
Journal of Mathematics Research; Vol. 12, No. 4; August 2020

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

1

A Proof “P≠NP” for P vs. NP Problem by Multiple-Tape Turing-Machine

Yaozhi Jiang

Correspondence: Yaozhi Jiang, Shijiazhuang High-Tech District, Hebei Province, China. E-mail: jiangyaozhi@126.com

Received: April 28, 2020 Accepted: June 19, 2020 Online Published: July 7, 2020

doi:10.5539/jmr.v12n4p1 URL: https://doi.org/10.5539/jmr.v12n4p1

Abstract

P vs. NP problem is very important research direction in computation complexity theory. In this paper author, by an

engineer’s viewpoint, establishes universal multiple-tape Turing-machine and k  homogeneous multiple-tape

Turing-machine, and by them we can obtain an unified mathematical model for algorithm-tree, from the unified model for

algorithm-tree, we can conclude that computation complexity for serial processing NP problem if under parallel

processing sometimes we can obtain P NP in time-complexity, but that will imply another NP, non-deterministic

space-complexity NP, i.e., under serial processing P NP in space-complexity, and the result is excluded the case of NP

problem that there exists a faster algorithm to replace the brute-force algorithm, and hence we can proof that under

parallel processing time-complexity is depended on space-complexity, and vice verse, within P vs. NP problem, this point

is just the natural property of P vs. NP problem so that “ P NP ”.

Keywords: P vs. NP problem, universal Turing-machine, parallel processing, comprehensive equivalent complexity,

complexity-class 1NP and 2NP

1. Introduction

P vs. NP problem is an important problem in computation complexity theory. It is from both time-complexity and

space-complexity of deterministic/non-deterministic Turing-machine. The complexity is main property of an algorithm,

hence the complexity becomes to an important standard in algorithm analysis. The P problem is the problem that can be

solved in deterministic/non-deterministic Turing-machine by an algorithm which time-complexity/space-complexity is

polynomial, and the NP problem is the problem that can be solved in deterministic/non-deterministic Turing-machine

which time-complexity or space-complexity is non-deterministic polynomial, only exponential time-complexity or

exponential space-complexity, possibly both exponential time-complexity and exponential space-complexity. P problem

is easy, and NP problem is hard. Many NP problems have to waste so long time, or so many processors, that the

problem is unsolvable in actual fact. We have many reasons to believe that some of current NP problems will belong to

P problem, only we have not yet found exact faster algorithm to them. Author, stands in engineer’s viewpoint not

mathematician’s, try to solve P vs. NP problem.

For a given problem, we can construct mathematical model, possibly not only one, and then algorithms, also possibly

not only one, and at last we can program it by some computer-languages. To these/this algorithms/algorithm we must do

the algorithm analysis to optimize it. Complexity, includes time-complexity and space-complexity, is just main method

to estimate algorithm cost. Thus P vs. NP problem is yielded from complexity analysis of algorithm. The hard point of

NP is that whether it is natural difficulty, intrinsic difficulty, or artificial imposed difficulty, i.e., whether exponential

time-complexity or exponential space-complexity can be transformed into polynomial time-complexity or polynomial

space-complexity by algorithm optimization, so that NP can be become into P.

2. Some General Concepts

A given problem Q is that we want to know something/object, in practice, that never have we known about Q .

Turing-machine is mathematical model of computation, and algorithm is an instruction set of operation logical

relationship between input and output.

2.1 Some Definitions

Turing-machine is a system that consists of infinite length string-tape for input and output, and read-write head with

ability to read from tape and write on tape, and three-state of “accept””reject””halt”, and instruction mapping named as

transition function.

A string w is a sequence consisted of alphabet of Boolean binary  0 1， . The bit-number of string w , named as  n w ,

is the string-length. A set L of all string w ,  L w , can be named as language. Any language L which can be

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

2

accepted by a Turing-machine TM will yield an algorithm A , with another word  ,A L TM .

Definition 2.1.

Universal multiple-tape Turing-machine UTM with ability to generating any algorithm can be defined as below:

UTM  ” n tapes and n read-write-heads;

Input n  bit string 1 2# # # nw w w on Tape 1, and scanned by Head 1;

Input n  bit string 2 1 2 2 2,# # # nw w w， ， on Tape 2, and scanned by Head 2;

Input n  bit string 1 2 ,# # #n n n nw w w， ， on Tape n , and scanned by Head n ;

Any one from Head 2 to Head n is dependent on Head 1, if and only if there exists an assignment 1, ,m i jH H when

Head 1 scans on 2 3, , , nw w w , in which i is Tape i and j is ,i jw , i.e., ,i jw are children of 1,mw in tree-graph

meaning;

1) Head 1 scans across 1w on Tape 1, and reject if “0” is found in 1w , and accept if “1” is found in 1w ;

2) Head 1 scans across 2 3, , , nw w w on Tape 1, and reject if “0” is found in anyone of 2 3, , , nw w w on Tape 1, and

accept if “1” is found in anyone of 2 3, , , nw w w on Tape 1, and these 1s have assignments to certain ,i jH ;

3) Head 2 scans across string 2,1 2,2 2,, , , nw w w on Tape 2, if Head 1 accept, and if Head 1 accept is dependent on Head 2

under assignment, then Head 2 accept if “1” is found in 2,1 2,2 2,, , , nw w w , and Head 2 reject if “0” is found in

2,1 2,2 2,, , , nw w w ;

4) Head 3 scans across string 3,1 3,2 3,, , , nw w w on Tape 3, if Head 2 accept, and if Head 1 accept is dependent on Head 3

under assignment, then Head 3 accept if “1” is found in 3,1 3,2 3,, , , nw w w , and Head 2 reject if “0” is found in

3,1 3,2 3,, , , nw w w ;

n) Head n scans across string ,1 ,2 ,, , ,n n n nw w w on Tape n , if Head  1n accept, and if Head 1 accept is dependent on

Head n under assignment, then Head n accept if “1” is found in ,1 ,2 ,, , ,n n n nw w w , and Head n reject if “0” is found in

,1 ,2 ,, , ,n n n nw w w ; ”

Figure 1. An algorithm-tree example generated from UTM

All of algorithms, each of them can be seen as an algorithm-tree, can be represented by the UTM . With another word, the
UTM is the generalized model for algorithm such that to analyse any algorithm.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

3

Definition 2.2.

If given problem Q is solvable by algorithm A , denoted by  A Q . An algorithm  A Q is valid in syntax, if and only

if exists a Turing-machine UTM to produce  A Q . And an algorithm  A Q is valid in semantics, if and only if exists

at least one real interpretation, i.e. one given real problem Q can be solvable by the algorithm  A Q . Obviously an

algorithm  A Q is valid, if and only if it is valid both in syntax and in semantics.

Definition 2.3.

If exists      1 2,A Q A Q A Q , then named that algorithm  1A Q is equivalent to algorithm  2A Q at problem Q and

denoted by    1 2

Q

A Q A Q .

Any UTM for problem Q , for certain input and output, is corresponding to an algorithm  A Q , and any algorithm is

corresponding to a directed tree-graph named as algorithm-tree and denoted as   RT A Q . i.e.,
    Q RUTM A Q T A Q  .

An example for algorithm-tree as below:

Figure 2. An example for algorithm-tree

Remarks for algorithm-tree:

1) Algorithm-tree   RT A Q is a directed tree graph without directed-cycle. In which the vertex VR,1 is root-vertex, such

vertex possibly not only one and root-vertexes have no incoming edge. The vertexes VL,i are leaf-vertex, the

leaf-vertexes have no outgoing edge. The first label of suffix of vertex is its order-number of vertex-hierarchy, and the

second label of suffix of vertex is its order-number of the vertex-branch.

2) A branch , ,R i L kB  is a path from root-vertex VR,i to leaf-vertex VL,k without reverse-directed edge. The path length

 , ,R j L kL B  is the number of edge contained in the , ,R i L kB  . The maximal path length  , ,max i j l kL B  over algorithm-tree
  RT A Q is depth of the algorithm-tree   RT A Q . The number of branch, number of all path from root-vertex to

leaf-vertex,  N B of algorithm-tree   RT A Q is breadth of algorithm-tree   RT A Q . The degree of a vertex  D V is

its number of outgoing edge.

3) Path 1B and path 2B , both from root-vertex to leaf-vertex, are different each other, if and only if there exists at least

one different edge.

4) There exists multiple-root-and-multiple-leaf algorithm-tree, named as generalized algorithm-tree.

Algorithm-tree can be divided into four types:

1) single-root-and-single-leaf,

2) single-root-and-multiple-leaf,

3) multiple-root-and-single-leaf, and

4) multiple-root-and-multiple-leaf.

Some examples for the four types algorithm-tree above are below.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

4

Figure 3. Algorithm-tree for single-root-and-single/multiple-leaf

Figure 4. Algorithm-tree for multiple-root-and-single-leaf

Figure 5. Algorithm-tree for multiple-root-and-multiple-leaf

Hierarchy-branch structure, briefly HBS , is produced by problem Q itself or by algorithm  A Q . Many problems are

acted on graphs have natural HBS in intuition. And all problems which contain recursion structure also have natural
HBS .

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

5

Deterministic Turing-machine, briefly DTM and can be represented as single-root-and-single-leaf algorithm-tree, is a

special case of non-deterministic Turing-machine, briefly NTM , which can be represented as single-root-and

multiple-leaf algorithm-tree, i.e., DTM NTM .

Lemma 2.4.

1) For single-root-and-single-leaf algorithm-tree, its breadth   1N B  ;

2) For single-root-and-multiple-leaf/multiple-root-and-single-leaf algorithm-tree, breadth  N B of algorithm-tree
  RT A Q is equal to the product of  n R times  n L , i.e.,      N B n R n L  , in which  n R is root-vertex number

and  n L is leaf-vertex number of the algorithm-tree   RT A Q ;

3) For multiple-root-and-multiple-leaf algorithm-tree, if root-vertex number is s and leaf-vertex number is m , then its

breadth

   , ,

1 1

s m

R i L k

i k

N B N B 

 



Proof.

The clause 1) and clause 2) is obvious, the proofs are unnecessary. Only proof for clause 3) as below.

In induction. For root-vertex ,1RV , branch number from root-vertex ,1RV to all leaf-vertex is

   ,1 , ,1 ,

1

m

R L k R L k

k

N B N B 





For root-vertex ,2RV , branch number from root-vertex ,2RV to all leaf-vertex is    ,2 , ,2 ,

1

m

R L k R L k

k

N B N B 





Thus the total branch number in algorithm-tree   RT A Q is    , ,

1 1

s m

R i L k

i k

N B N B 

 

 . ▌

Property 2.5.

Depth  N D of algorithm-tree   RT A Q is equal to the maximal hierarchy number of algorithm-tree   RT A Q

minus one. i.e.,       1N D L B H B  

Definition 2.6.

An algorithm  A Q is named as k  homogeneous algorithm, if and only if its degree of vertex in any hierarchy and

any branch is an integer constant k . An algorithm  A Q is named as iH  homogeneous algorithm, if and only if its

degree of vertex in same hierarchy is an integer constant i . 0 k n  , 0 i n  .

Definition 2.7.

For time-complexity     T A Q f n , i.e., running time cost of  A Q , if

algorithm-set         1 2, , , lA Q A Q A Q A Q ,     i iT A Q f n ,     j jT A Q f n , and

   i jf n f n , ,i j l ; then named as    
T

i jA Q A Q .

Definition 2.8.

For space-complexity, only defined by that it is number of processor,     S A Q g n , i.e., running processor cost of

 A Q , if         1 2, , , lA Q A Q A Q A Q ,     i iS A Q g n ,     j jS A Q g n , and    i jg n g n , ,i j l ; then named as

   
S

i jA Q A Q .

2.2 Optimization for Algorithm  A Q

Definition 2.9.

If given problem Q is solvable and its valid algorithm-set           1 2, , , ,m OA Q A Q A Q A Q A Q , and

       1 2, , , m OA Q A Q A Q A Q in which terms in descending-sort by time-complexity or space-complexity, and  OA Q

is the optimal algorithm from optimization. If algorithm-set  A Q can be divided into two proper subsets  PA Q , subset

in polynomial time/space solvable, and  NPA Q , subset in non-deterministic polynomial time/space solvable, such that

     P NPA Q A Q A Q and  PA Q P ,  NPA Q NP . And if  PA Q  , then algorithm-set  A Q can be named as

 P A Q , and if  PA Q  , then algorithm-set  A Q can be named as  NP A Q , especially if    P NPA Q A Q  ,

then the problem Q can be named as unsolvable.

 P A Q is easy-to-solvable, and  NP A Q is hard-to-solvable.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

6

Lemma 2.10.

Under  NP A Q ,     P NP NP A Q    .

Proof.

There exists three cases in  A Q :

1)    A Q P P A Q   ,

2)      P NPA Q A Q A Q , and  PA Q P ,  NPA Q NP , these will imply  A Q P , hence

       P NPA Q A Q A Q P A Q   ,

3)    A Q NP NP A Q   ,

Because    NP A Q P A Q    , therefore it is impossible to optimize  A Q from  NP A Q to  P A Q , hence

implies the class NP exists. ▌

2.3 Definitions for Non-Deterministic Multiple-Tape Turing-Machine

Depth-first read means that we read the algorithm-tree each branch by each branch, i.e., each path by each path, and the

reading must go upon every branch in algorithm-tree one time and only one time.

Breadth-first read means that we read the algorithm-tree each hierarchy by each hierarchy, and the reading must go upon

every hierarchy in algorithm-tree one time and only one time.

Definition 2.11.

Breadth-first read kNTM which generating k  homogeneous algorithm can be defined as below:

kNTM  ” n Tapes and n Heads;

Input n  bit string 1w on Tape 1, and scanned by Head 1;

Input n  bit string 2w on Tape 2, and scanned by Head 2

Input n  bit string nw on Tape n , and scanned by Head n ;

Denote number of “1” in string iw by  im w , then      1 2 nm w m w m w k   

1) Head 1 scans across 1w on Tape 1, and reject if “0” is found in 1w , and accept if “1” is found in 1w ;

2) If Head 1 accept , Head 2 scans across 2w on Tape 2, and reject if “0” is found in 2w , and accept if “1” is found in

2w ;

3) If Head 2 accept , Head 3 scans across 3w on Tape 3, and reject if “0” is found in 3w , and accept if “1” is found in

3w ;

n) If Head  1n accept , Head n scans across nw on Tape n , and reject if “0” is found in nw , and accept if “1” is

found in nw ;”

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

7

Figure 6. An example of 2  homogeneous algorithm-tree generated from kNTM

2.4 Some Properties of Brute-Force Algorithm

The time-complexity calculation is corresponding to k  homogeneous/ iH  homogeneous algorithm-tree   RT A Q ,

there exists continued product of binomial below

     
1

~
n

n

j j

j

T n i T n i O n


 
   

 
， , 0n j  , where , jn i are integers .

If   1jn i  , i.e., 1 1i n  and 2 3 ni i i n    then      11 ~ 1 1T O O , or if 1 2 1ni i i n     , then    1 ~nT O n ;

If   2jn i  , i.e. 1 2 2ni i i n     , then    2 ~ 2n nT O ;

If  jn i n  , i.e., 2 0i ni i i    , then    ~n nT n O n ;

And if        1 2, 1 , , 1nn i n n i n n i       , then    
1

~ !
n

j

j

T n i O n


 
  

 
 .

For the binary search,  ~ log
2s

n
T O n
 
 
 

,  ~ log
2

n

s

n
T O n n
 
 
 

, in which, s is step number of binary search.

For the    ~ nT n O n , the function nn is power-exponent function, and its base number indicates branch-number of

algorithm  A Q , the exponent indicates hierarchy-number of algorithm  A Q .

3. P vs. NP Problem

If we name polynomial time-complexity as polynomial bound, and exponential time-complexity as exponential bound,

then the P vs. NP problem is that whether there exists an algorithm bridge from exponential bound to polynomial bound

such that P=NP. For some given problems, as if under brute-force search it is exponential time-complexity, there indeed

exists such algorithm that the problem is solvable in polynomial time, such as binary search for the certain problem that

selecting someone within random integers. But for other exponential time problems, we have no ability to solve them in

polynomial time, perhaps only we do not yet found the exact faster algorithm. With another word, all of P problems are

solvable in polynomial time, and some of NP problems are also solvable in polynomial time, but other of NP problems

seems that they are solvable only in exponential time.

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

8

Because of the incompleteness of algorithm-set, i.e., we do not know whether human has found all valid algorithms, so we

have the difficult point hard to proof in computation theory called as P vs. NP problem.

Definition 3.1.

Comprehensive equivalent complexity       ,CEC T A Q S A Q , if both   T A Q POLY , i.e.,   T A Q is polynomial

time solvable (the same below), and   S A Q POLY , i.e.,   S A Q is polynomial space solvable(the same below), then

CEC POLY , named as CEC POLY ; if at least   T A Q EXP , i.e.,   T A Q is exponential solvable (the same below),

or   S A Q EXP , i.e.,   S A Q is exponential solvable(the same below), then CEC EXP , named as CEC EXP . With

another word, CEC EXP means that at least one of   T A Q EXP and   S A Q EXP appears.

Obviously, under parallel processing, if denote processor number by s , then the case 1s  is serial processing, and the

case 1s  is parallel processing.

Definition 3.2.

For any 1s  , i.e., under both serial processing and parallel processing, if CEC POLY , named as the first-type NP

problem, denoted by 1NP ; if CEC EXP , named as the second-type NP problem, denoted by 2NP .

Obviously 1 2NP NP NP .

So, we obtain that under 1s  and   1A Q NP , there exists a mapping

             1 : , ,sg T A Q EXP S A Q POLY T A Q POLY S A Q POLY     

That is

   1 1:sg NP A Q P A Q   

Conjecture.

NP is yielded from hierarchy-branch structure, natural HBS , inside problem Q . And 1NP is yielded from the

problem Q which HBS is not coupled with string-length  n w , 2NP is yielded from the problem Q which HBS

is coupled with string-length  n w . ▌

With another word, for any 1s  , 1NP is easy-to-solvable both in polynomial time and polynomial space; 2NP is

hard-to-solvable if one of time-complexity and space-complexity is exponential, or both exponential in time-complexity

and space-complexity.

Figure 7. Venn-diagram for 1 2P NP NP 

Lemma 3.3.

 NP A Q 

Proof.

Because of the Lemma 3.3. is an existence lemma. We can proof this lemma by existence of examples.

Example 1. An example for 1NP

 
1 2

1 2

, , ,

1 2 1
n

n

n

n n n

i i i

i i i

a
  

 

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

9

1) If 1s  , the sum needs 1nn  steps, and     ~ nT A Q O n , and only brute-force search can be used.

2) If we properly divide the continued-sum into m subsets and each subset contains i elements, then the sum in each

subset needs  1i  steps, and the sum in all subsets needs  1m steps, then the total steps is
          1 1 1 1 ~n n nm i m mi n T A n O n        ;

3) If 1s m  , then time-complexity   
    

 
~

~
S A Q O s

T A Q O i ,     ~S A Q O s m ;

4) The continued-sum exists only one solution;

5) This Example 1. belongs to 1NP P .

Example 2. An example for 2NP

Consider a simple secret-code, key for password coding system, its code-element number is n , and code-length is i n ,

and we can construct i n  bit key via at first permutation of n  code-element, so we can obtain nn essential-code,

and then each time select i essential-code to bind into i n  bit key by second permutation of i essential-code ,

thus the total number of i n  bit key is     1 2 1
nn n n n n

iP n n n n i     and !
n

n

n n

n
P n .

The detail is below.

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

, , ,

, , ,

, , ,

n

n

n n n n

a a a

a a a

a a a









We select one element from each row to produce nn essential-code in column in which every essential-code is

different with others, for n  row code-element is not same as others. Then select i essential-code from nn

essential-code to bind, i.e., chain these i essential-code into i n  bit key by second permutation of i

essential-code as below,

Suppose essential-code  1 2,, , iA A A A , chain these i essential-code by the method of second permutation below

 1 2, , , !i

i IP A A A i

Thus the total number of i n  bit key is     1 2 1
nn n n n n

iP n n n n i     and !
n

n

n n

n
P n .

1) To break the key, if 1s  only brute-force search can be used, and needs computation of     ! ! !
nn n

ii P i n steps.

2) if 1ns n  , then   
    

  
~

~ !

nS A Q O n

nT A n O n i ,    1~n nS n O s n  ;

3) This Example 2. belongs to 2NP .

That existence of the two examples implies that  NP A Q  , under 1s  . And existence of the Example 2. implies

that  CEC EXP NP A Q    , under 1s  . ▌

The Lemma 3.3. shows that  NP A Q is valid both in syntax and in semantics, i.e., it is both be generated by NTM

and exists at least some real interpretations.

Theorem 3.4. (Seesaw Theorem)

1) For   2

nA n NP , 1s  , and 1ns n  ，then     ~nT A n O n ,     1~n nS A n O n 
.

In fact，we have stronger result, the clause 1) is a corollary from clause 2) below.

2) For   2

nA n NP , 1s  , and is n ,  0 1i n   , i.e., 1n i  , then     ~n n iT A n O i n  ,     ~n iS A n O n

Proof.

In induction. In hierarchy-first-read to algorithm-tree   RT A Q .

For the first hierarchy vertex must need 1 processor, at this time 0i  , then     ~n n i nT A n O i n n  ,

    0~ 1nS A n O n  ;

For the second hierarchy vertex must need 1n processors, because of the 1 processor used in the first hierarchy

have finished its work in first hierarchy and now can be used in the second hierarchy vertex, at this time 1i  , then

    i 1~ 1n n nT A n O i n n    ,     1~nS A n O n ;

For the third hierarchy vertex must need  2 1n n  processors, because of the 1n processors used in second

hierarchy have finished their work in the second hierarchy and now can be used in the third hierarchy vertex, at this

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

10

time 2i  , then     2~ 2n n i nT A n O i n n    ,     2~nS A n O n ;

For the fourth hierarchy vertex must need   3 2 1n n n   processors, because of the  2 1n n  processors used in the

third hierarchy have finished their work in third hierarchy and now can be used in the fourth hierarchy vertex, at this

time 3i  , then     3~ 3n n i nT A n O i n n    ,     3~nS A n O n ;

Thus, for the thn hierarchy vertex, at this time 1i n  , must need

     
       

1 2 3 4 2

1 2 3 2 1

1

1 ~

n n n n

i i i i n

p n n n n n n

n n n n n n O n

   

   

      

      

processors, therefore     1~n nS A n p O n  , depth of algorithm-tree   n

RT A n is  D N ,

         1 ~ 2 1n n iT A n D N n O i n n O n       . ▌

The Seesaw Theorem above means that in algorithm for 1s  , if we hope to save time, then will cost more space, and

if we hope to save space, then will cost more time.

If we see parallel processing as a special algorithm, named as  1sNP A Q , that contains 1ns n  parallel processors,

this Theorem 3.4. shows us that if for 2NP there exists a mapping

             1 : , ,n n n n

sf T A n EXP S A n POLY T A n POLY S A n EXP     

That is

   1 2 2:sf NP A Q NP A Q   

This means that parallel processing is no ability to become  2NP A Q into  P A Q .

Theorem 3.5.

For  1 2sA Q NP  , algorithm  2 1sNP A Q is the fastest algorithm in time-complexity, but the worst cost algorithm in

space-complexity.

Proof.

Theorem 3.4. has show that there exists a mapping 1sf  such that

             1 : , ,n n n n

sf T A n EXP S A n POLY T A n POLY S A n EXP     

Now we will proof only that algorithm  2 1sNP A Q is the fastest algorithm in time-complexity.

Recall the proof process in Theorem 3.4., each processor works immediately at first time therefore no waste time can

be found, and for algorithm  nA n only brute-force search can be used,   2

nA n NP , therefore algorithm  2 1sNP A Q

is the fastest algorithm for time-complexity   nT A n . ▌

Corollary 3.6.

For 1s  , 2is  ，and   22nA NP , then     2 ~ 1 2n n iT O D N   ,    2 ~ 2n iS O .

Proof.

In induction. In hierarchy-first-read to algorithm-tree   2n

RT A .

For the first hierarchy vertex must need 1 processor, at this time 0i  , then     2 ~ 2 2n n i nT A O i   ,

    0~ 2 2 1n iS A n O   ;

For the second hierarchy vertex must need 2 1 processors, because of the 1 processor used in the first hierarchy have

finished its work in first hierarchy and now can be used in the second hierarchy vertex, at this time 1i  , then

    12 ~ 2 1 2n n i nT A O i     ,     12 ~ 2 2n iS A O   ;

For the third hierarchy vertex must need  22 2 1  processors, because of the 2 1 processors used in second hierarchy

have finished their work in the second hierarchy and now can be used in the third hierarchy vertex, at this time 2i  ,

then     22 ~ 2 2 2n n i nT A O i     ,     22 ~ 2 4n iS A O   ;

For the fourth hierarchy vertex must need   3 22 2 2 1   processors, because of the  22 2 1  processors used in the

third hierarchy have finished their work in third hierarchy and now can be used in the fourth hierarchy vertex, at this

time 3i  , then     32 ~ 2 3 2n n i nT A O i     ,     32 ~ 2 8n iS A O   ;

Thus, for the thn hierarchy vertex, at this time 1i n  , must need

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

11

     
       

1 2 3 4 2

1 2 3 2 1

2 2 2 2 2 2 1

2 2 2 2 2 2 1 ~ 2

n n n n

i i i i i n

p

O

   

    

      

      

processors, therefore     1 12 ~ 2 2n i n nS A p O     , depth of algorithm-tree   2n

RT A is  D N ,

         2 1 2 ~ 1 2 1n n iT A D N O n n O n        . ▌

Corollary 3.7.

For 1s  , and  1 2!sA n NP  , obvious  1 !sA n is iH  homogeneous algorithm, then      ~ 1 !T n O i n i  ！ ,
    ~ 1 !S n O n i ！ .

Proof.

In induction. In hierarchy-first-read to algorithm-tree   !RT A n .

For the first hierarchy vertex must need 1 processor, at this time 0i  , then     ! ~T A n O n ,     ~ 0! 1S A n O ！ ;

For the second hierarchy vertex must need n processors, because of the 1 processor used in the first hierarchy have

finished its work in first hierarchy and now can be used in the second hierarchy vertex, at this time 1i  , then
     ! ~ 1 1T A n O n  ,      ! ~ 1 1S A n O n   ;

For the third hierarchy vertex must need  1n n processors, because of the n processors used in second hierarchy

have finished their work in the second hierarchy and now can be used in the third hierarchy vertex, at this time 2i  ,

then        ! ~ 1 2 1T A n O i n n n n     ,        ! ~ 1 2S A n O n n n n n    ;

For the fourth hierarchy vertex must need   1 2n n n  processors, because of the  1n n processors used in the third

hierarchy have finished their work in third hierarchy and now can be used in the fourth hierarchy vertex, at this time
3i  , then

         ! ~ 1 2 3 1 2T A n O i n n n n n n       ,            ! ~ 1 2 1 1 3S A n O n n n n n n n n       ;

Thus, for the thn hierarchy vertex, at this time 1i n  , must need

         

 

1 2 1 2 1

2 !

p n n n n i n n n n i

n i

        

  

processors, therefore      ! ~ 2 !S A n p O n i   , depth of algorithm-tree   !RT A n is  D N ,
       ! 1 1 ~T A n D N O n   . ▌

Theorem 3.8.

If  f n is a function and  n g m , for 1s  and   1sA Q f n NP   , then   
 

   1 1

n g m

s sA f n A f g m


  ,
     O n O f g m .

Proof.

Reduction to absurdity.

For function  n g m , just only bit-number transformation function, do not change any properties of algorithm  A Q

but bit-number function, of cause there exists a reverse-function  1m f n such that m satisfies definition of

bit-number,

If m does not satisfy definition of bit-number, this is contradiction with that bit-number of string w , i.e., string-length

 n w , is only one restriction, i.e., it is finite.

Therefore Theorem 3.8. has been proofed. ▌

Corollary 3.9.

For 1s  and  1 1sA Q NP  , If   2

2 2

j nin n , and 2 1in n , in which both , 0i j  and both ,i j integer constant, then

2 2

2

log

log log

n n
j

i n



， and

2 2

2 2

log

log log

1 2

n n

i n nn n  ，
2 1

2

n

ji n


 .

Proof.

For  1 1sA Q NP  , there does not exist natural hierarchy-branch structure, i.e., natural HBS within problem Q , therefore

there does not exist sequential logic structure within problem Q , so we can treat input 1n freely. If we make s i , then

http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 4; 2020

12

from   2

2 2

j nin n we obtain below

 2 2 2log log logj i n n n  , then
2 2

2

log

log log

n n
j

i n



,

And from 2 1in n , and ,   2

2 2

j nin n , then
2 1

2

n

ji n


 . ▌

4. Conclusion

Because of P vs. NP problem is a hard problem in algorithm analysis, therefore it is an interesting problem.

Author divides the NP problem into two types, 1NP and 2NP . 1NP is the class of both time-complexity and

space-complexity are polynomial, 2NP is the class of at least one of time-complexity and space-complexity is

exponential. And if we see parallel processing and serial processing as an unified processing, i.e., processor number is
s , and obvious that under if 1s  then serial processing, and if 1s  then parallel processing. And proofs that there

exists mapping 1sg  such that 1 1:sg NP P  , and mapping 1sf  such that 1 2 2:sf NP NP  , therefore under 1s  ,

2NP P NP  , obviously under 1s  , 1 2NP NP NP P NP   .

References

Bell, J. L., & Machover, M. (1977). A course in mathematical logic. Elsevier.

Jon, K., & Eva, T. (2006). Algorithm Design. Pearson Education Inc, Reprint by POSTS & TELECOM PRESS,

Copyright 2019, ISBN: 978-7-115-49592-1.

Machael, S. (2018). Introduction to the Theory of Computation (3rd ed.). Cengage Learning Asia Pte Ltd.

Huth, M., & Ryan, M. (2004). Logic in Computer Science: Modelling and reasoning about systems. Cambridge

university press. https://doi.org/10.1017/CBO9780511810275

Thomas, J. (2002). Set theory(The third millennium edition, revised and expanded) Berlin, Springer, 2002.

Jiang, Y. (2019). Mathematical foundation for dialectical logic. Lambert Academic Publishing, Singapore, 2019.

Manin, Y. I. (2009). A course in mathematical logic for mathematicians (Vol. 53). Springer Science & Business Media.

https://doi.org/10.1007/978-1-4419-0615-1

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1007/978-1-4419-0615-1

