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Abstract

Using a new trick, the nonlinear equation is recast to a coupled system consisting of a linear equation and a nonlinear
equation. For the latter, with a weight factor we split the nonlinear term into two parts on both sides of the equation. When
the two-dimensional nonlinear system is linearized around the iteration point to be a linear system, we can easily solve it
and develop a fast convergent iterative scheme to solve nonlinear equations. In order to further enhance the convergence
speed, a linear term is added on both sides of the first linear equation, which results to a very powerful iterative scheme
with parameter being analyzed by the eigenvalues. The new iterative scheme is proved to be absolutely convergent, and
the number of iterations for convergence is estimated. The merits of the present iterative scheme are insensitive to the
initial guess of the solution, convergent very fast, and without needing of the differentials of the function.
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1. Introduction

In this paper, we derive a fast convergent iterative scheme to solve a scalar nonlinear equation:

f (x) = 0, (1)

where we do not need the differential of f , which means that f is allowed to be a non-differentiable function of x.

The requirement of a solution of Equation (1) is popular and frequently encountered in the applications of engineering
and science. For instance, we have to solve

cos x cosh x + 1 = 0, (2)

for the determination of the natural frequencies of the free vibration of a uniform cantilever beam [Liu & Li (2017)].
Equation (2) is a transcendental equation and the closed-form solution does not exist. Indeed, for most nonlinear equations,
merely the numerical methods can help us to find the approximate solutions.

Given an initial guess x0, from Equation (1) follows an iterative Newton method (NM):

xk+1 = xk −
f (xk)
f ′(xk)

, k = 0, 1, . . . , (3)

which is known to be quadratic convergence. Nevertheless, it is well known that the NM is sensitive to the initial guess
and may confront a dangerous situation in the fraction term when f ′(xk) tends to zero, and in this case the NM will be
divergent.

Since the pioneering work of Newton, there are different modifications of the Newton method for more quickly and
stably solving nonlinear equations, to name a few [Abbasbandy(2003); Chun (2005); Chun & Ham (2008); Weerakoon
& Fernando (2000); Yun (2008)]. The homotopy perturbation methods were developed to solve nonlinear equations
[Abbasbandy (2006); He (2006); Hesameddini & Latifizadeh (2009)]. Noor et al. (2010b) have reviewed some multi-step
iterative methods for solving nonlinear equations.

2. A New Splitting Technique

Without losing any generality, f (x) in Equation (1) can be decomposed to

f (x) = f1(x)x + ax − b, (4)

where f1(x)x is the nonlinear part of f , while ax − b is the linear part of f .

Let
y := f1(x)x (5)
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be a new variable. Then, from Equations (1), (4) and (5) it follows that

ax + y = b, (6)
f1(x)x − y = 0, (7)

which are coupled system of a linear equation and a nonlinear equation for (x, y). The intersection point of the straight
line (6) and the curve (7) is just the solution of Equation (1).

For Equation (7), we propose a new splitting technique by

(1 − w) f1(x)x − y = −w f1(x)x, (8)

where w is a weight parameter, which will be discussed below.

Next, we develop an iterative scheme to solve Equations (6) and (8), when we know xk at the kth step:

ax + y = b, (9)
(1 − w) f1(xk)x − y = −w f1(xk)xk, (10)

where we have linearized Equation (8) around xk, such that Equations (9) and (10) are linear system for (x, y). In doing
so, we can seek the next xk+1 by solving[

a 1
(1 − w) f1(xk) −1

] [
x
y

]
=

[
b

−w f1(xk)xk

]
, (11)

which readily leads to

xk+1 =
b − w f1(xk)xk

a + (1 − w) f1(xk)
. (12)

Up to here, we no more need the variable y, because the iterative scheme (12) is self-contained for x.

Multiplying the denominator and nominator on the right-hand side in Equation (12) by xk and using

f1(xk)xk = f (xk) − axk + b

obtained from Equation (4), we can further refine Equation (12) to

xk+1 =
(1 − w)bxk − wxk[ f (xk) − axk]

awxk + (1 − w)[ f (xk) + b]
= xk −

xk f (xk)
awxk + b(1 − w) + (1 − w) f (xk)

, (13)

which is a new iterative scheme to solve Equation (1).

If a = 0, Equations (6) and (7) return to the original nonlinear Equation (1), and meanwhile Equation (13) is not workable,
when f (xk) tends to −b, leading to the divergence of the iterative scheme, or when also b = 0, yielding an incorrect iteration
xk+1 = wxk/(w − 1). To remedy this shortcoming, we can add a term cx on both the sides of Equation (6), which renders
a modification of Equation (13) to

xk+1 =
(1 − w)bxk − wxk[ f (xk) − axk] + cx2

k

awxk + (1 − w)[ f (xk) + b] + cxk

= xk −
xk f (xk)

awxk + b(1 − w) + cxk + (1 − w) f (xk)
, (14)

where c is a given parameter. Obviously, the above iterative scheme satisfies the basic requirement that xk+1 −→ xk when
f (xk) −→ 0. Later, from the analysis of eigenvalues we will examine the advantage obtained by supplementing cx on both
sides, even though a is not zero.

It is interesting that the present iterative scheme (14) does not need the differential terms f ′(xk) and f ′′(xk), which are
indispensable in many two-step and three-step iterative methods [Noor & Noor (2006a,2006b); Noor (2007a,2007b); Noor
et al. (2006,2010a,2010b); Soheili et al. (2008); Bahgat (2012)].

Remark 1. Since x = 0 is a fixed point of the iterative schemes (13) and (14), in general we cannot choose x0 = 0 as the
initial guess, unless x = 0 is a trivial solution of f (x) = 0. The iterative scheme (13) reduces to the fixed point method:

xk+1 = xk − f (xk),
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if we take w = 1 and a = 1. It is obtained from Equation (1) by

x = x − f (x), (15)

and set the left x to xk+1 and the right x to xk. In general, the iterative scheme with w = 1 is not convergent. From this
aspect, Equation (8) is clever than the technique in Equation (15), where we split the nonlinear term on both sides of the
equation through a weight factor w in Equation (8).

Now, we specify how to choose the parameter c, which is acting as another acceleration parameter. As mentioned above
we have added a term cx on both the sides of Equation (9), such that Equation (11) is changed to[

a + c 1
(1 − w) f1(xk) −1

] [
x
y

]
=

[
b + cxk

−w f1(xk)xk

]
. (16)

The eigenvalues of the coefficient matrix decide the convergence behavior and its speed. Through some operations, we
can find two eigenvalues:

λ1 =
1
2

[a + c − 1 +
√

(a + c − 1)2 + 4[a + c + (1 − w) f1(xk)]], (17)

λ2 =
1
2

[a + c − 1 −
√

(a + c − 1)2 + 4[a + c + (1 − w) f1(xk)]]. (18)

Since we need to inverting the coefficient matrix to obtain the iterative scheme (14), for the convergence of the iterative
scheme, the values of λ1 and λ2 must satisfy

|λ1| > 1, |λ2| > 1. (19)

For the special case with w = 1, we have λ1 = c and λ2 = −1, which is likely to be divergent, depending on the initial
value x0 and c.

Especially, the number of iterations is greatly influenced by λ1, wherein |λ2| > 1 and λ2 is closed to -1, when c > 0.
Therefore, we have the following estimation of the number of iterations for the convergence:

N =
− ln ε
ln |λ1|

, (20)

where ε is the tolerance for the error of the solution. How to selecting a suitable value of c is a trade-off between the
convergence behavior and the accuracy. Larger value of c will increase the absolute values of λ1 and λ2, as a consequence,
enhancing the convergence speed; however, it also makes a loss of the accuracy, due to the operation by adding cx on both
sides of Equation (9), which, in order to achieve the same convergence criterion, might need more iterations.

3. Numerical Tests

In this section, we give some examples to assess the performance of the newly proposed iterative scheme and analyze its
mechanism. For some cases we will compare the computed results to the Newton method (NM) and other methods with
the same convergence criteria:

|xk+1 − xk | < ε and | f (xk+1)| < ε. (21)

We fix ε = 10−15 for all tests, and the maximum number of iterations is set to be 500. Sometimes the NM may lead to
spurious solution, satisfying the first criterion but not the second criterion. In order to get rid of the spurious solution, both
two criteria are used here.

Example 1. Consider
f (x) = exp(x2 + 7x − 30) − 1 = 0, (22)

which has two solutions x = −10 and x = 3. Here, a = 0 and b = 1.

Given x0 = 4, the NM converges with 20 iterations to achieve the solution x = 3, while the method of Bahgat (2012),
shortened as BM, is convergent with 8 iterations. However, when we take x0 < 2.6, both the NM and the BM are divergent.
With x0 = 2.6, the NM is convergent with 314 iterations, while the BM is divergent. The present method with w = −8 and
c = 10 is convergent with 10 iterations. In this case, λ1 = 10.27 and λ2 = −1.27. According to Equation (20), the number
N for the convergence is about N = 15. In practice, the number 10 of iterations is slightly faster than the estimated one.

We list the maximum error (ME) to satisfy f = 0 with the root x = 3 and the number of iterations (NI) for different values
of w and x0 in Table 1.
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Table 1. For example 1 with the solution x = 3, comparing the maximum error (ME) and the number of iterations (NI)
for different value of w used in the present method with c = 10

w, x0 -8, 4 -7, 4 1, 4 -5, 2 -8, 3.5
ME 0 0 × 0 0
NI 10 13 blow up 24 8

If we take c = 0.1, λ1 = 0.117, consequently the present method is divergent. If we take w = 1 and c = 13.4, λ1 = 13.5
and λ2 = −1, which makes the present method divergence with x0 = 4, and convergence with 39 iterations with x0 = 1.
Basically, w = 1 is not suggested.

For f = 0 with the root x = −10, we list the NI for different values of w and x0 in Table 2, which are compared to the NM
and the BM.

Table 2. For example 1 with the solution x = −10, comparing the maximum error (ME) and the number of iterations (NI)
for different value of w used in the present method with c = −10

w, x0 -2, -15 -2, -20 -8, -25 1, -25 -2, -30
NI of NM 96 236 427 427 blow up
NI of BM 34 blow up blow up blow up blow up
NI of present method 2 35 31 blow up 36

Tables 1 and 2 show that the NI of the present method is quite uniform. With w = 1, the present method is not applicable.
The value of w with w < 1 is suggested. From these discussions we can observe that the present method is insensitive to
the initial value, but both the NM and the BM are sensitive to the initial value.

Remark 2. From Equations (17) and (18), we can observe that when c is given and fixed, we can give more negative
value of w to increase the absolute values of λ1 and λ2. This is a simple strategy to choose the value of w. For example,
instead of w = −2 in Table 2, we can take w = −5, then the INs from 35 and 36 reduce to 29. In Section 4, we will derive
a more delicate method to determine w, which is allowed to be a function of x.

Example 2. In order to accelerate the convergence of the present method, we can also consider a suitable value of c, even
though a , 0. Let us consider

f (x) = exp(x2 + 7x − 30) + x + 9 = 0, (23)

where x = −10 is a solution. Here, a = 1 and b = −9.

Let x0 = −20. It is interesting that the present method with w = −1 and c = −20 is convergent very fast with two iterations
to obtain the solution x = −10, while the NM converges with 237 iterations and the BM is divergent.

If we take the initial value to be x0 = 10, the three iterative schemes all obtained another solution x = −9.00000614462766
of Equation (23), with respectively, 9 iterations for the present method with c = 0, 144 iterations for the NM, and 51
iterations for the BM.

Example 3. Consider
f (x) = exp(x − 1) + x4 + x3 + x − 4 = 0, (24)

where x = 1 is a solution. Here, a = 1 and b = 4 in the present problem.

Let x0 = 0.5. The present method with w = −3 and c = 0 is convergent with 30 iterations, while the NM converges with
8 iterations. It is amazing that when we take c = −1, the present method with w = −2 is convergent with 6 iterations,
slightly faster than the NM.

Example 4. Let us consider
f (x) = cos x cosh x + 1 = 0, (25)

where x = 1.875104068711961 is a solution. We take a = 0, b = −1, w = 0.9 and c = −4.1 in the present method.

In Table 3, we list the NI and the ME for different values of x0, which are compared to the NM and the BM. It can be seen
that the present method is convergent very fast and is also insensitive to the initial values of x0.

43



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

 (a)

(b)

0 5 10 15 20 25 30 35

Number of iterations

-2x100

100

0x100

100

2x100

f

0 5 10 15 20 25 30 35

Number of iterations

1

2

3

x

-0.5

0

0.5

1

2
x, c=-4 

, c=-4 
x, c=-5

, c=-5

c = -4

c = -5

Figure 1. For example 4, (a) the residuals, and (b) the orbits of x and comparing η with c = −4 and c = −5

Table 3. For example 4, comparing the ME and the NI for different value of x0, with 500 the maximum number of
iterations

x0 0.5 1.0 1.5 5.0
NI of NM, ME 500, 1.34 × 10−5 500, 3971544.98 6, 1.55 × 10−15 500, 2.37 × 10−14

NI of BM, ME 500, 1.34 × 10−5 6, 2.22 × 10−16 4, 6.66 × 10−16 500, 2.37 × 10−14

NI of present method, ME 11, 2.22 × 10−16 10, 2.22 × 10−16 9, 1.11 × 10−15 17, 6.66 × 10−16

In order to demonstrate the convergent mechanism of the present method, we consider two cases (a) c = −4 and (b)
c = −5, with the same w = −2 and x0 = 1. For the case (a), the present method converges with 28 iterations as shown
by the solid line in Fig. 1(a), while for the case (b), the present method converges with 35 iterations as shown by the
dashed line in Fig. 1(a). After the initial point at the first step, both the residual curves of f are monotonically convergent
to zero. At the same time, the orbits of x, as shown in Fig. 1(b), are monotonically convergent to the true solution
r = 1.875104068711961.

Upon letting
xk+1 = xk(1 + ηk), (26)

and from Equation (14), we can derive

ηk =
− f (xk)

awxk + b(1 − w) + cxk + (1 − w) f (xk)
. (27)

We plot ηk in Fig. 1(b), where we can observe two mechanisms to approach to the solution:

Case (a): − 1 < ηk < ηk+1 < 0, f (xk) < 0, xk > xk+1 > r, k ≥ 2, (28)
Case (b): 0 < ηk+1 < ηk < 1, f (xk) > 0, xk < xk+1 < r, k ≥ 2. (29)

They indicate that xk is a monotonically decreasing sequence for the Case (a), while for the Case (b), a monotonically
increasing sequence. Now, we are in a good position to prove the following result.

Theorem 1. The iterative scheme in Equation (14) for solving f (x) = 0 is absolutely convergent, for some suitable values
of the parameters w and c.
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Proof. Let r be a true solution of f (x) = 0, i.e., f (r) = 0. We define

ek = xk − r, (30)

and it follows that
ek+1 − ek = xk+1 − xk. (31)

With a suitable choice of the values of w and c, Equations (??) and (??) are easily proved from Equation (??). Without
losing generality, we assume that the sequence of xk is xk > 0 and the real root r > 0.

We consider the Case (a). From Equations (??) and (??) it follows that

xk+1 − xk = xk − xk−1 + ηk xk − ηk−1xk−1 > xk − xk−1 + ηk xk − ηk xk−1, (32)

since 0 > ηk > ηk−1 and xk−1 > 0. Then we have

xk − xk+1 < (1 + ηk)(xk−1 − xk). (33)

From Equation (??) it follows that
ek − ek+1 < (1 + ηk)(ek−1 − ek). (34)

Applying this inequality N − 1 times, we can derive

eN − eN+1 < (1 + ηN) · · · (1 + η2)(e1 − e2). (35)

Due to 1 + ηi < 1, i = 2, . . . ,N, the left sequence converges very fast to zero; hence, eN+1 = eN implies xN+1 = xN . As a
consequence, the iterative scheme is absolutely convergent for this case.

Then, we consider the Case (b). From Equation (??), we have

xk+1 − xk = ηk xk. (36)

Since the sequence xk has an upper bound with xk < r, we merely require to prove that xk is a strictly increasing sequence,
that is xk+1 > xk. Due to xk > 0, we need to prove that ηk > 0. In Equation (??), f (xk) > 0, thus we need to prove

awxk + (1 − w)[b + f (xk)] + cxk < 0, (37)

which can be achieved by selecting c such that

c < −aw + (w − 1)
b + f (xk)

xk
< 0, (38)

where w < 1. Taking x0 into the right-hand side with c = −aw + (w − 1)[b + f (x0)]/x0 − 1 can hold the above inequality.
The sequence xk converges very fast to the true solution x = r. Hence, the iterative scheme is absolutely convergent for
the Case (b). 2

4. Function of w(x)

From the derivations in Section 2, we can observe that w can be a function of x in Equation (8). For the determination of
w(x), we let r be a simple solution of f (x), i.e., f (r) = 0 and f ′(r) , 0. We suppose that after N0 iterations of Equation
(14), the iterative scheme provides a sufficiently close solution to the exact one r, and we define ek = xk − r. Then, by
using the Taylor series we have

f (xk) = ϵ = f ′(r)[c1ek + c2e2
k + · · · ], ck :=

1
k!

f (k)(r)
f ′(r)

, k = 1, . . . . (39)

Let

xk+1 =
(1 − w)bxk − wxk[ f (xk) − axk] + cx2

k

awxk + (1 − w)[ f (xk) + b] + cxk
= xk(1 + η), (40)

and we hope η to be a small quantity. Some operations lead to

η =
−ϵ

awxk + (1 − w)ϵ + (1 − w)b + cxk
. (41)
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To require an n-order convergence rate, we take

η =
−ϵ

awxk + (1 − w)ϵ + (1 − w)b + cxk
=
−ϵ
ϵ1−n = −ϵ

n. (42)

Therefore, we can derive
awxkϵ

n−1 + (1 − w)ϵn + (1 − w)bϵn−1 + cxkϵ
n−1 = 1, (43)

which generates

w =
1 − bϵn−1 − ϵn − cxkϵ

n−1

axkϵn−1 − ϵn − bϵn−1 . (44)

Hence, w may abide the following rule:

w =


w0, k ≤ N0,

1−bϵn−1−ϵn−cxkϵ
n−1

axkϵn−1−ϵn−bϵn−1 , k > N0.
(45)

If we take N0 = 500 to be the maximum number of iterations, we return to the original iterative scheme. If we take N0 = 0,
then we fully use the new technique in the iterative scheme. Otherwise, it is a mixed type iterative scheme.

For example 3, we apply this modified method with c = −2, x0 = 0.5, w0 = −2 and n = 3, and we list the NI for different
values of ϵ and N0 in Table 4.

Table 4. For example 3 with the solution x = 1, comparing the number of iterations (NI) for different value of ϵ and N0
used in the present method

N0, ϵ 500, 0.315 10, 0.315 5, 0.315 0, 0.315 0, 0.300
NI of present method 18 14 13 10 18

It can be seen that the new strategy is effective, and it is sensitive to the value of ϵ. The original iterative scheme needs 18
iterations, while the new one with N0 = 0 and ϵ = 0.315 needs 10 iterations.

In order to further compare the iterative scheme (14) to other methods, we consider the following test functions:

f1(x) = exp(x2 + 7x − 30) − 1, (46)
f2(x) = sin2 x − x2 + 1, (47)
f3(x) = x2 − ex − 3x + 2, (48)
f4(x) = (x − 1)3 − 1, (49)
f5(x) = x3 − 10. (50)

In Table 5, for different functions we list the NI obtained by the present algorithm (14), which are compared to the NM,
the method of Noor et al. (2006) (NNT), the method of Chun (2005) (CM), and the method of Noor et al. (2010b) (NRM).

Table 5. The comparison of different methods for the number of iterations

Functions x0 NM NNT CM NRM Present
f1 3.5 13 7 8 7 7
f2 -1 7 5 5 4 8
f3 2 6 5 4 4 5
f4 3.5 8 5 5 5 6
f5 -2 7 5 5 4 4
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5. Conclusions

Employing the new trick of a new idea, the nonlinear equation was recast to a coupled system of a linear equation and
a nonlinear equation. With a weight factor w, we split the nonlinear term into two parts on both sides of the equation.
Through the consideration of the eigenvalues, a linear term cx was also added on both sides of the first linear equation.
Then, we can easily derive the iterative scheme by solving the linearized system. The iterative scheme was proven
to be absolutely convergent, and the iterations’ number for the convergence was analyzed and provided by using the
eigenvalues. Upon comparing four examples to other methods, we found that the present iterative scheme possessed
three major advantages: insensitive to the initial value, convergent very fast, and without needing of the differentials
of the function. Further tests on five functions revealed that the present iterative scheme was competitive to the cubic
convergence iterative scheme, as well as to the fourth-order convergence iterative scheme.
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