2 3

1 2 3 2 3

1 1
2 3 1 2 3

2 6 2 6 2 6 .

2 6 2 6

n n n n n n n n
n n n n

n

n n n n
n n

E E E E E E E E
E c c E E c c hE h c h c

E
E E E E

E c c E c c


        



     

Since 1n nE E h  , and neglecting all the terms of third and higher degree in nE , the above expression yields

2
22 2

1 3 22
23 3 32

2

2 2 ,

2 6 2 2

n n

n

n n

h c hc
E E

E
h c h c hch c

h hc E E



 


   

       
   

which finally reduces to

22 2

1 2
23 3 32

2

2 2

1
2 6 2 2

n n

n

n n

hc c
E E

E
h c hc chc

c E E


 


 

     
 

, (7)

and thus

2 2

1 2
23 3 32

2

2 2 .

1
2 6 2 2

n

n n

n n

hc c
E

E E
h c hc chc

c E E


 


 

     
 

Thus, by assuming the convergence of the sequence, i.e., 0n n
E


 , the last relation leads to

2

1 2

1 2 2

32 2 3

32lim
6 3

1
2 6

n

n
n

hc
E hc

h chc hc h cE








 
 

 

. (8)

Following Def. 1, Eq. (6), this proves that

1k  and 2

2

2 3

3

6 3

hc
K

hc h c




 
, (9)

i.e., the order of convergence of ho1NRO2, Eq. (5), is 1.

However, this result is h-dependent and holds for finite values of the parameter h. In case 0h , Eq. (7) is written

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

54

22

1
23

2

2

1
2

n

n

n n

c
E

E
c

c E E
 

 
, (10)

and we have

2

2

1
23

2

2

1
2

n n

n n

c

E E
c

c E E
 

 

.

Since 0n n
E


 by assuming the convergence of the sequence, the last relation gives us:

1 2

2
lim

2

n

n
n

E c

E




 , (11)

which, by Def. 1, Eq. (6), proves that

2k  and 2

2

c
K  , (12)

i.e., the order of convergence of ho1NRO2, Eq. (5), is 2 for infinitesimal values of h. □

Theorem 1 states that the parameter h introduced in the algorithm makes it possible when it tends to zero to obtain the

same order of convergence as NRO2, although the derivative of the function defining the nonlinear equation is not

evaluated exactly, but by an h-dependent numerical approximation. The new h-dependent ho1NRO2 algorithm

possesses the benefits of both NRO2 and o1NRO2, i.e., the convergence speed of NRO2 and the fact that it avoids the

exact expression of the derivative of the function defining the nonlinear equation like o1NRO2.

Moreover, it will be seen in Section 3 that a transient range of h values exists, for which the order of convergence of

ho1NRO2 is between 1 and 2.

2.5 Implementation

The implementation of the new algorithm ho1NRO2 in the Matlab® R2017a environment is represented in Fig. 1.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

55

Figure 1. Implementation of the ho1NRO2 algorithm on Matlab®

3. Results and Discussion

The new h-dependent iterative algorithm developed in Section 2, ho1NRO2, is compared to the classic methods NRO2,

o1NRO2, and VM by solving several nonlinear equations defined by quadratic, cubic, exponential, and logarithmic

functions. Their results and performance in terms of speed of convergence are analyzed. The graphical representations

of these functions and their first derivatives are displayed in Fig. 2, which shows the roots we approximate in the

following Sections.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

56

Figure 2. Functions analyzed in Sections 3.1 to 3.4. Quadratic function (a) and its first derivative (e); cubic function (b)

and its first derivative (f); exponential function (c) and its first derivative (g); logarithmic function (d) and its first

derivative (h)

In Sections 3.1 to 3.4 the tolerance is set at 61 10   for all the cases. Tables 1-4 give the results obtained by applying

the different methods. 91.724446 10h   is used for ho1NRO2 (see Section 3.5). In these tables, bold numbers indicate

the initial estimation point used for each algorithm (the entire number just above the root we seek). The corresponding

percentual relative errors (% 0100r n nE E x) are given in Tables 1bis, 2bis, 3bis, and 4bis.

3.1 Quadratic Function

We consider   22 1f x x  and we aim to approximate its root 0x close to 0.7071 (see Fig. 2a). Table 1 gives the

results.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

57

Table 1. Quadratic function. x0
N

 NRO2

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-3 to 10-7

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

7

1

0.750000000000000

0.708333333333333

0.707107843137255

0.707106781187345

0.707106781186548

1

1.0010

0.750124937531224

0.714326565546070

0.707318861826774

0.707107858231822

0.707106781348041

0.707106781186548

1

0.749874937468731

0.708323624135428

0.707107817823362

0.707106781186574

0.707106781186547

1

0.750000004409467

0.708333334962431

0.707107843135664

0.707106781187376

0.707106781186547

N 5 7 5 5

Table 1bis. Quadratic function. Er%n

 NRO2

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-3 to 10-7

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

7

(%)

6.066017177982122

0.173460668094231

0.000150182509294

0.000000000112764

0

(%)

41.562777593546791

 6.083686013092777

 1.021031695864544

 0.029992731772444

 0.000152317203405

 0.000000022838596

 0.000000000000016

(%)

6.048330665195590

0.172087580158467

0.000146602584216

0.000000000003800

0.000000000000016

(%)

6.066017801574880

0.173460898483444

0.000150182284362

0.000000000117207

0.000000000000016

N 5 7 5 5

3.2 Cubic Function

We consider   3 155f x x  and we aim to approximate its root 0x close to 5.3717 (see Fig. 2b). Table 2 gives the

results.

Table 2. Cubic function. x0
N

 NR02

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-2 to 10-5

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

7

6

5.435185185185185

5.372424340889777

5.371685456588923

5.371685354944834

6

6.0010

5.435279310528978

5.378537301040813

5.371765769136402

5.371685457430352

5.371685354946367

6

5.434242780335010

5.372391353412576

5.371685434578001

5.371685354944686

6

5.435185325786830

5.372424360539804

5.371685456634618

5.371685354944860

N 4 6 4 4

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

58

Table 2bis. Cubic function. Er%n

 NR02

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-2 to 10-5

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

7

(%)

1.182121178819590

0.013757059397833

0.000001892219753

0.000000000000033

(%)

11.715404076596952

 1.183873428580576

 0.127556728349210

 0.001497001150589

 0.000001907883892

 0.000000000028572

(%)

1.164577246368159

0.013142960190215

0.000001482461523

0.000000000002728

(%)

1.182123796278277

0.013757425205324

0.000001893070417

0.000000000000513

N 4 6 4 4

3.3 Exponential Function

We consider   2 xf x x e   and we aim to approximate its root 0x close to 2.1200 (see Fig. 2c). Table 3 gives

the results.

Table 3. Exponential function. x0
N

 NR02

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-2 to 10-5

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

3

2.094851746355134

2.119993793931483

2.120028238924066

2.120028238987641

3

3.0010

2.094830289276154

2.120974754942487

2.120029525658842

2.120028238922403

2.120028238987641

3

2.095067049610862

2.119993018500546

2.120028238732440

2.120028238987641

3

2.094851701005775

2.119993794916702

2.120028238925821

2.120028238987641

N 4 6 4 4

Table 3bis. Exponential function. Er%n

 NR02

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-2 to 10-5

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

(%)

1.187554588637464

0.001624745157851

0.000000002998777

0

(%)

41.554718225500686

 1.188566701522813

 0.044646384299927

 0.000060691229345

 0.000000003077246

 0

(%)

1.177398909964446

0.001661321601665

0.000000012037653

0

(%)

1.187556727729676

0.001624698685895

0.000000002916014

0

N 4 6 4 4

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

59

3.4 Logarithmic Function

We consider    2ln 2 2.6f x x  and we aim to approximate its root 0x close to 0.3854 (see Fig. 2d). Table 4

gives the results.

Table 4. Logarithmic function. x0
N

 NRO2

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-3 to 10-9

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

7

8

9

10

1

0.046573590279973

0.144997336042209

0.286748689095396

0.371546781313959

0.385165489567856

0.385418075047655

0.385418157886549

1

1.0010

0.046096956487572

0.704904521901549

0.559067268009040

0.325052664895034

0.398561266403188

0.386470873817560

0.385400317074306

0.385418182240515

0.385418157887122

1

0.047050382976709

0.145897314713615

0.287620875947528

0.371803235317036

0.385174799373750

0.385418081035310

0.385418157886546

1

0.046573545713422

0.144997239243819

0.286748596694532

0.371546756693845

0.385165489131901

0.385418075051371

0.385418157886550

N 7 10 7 7

Table 4bis. Logarithmic function. Er%n

 NRO2

Eq. (3)

o1NRO2

Eq. (4)

VM

Ref. (Ypma, 1995)

ho1NRO2

Eq. (5)

h variable from

10-3 to 10-9

1.724446×10-9

 1×10-6 1×10-6 1×10-6 1×10-6

n=1

2

3

4

5

6

7

8

9

10

(%)

87.916088194868891

62.379215126422153

25.600627986033732

3.599045942376669

0.065556931745892

0.000021493253795

0.000000000002304

(%)

159.7179140414627

 88.0397548625252

 82.8934385880769

 45.0547299262410

 15.6623375822610

 3.4100906373224

 0.2731360496283

 0.0046289495932

 0.0000063188399

 0.0000000001462

(%)

87.792380298139065

62.145708050278834

25.374331732397287

 3.532506782809423

 0.063141423886808

 0.000019939706023

 0.000000000003082

(%)

87.916099758037362

62.379240241582721

25.600651960219203

 3.599052330273382

 0.065557044858159

 0.000021492289799

 0.000000000002132

N 7 10 7 7

In all the cases shown above ho1NRO2 converges to the solution faster than o1NRO2 and as fast as NRO2. This means

that what is lost with o1NRO2 by approximating the derivative of the function from NRO2 is now compensated for with

the introduction of the new parameter h in ho1NRO2. Note that VM behaves similarly to NRO2 and ho1NRO2. However,

regarding the new algorithm proposed in this paper, ho1NRO2, VM requires the definition of the highest exponent of 10

in the sought root (see Section 1), which is not always easy to find, especially in cases for which automatization is

required by repeating the process in a subroutine for different functions within a global code.

It can be seen in Table 1 for the quadratic function that the introduction of the parameter h modifies the application of the

derivative from o1NRO2 to ho1NRO2. For example, at the fourth iteration, 4n  , o1NRO2 computes the derivative

between the points 0.714326565546070 and 0.750124937531224, giving the value 2.928903006154588, whereas

ho1NRO2 computes the derivative between the points 0.707107843135664 and 0.707107841411218 (with

h=1.724446×10-9), giving the value 2.828431456205209, which is a much more local approximation of the derivative.

Note that NRO2 evaluates the derivatives locally, from the analytic expression of the derivative function, which is at the

fourth iteration the derivative value at the point 0.707107843137255, equal to 2.82843137254902. The sequences of

derivatives used at each iteration are the following, respectively for NRO2, o1NRO2, and ho1NRO2: {4, 3,

2.833333333333334, 2.828431372549020, 2.828427124749380}; {not evaluated, 4.001999999999836,

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

60

3.502249875062447, 2.928903006154588, 2.843290854745681, 2.828853440117567, 2.828429279234783};

{4.000000070551469, 3.000000117295034, 2.833333329656097, 2.828431456205209, 2.828427207030713}. This

shows that ho1NRO2 uses derivative values that are much closer to the ones used by NRO2 than o1NRO2.

The new h-dependent method, ho1NRO2, is now tested by varying the initial estimation point
0

0x and the discretization

step h (h-convergence, ranging from 91 10 to 11 10) in the case of the quadratic function. The results are displayed

in Fig. 3.

As expected, the number of iterations required to hold the stop criterion depends on the estimation point
0

0x . Also, a clear

dependence on the step value h is observed, even if a good approximation is obtained whatever the step value h is used

(Fig. 3a), the convergence speed depends on the h value (Fig. 3b). The method requires fewer iterations as h becomes

smaller. For
0

0x very close to 0x and a very small h value, ho1NRO2 only needs 3 iterations to match the tolerance and

reach the precision imposed by the user.

Figure 3. Quadratic function. Number of iterations required N (b) for the evaluation of x0
N (a) obtained with the

ho1NRO2 algorithm vs. h (in logarithmic scale) for a large range of x0
0 values. =1×10-6

3.5 Order of Convergence of ho1NRO2

To illustrate the results of Theorem 1, we now evaluate the order of convergence of h01NRO2 for several values of the

parameter h. To this end, we consider the quadratic equation of Section 3.1.1:   22 1f x x  with the tolerance set at
61 10   and the initial estimation defined at

0

0 3x  to approximate the root 0x close to 0.7071 (see Fig. 1a).

Note that the initial estimation value is chosen far from the exact root to make the N value not too short to see the

evolution of the convergence. Following Def. 1, Eq. (6), for each h value, we aim to find the k value for which the

quantity 1

k

n nE E tends to a constant, which is thus the order of convergence of the iterative scheme. Figure 4

represents the result of this study, for the entire variation of h (in logarithmic scale) (top) and the lower interval of

variation of h (in linear scale) (bottom). It can be seen that k is h-dependent, as seen in Theorem 1, following an

increasing progression as h is lowered. Moreover, 1.618k  for 65.817 10h   , which means that ho1NRO2 has a

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

61

lower order of convergence than o1NRO2, and 1.618k  for 65.817 10h   , which means that ho1NRO2 has a

higher order of convergence than o1NRO2. The order of convergence of ho1NRO2 is as high as NRO2, 2k  , for the

smallest values of h, 71 10h   . These considerations match the conclusions of Theorem 1. They are very useful since

one can control the behavior of the new method by changing the h value. For infinitesimal values of h, the algorithm

behaves as good as NRO2 does, but with the advantage of avoiding the analytic evaluation of the derivative of the

function defining the nonlinear equation, which is a very useful computational advantage.

Figure 4. Order of convergence k of ho1NRO2 algorithm vs. h, for all h values in logarithmic scale (top) and up to 1×10-4

in linear scale (bottom)

Tables 5-7 show in detail the order of convergence for three h values: 11 10h   , 65.817 10h   , and 91.724446 10h   ,

respectively. We compute nE and 1

k

n nE E for 1k  , 1.618k  (the order for convergence of o1NRO2), and

2k  (the order for convergence of NRO2). Figures 5-7 represent the sequence of error, 1

k

n nE E , for the three h

values 11 10h   , 65.817 10h   , and 91.724446 10h   , respectively, each one for the three k values 1k  ,

1.618k  , and 2k  .

For 11 10h   with 1k  we found that 1

k

n nE E tends to the real positive constant 27.6091 10K  , which is

equal to the theoretical constant obtained in Theorem 1 for finite h values, Eq. (9),

 2

2

2

2 33 6 3 7.6091 10K hc hc h c      . For 65.817 10h   with 1.618k  we found that 1

k

n nE E tends to

the real positive constant 24.2405 10K  . For 91.724446 10h   with 2k  we found that 1

k

n nE E tends to

the real positive constant 17.0689 10K  , which is very close to the theoretical constant obtained in Theorem 1 for

infinitesimal h values, Eq. (12), 2

12 7.0711 10K c   . For the latest value of h, 91.724446 10h   , we also display

in Fig. 8 the sequence of error, 1

k

n nE E , in logarithmic scale for other k values to clearly observe and ensure the

important result obtained at this very small h value. The data found in this analysis thus match the results given by

Theorem 1. They confirm the linear convergence of the algorithm for finite values of h and the quadratic convergence of

the algorithm for infinitesimal values of h. They also suggest the existence of an order of convergence of the algorithm

between 1 and 2 for intermediate h values.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

62

Table 5. Order of convergence of ho1NRO2. 11 10h  

n x0
n En |En+1|/|En|

k

k=1

|En+1|/|En|
k

k=1.618

|En+1|/|En|
k

k=2

1

2

3

4

5

6

7

N=8

3.

1.559322033898303

0.919470112962628

0.720828846585738

0.706224356804289

0.707174609445354

0.707101624090465

0.707107173619152

0.707106751326041

2.292893218813453

0.852215252711756

0.212363331776080

0.013722065399191

-0.000882424382259

0.000067828258806

-0.000005157096083

0.000000392432605

-0.000000029860507

0.371676816748042

0.249189780516529

0.064615982827296

0.064306965211721

0.076865803087179

0.076031674310969

0.076095655085445

0.076090789816790

0.002368519983612

0.002750747699533

0.001683467763960

0.009106107503229

0.059334115717769

0.286538353546292

1.409592019736821

6.924449794573884

(×102)

0.000001596962559

0.000002924023945

0.000003042709035

0.000046863911037

0.000871075240356

0.011209439199730

0.147555240131942

1.938951781698433

(×105)

Figure 5. Sequence of error of the ho1NRO2 algorithm vs. n for three exponent k values, with h=1.×10-1

Table 6. Order of convergence of ho1NRO2. 65.817 10h  

N x0
n En |En+1|/|En|

k

k=1

|En+1|/|En|
k

k=1.618

|En+1|/|En|
k

k=2

1

2

3

4

5

N=6

3.

1.583331959860175

0.949559689522643

0.738059117890918

0.707755693210695

0.707107076001419

0.707106781185396

2.292893218813453

0.876225178673627

0.242452908336095

0.030952336704371

0.000648912024147

0.000000294814871

-0.000000000001151

0.382147840057703

0.276701599357262

0.127663293118612

0.020964879981283

0.000454321787838

0.000003904790320

0.243524684641400

0.300244561209114

0.306454717388424

0.179574156008232

0.042406529031214

0.042404915025824

0.164195280679967

0.315788231258219

0.526548821355614

0.677327859977788

0.700128478024442

13.24488926558051

Figure 6. Sequence of error of the ho1NRO2 algorithm vs. n for three exponent k values, with h=5.817×10-6

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

63

Table 7. Order of convergence of ho1NRO2. 91.724446 10h  

N x0
n En |En+1|/|En|

k

k=1

|En+1|/|En|
k

k=1.618

|En+1|/|En|
k

k=2

1

2

3

4

5

N=6

3.

1.583333211723946

0.949561326197548

0.738060131978269

0.707755855329419

0.707107078811219

0.707106781186610

2.292893218813453

0.876226430537399

0.242454545011001

0.030953350791721

0.000649074142871

0.000000297624672

0.000000000000063

0.382148869802242

0.276703071901519

0.127666613922690

0.020969430651901

0.000458537248889

0.000000210387728

0.243525340848731

0.300245893945570

0.306461410458016

0.179609498051671

0.042793394592570

0.002271396780441

0.164195723124424

0.315789460644110

0.526558963524061

0.677452686560507

0.706448183038584

0.706889408870964

Figure 7. Sequence of error of the ho1NRO2 algorithm vs. n for three exponent k values, with h=1.724446×10-9

Figure 8. Sequence of error of the ho1NRO2 algorithm vs. n for exponent k varying from 1 to 2.5 by 0.1, for

h=1.724446×10-9

The CPU time required by ho1NRO2, carried out by running the ad-hoc functions developed on Matlab® R2017a (see

Section 2.5, Fig. 1) on a 128 GB RAM computer with the 64 bits Windows 10 operative system working with an Intel®

Core™ i7-6800 K CPU @ 3.40 GHz, to solve the problem of the quadratic function (Section 3.1) does not show variations

for NRO2, o1NRO2, or h01NRO2; it is 0.046875 s, even by changing the initial estimation moderately. This is most

likely because this CPU time is due to the prints and other interactions with the screen, which means that the CPU time

due to the computations for each algorithm is negligible.

The whole resolution procedure needs 2Nom N operations and 2Nfm N evaluations of functions or derivatives with

NRO2 (2om  operations and 2fm  evaluations per iteration), 4 3Nom N  operations and 1Nfm N 

evaluations of functions with o1NRO2 (4om  operations and 1fm  evaluation per iteration), and 4Nom N

operations and 2Nfm N evaluations of functions with ho1NRO2 (4om  operations and 2fm  evaluations per

iteration), all of  O N . These numbers are respectively 10Nom  and 10Nfm  for NRO2, 25Nom  and 6Nfm 

for o1NRO2, and 20Nom  and 10Nfm  for ho1NRO2 in the case of the solution of the problem shown in Table 1 for

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

64

the quadratic function (Section 3.1). VM requires the same number of evaluations but 3 more operations per iteration than

ho1NRO2, because of the evaluation of hn.

The results presented in the above section allows us to observe that the new iterative technique ho1NRO2 for finding the

roots of nonlinear functions developed and implemented in this paper used with infinitesimal values of the new parameter

h (discretization step for the approximation of the derivatives of the function) has a much better behavior than o1NRO2

(Secant method); it accelerates the convergence of the Secant method. This good behavior is the one of NRO2

(Newton-Raphson method). This improvement is due to the disassociation procedure made from the iterative progression

and used in ho1NRO2 that allows us to obtain approximate results of the derivative evaluated numerically very close to

the analytic value used in NRO2, whereas when no disassociation technique is employed, like with o1NRO2, the distance

between two points used in this approximation can be large, causing bad approximations and lower convergence speed

(ho1NRO2 with h tending to zero ensures an infinitesimal distance between the points involved in the evaluation of the

derivative whatever the two consecutive iterative approximations are distant the one from the other, which always offers

the user to calculate the approximation of the derivative locally with two proximate points, and not globally as when no

disassociation is applied). Thus, by applying the disassociation procedure, the numerical derivative used in o1NRO2 tends

to the analytic derivative used in NRO2, and ho1NRO2 tends to NRO2. The analysis of the results vs. h shows that for

infinitesimal values of h the order of convergence of ho1NRO2 is higher than for o1NRO2 and reaches the one of NRO2.

But the new technique h01NRO2 is not only able to skip up the loss in convergence speed produced when NRO2 is

substituted by o1NRO2. Besides this important feature, it must be stressed that another advantage of ho1NRO2 is that it

does not need any analytic evaluation of the first derivative of function f, whereas NRO2 requires the analytic evaluation

of this derivative, whether the analytic deduction of the derivative is straightforward or not. The introduction of the new

degree of freedom h makes the new algorithm very useful.

Theorem 1 proves that the order of convergence k of the algorithm depends on h and that, whereas it is only 1 for finite h

values, for infinitesimal values of h it is equal to 2, like the Newton-Raphson method, higher than the Secant algorithm.

Moreover, ho1NRO2 presents the advantage of requiring only one initial estimation, like the Newton-Raphson algorithm

and unlike the Secant method, and avoids the analytic expression of the derivative of the nonlinear function, like the

Secant algorithm and unlike the Newton-Raphson method, which makes the evaluation of the derivatives much easier.

Thus, this new algorithm gets rid of the shortcoming of the Newton-Raphson method (the evaluation of the derivatives)

and the Secant method (its order of convergence). Moreover, its implementation is straightforward. These advantages

make it easy to use in many cases and allow us to obtain the approximate root quickly with huge precision. The

introduction of the new parameter h into the iterative method provides the user with control that ensures that the

approximate derivatives tend to their real local values. The test of the new algorithm by solving several nonlinear

equations shows a huge concordance between the results obtained and the theoretical aspects given in Theorem 1.

These conclusions suggest studying the use of similar h-disassociation techniques in other existing iterative schemes in

the future.

Acknowledgments

This work was supported by the Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (National Agency

for Research, Ministry of Science and Innovation, Spain) and the European Regional Development Fund (FEDER) [grant

number DPI2017-84758-P].

The author dedicates this work to Dr. Cleofé Campos-Pozuelo.

References

Abbasbandy, S. (2006). Modified homotopy perturbation method for nonlinear equations and comparison with Adomian

decomposition method. Appl. Math. Comput., 172, 431-438. https://doi.org/10.1016/j.amc.2005.02.015

Abbasbandy, S., Tan, Y., & Liao, S. J. (2007). Newton homotopy analysis method for nonlinear equations. Appl. Math.

Comput., 188, 1794-1800. https://doi.org/10.1016/j.amc.2006.11.136

Albeanu, G. (2008). On the generalized Halley method for solving nonlinear equations. ROMAI J., 4, 1-6.

Dahlquist, G., & Björck, A. (2008). Numerical Methods in Scientific Computing Vol. I. SIAM, Philadelphia.

https://doi.org/10.1137/1.9780898717785

Dehghan, M., & Hajarian, M. (2010). Some derivative free quadratic and cubic convergence iterative formulas for

solving nonlinear equations. Comput. Appl. Math., 29, 19-30. https://doi.org/10.1590/S1807-03022010000100002

Gander, W. (1985). On Halley’s iteration method. The Am. Math. Monthly, 92, 131-134.

https://doi.org/10.1080/00029890.1985.11971554

Javidi, M. (2007). Iterative methods to nonlinear equations. Appl. Math. Comput., 196, 360-365.

https://doi.org/10.1016/j.amc.2005.02.015
https://doi.org/10.1016/j.amc.2006.11.136
https://doi.org/10.1137/1.9780898717785
https://doi.org/10.1590/S1807-03022010000100002
https://doi.org/10.1080/00029890.1985.11971554

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 6; 2020

65

https://doi.org/10.1016/j.amc.2007.03.068

Kang, S. M., Rafiq, A., & Kwun, Y. C. (2013). A new second-order iteration method for solving nonlinear equations.

Abstract and Appl. Analysis, 2013, 487062, 1-4. https://doi.org/10.1155/2013/487062

Kang, S. M., Nazeer, W., Tanveer, M., Mehmood, Q., & Rehman, K. (2015). Improvements in Newton-Raphson method

for nonlinear equations using modified Adomian decomposition method. Int. J. Math. Anal., 9, 1919-1928.

https://doi.org/10.12988/ijma.2015.54124

Mathews, J. H., & Fink, K. D. (1999). Numerical Methods using Matlab. (3rd ed). Prentice Hall, Upper Saddle River.

McDougall, T. J., Wotherspoon, S. J., & Barker, P. M. (2019). An accelerated version of Newton’s method with

convergence order 3+1. Res. Appl. Math., 4, 100078. https://doi.org/10.1016/j.rinam.2019.100078

Noor, M. A., Noor, K. I., & Waseem, M. (2012). Higher-order iterative algorithms for solving nonlinear equations.

World Appl. Sci. J., 16, 1657-1663.

Pakdemirli, M., & Boyac, H. (2007). Generation of root finding algorithms via perturbation theory and some formulas.

Appl. Math. Comput., 184, 783-788. https://doi.org/10.1016/j.amc.2006.05.207

Smith, G. D. (1986). Numerical Solution of Partial Differential Equations: Finite Difference Methods (3rd ed.).

Clarendon Press, Oxford.

Vanhille, C. (2020). A note on the convergence of the irrational Halley’s iterative algorithm for solving nonlinear

equations. Int. J. Comput. Math., 97, 1840-1848. https://doi.org/10.1080/00207160.2019.1664736

Ypma, T. J. (1995). Historical development of the Newton-Raphson method. SIAM Rev., 37, 531-551.

https://doi.org/10.1137/1037125

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.amc.2007.03.068
https://doi.org/10.1155/2013/487062
https://doi.org/10.12988/ijma.2015.54124
https://doi.org/10.1016/j.rinam.2019.100078
https://doi.org/10.1016/j.amc.2006.05.207
https://doi.org/10.1080/00207160.2019.1664736
https://doi.org/10.1137/1037125

