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Abstract 

P vs. NP problem is very important research direction in computation complexity theory. In this paper author, by an 

engineer’s viewpoint, establishes universal multiple-tape Turing-machine and k  homogeneous multiple-tape 

Turing-machine, and by them we can obtain an unified mathematical model for algorithm-tree, from the unified model for 

algorithm-tree, we can conclude that computation complexity for serial processing NP problem if under parallel 

processing sometimes we can obtain P NP  in time-complexity, but that will imply another NP, non-deterministic 

space-complexity NP, i.e., under serial processing P NP  in space-complexity, and the result is excluded the case of NP 

problem that there exists a faster algorithm to replace the brute-force algorithm, and hence we can proof that under 

parallel processing time-complexity is depended on space-complexity, and vice verse, within P vs. NP problem, this point 

is just the natural property of P vs. NP problem so that “ P NP ”.  

Keywords: P vs. NP problem, universal Turing-machine, parallel processing, comprehensive equivalent complexity, 

complexity-class 1NP  and 2NP  

1. Introduction 

P vs. NP problem is an important problem in computation complexity theory. It is from both time-complexity and 

space-complexity of deterministic/non-deterministic Turing-machine. The complexity is main property of an algorithm, 

hence the complexity becomes to an important standard in algorithm analysis. The P problem is the problem that can be 

solved in deterministic/non-deterministic Turing-machine by an algorithm which time-complexity/space-complexity is 

polynomial, and the NP problem is the problem that can be solved in deterministic/non-deterministic Turing-machine 

which time-complexity or space-complexity is non-deterministic polynomial, only exponential time-complexity or 

exponential space-complexity, possibly both exponential time-complexity and exponential space-complexity. P problem 

is easy, and NP problem is hard. Many NP problems have to waste so long time, or so many processors, that the 

problem is unsolvable in actual fact. We have many reasons to believe that some of current NP problems will belong to 

P problem, only we have not yet found exact faster algorithm to them. Author, stands in engineer’s viewpoint not 

mathematician’s, try to solve P vs. NP problem.     

For a given problem, we can construct mathematical model, possibly not only one, and then algorithms, also possibly 

not only one, and at last we can program it by some computer-languages. To these/this algorithms/algorithm we must do 

the algorithm analysis to optimize it. Complexity, includes time-complexity and space-complexity, is just main method 

to estimate algorithm cost. Thus P vs. NP problem is yielded from complexity analysis of algorithm. The hard point of 

NP is that whether it is natural difficulty, intrinsic difficulty, or artificial imposed difficulty, i.e., whether exponential 

time-complexity or exponential space-complexity can be transformed into polynomial time-complexity or polynomial 

space-complexity by algorithm optimization, so that NP can be become into P.   

2. Some General Concepts  

A given problem Q  is that we want to know something/object, in practice, that never have we known about Q . 

Turing-machine is mathematical model of computation, and algorithm is an instruction set of operation logical 

relationship between input and output.  

2.1 Some Definitions 

Turing-machine is a system that consists of infinite length string-tape for input and output, and read-write head with 

ability to read from tape and write on tape, and three-state of “accept””reject””halt”, and instruction mapping named as 

transition function.  

A string w  is a sequence consisted of alphabet of Boolean binary  0 1， . The bit-number of string w , named as  n w , 

is the string-length. A set L  of all string w ,  L w , can be named as language. Any language L  which can be 
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accepted by a Turing-machine TM  will yield an algorithm A , with another word  ,A L TM . 

Definition 2.1.  

Universal multiple-tape Turing-machine UTM  with ability to generating any algorithm can be defined as below: 

UTM  ” n  tapes and n  read-write-heads; 

Input n  bit string 1 2# # # nw w w  on Tape 1, and scanned by Head 1; 

Input n  bit string 2 1 2 2 2,# # # nw w w， ，  on Tape 2, and scanned by Head 2; 

 

Input n  bit string 1 2 ,# # #n n n nw w w， ，  on Tape n , and scanned by Head n ; 

Any one from Head 2 to Head n  is dependent on Head 1, if and only if there exists an assignment 1, ,m i jH H  when 

Head 1 scans on 2 3, , , nw w w , in which i  is Tape i  and j  is ,i jw , i.e., ,i jw  are children of  1,mw  in tree-graph 

meaning; 

1) Head 1 scans across 1w  on Tape 1, and reject if “0” is found in 1w , and accept if “1” is found in 1w ; 

2) Head 1 scans across 2 3, , , nw w w  on Tape 1, and reject if “0” is found in anyone of  2 3, , , nw w w  on Tape 1, and 

accept if “1” is found in anyone of 2 3, , , nw w w  on Tape 1, and these 1s have assignments to certain ,i jH ; 

3) Head 2 scans across string 2,1 2,2 2,, , , nw w w  on Tape 2, if Head 1 accept, and if Head 1 accept is dependent on Head 2 

under assignment, then Head 2 accept if “1” is found in 2,1 2,2 2,, , , nw w w , and Head 2 reject if “0” is found in 

2,1 2,2 2,, , , nw w w ; 

4) Head 3 scans across string 3,1 3,2 3,, , , nw w w  on Tape 3, if Head 2 accept, and if Head 1 accept is dependent on Head 3 

under assignment, then Head 3 accept if “1” is found in 3,1 3,2 3,, , , nw w w  , and Head 2 reject if “0” is found in 

3,1 3,2 3,, , , nw w w ; 

n ) Head n  scans across string ,1 ,2 ,, , ,n n n nw w w on Tape n , if Head  1n  accept, and if Head 1 accept is dependent on 

Head n  under assignment, then Head n  accept if “1” is found in ,1 ,2 ,, , ,n n n nw w w , and Head n  reject if “0” is found in 

,1 ,2 ,, , ,n n n nw w w ; ” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. An algorithm-tree example generated from UTM   

All of algorithms, each of them can be seen as an algorithm-tree, can be represented by the UTM . With another word, the 
UTM is the generalized model for algorithm such that to analyse any algorithm. 
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Definition 2.2.  

If given problem Q  is solvable by algorithm A , denoted by  A Q . An algorithm  A Q  is valid in syntax, if and only 

if exists a Turing-machine UTM  to produce  A Q . And an algorithm  A Q  is valid in semantics, if and only if exists 

at least one real interpretation, i.e. one given real problem Q  can be solvable by the algorithm  A Q . Obviously an 

algorithm  A Q  is valid, if and only if it is valid both in syntax and in semantics.  

Definition 2.3.  

If exists      1 2,A Q A Q A Q , then named that algorithm  1A Q  is equivalent to algorithm  2A Q  at problem Q  and 

denoted by    1 2

Q

A Q A Q . 

Any UTM  for problem Q  , for certain input and output, is corresponding to an algorithm  A Q , and any algorithm is 

corresponding to a directed tree-graph named as algorithm-tree and denoted as   RT A Q . i.e., 
    Q RUTM A Q T A Q  . 

An example for algorithm-tree as below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An example for algorithm-tree 

Remarks for algorithm-tree:  

1) Algorithm-tree   RT A Q  is a directed tree graph without directed-cycle. In which the vertex VR,1 is root-vertex, such 

vertex possibly not only one and root-vertexes have no incoming edge. The vertexes VL,i are leaf-vertex, the 

leaf-vertexes have no outgoing edge. The first label of suffix of vertex is its order-number of vertex-hierarchy, and the 

second label of suffix of vertex is its order-number of the vertex-branch.  

2) A branch , ,R i L kB  is a path from root-vertex VR,i to leaf-vertex VL,k  without reverse-directed edge. The path length 

 , ,R j L kL B   is the number of edge contained in the , ,R i L kB  . The maximal path length  , ,max i j l kL B  over algorithm-tree 
  RT A Q  is depth of the algorithm-tree   RT A Q . The number of branch, number of all path from root-vertex to 

leaf-vertex,  N B of algorithm-tree   RT A Q  is breadth of algorithm-tree   RT A Q . The degree of a vertex  D V  is 

its number of outgoing edge.  

3) Path 1B  and path 2B , both from root-vertex to leaf-vertex, are different each other, if and only if there exists at least 

one different edge. 

4) There exists multiple-root-and-multiple-leaf algorithm-tree, named as generalized algorithm-tree.   

Algorithm-tree can be divided into four types:  

1) single-root-and-single-leaf,  

2) single-root-and-multiple-leaf,  

3) multiple-root-and-single-leaf, and  

4) multiple-root-and-multiple-leaf.  

Some examples for the four types algorithm-tree above are below. 
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Figure 3. Algorithm-tree for single-root-and-single/multiple-leaf 

 

Figure 4. Algorithm-tree for multiple-root-and-single-leaf 

 

Figure 5. Algorithm-tree for multiple-root-and-multiple-leaf  

Hierarchy-branch structure, briefly HBS , is produced by problem Q  itself or by algorithm  A Q . Many problems are 

acted on graphs have natural HBS  in intuition. And all problems which contain recursion structure also have natural
HBS .  
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Deterministic Turing-machine, briefly DTM and can be represented as single-root-and-single-leaf algorithm-tree, is a 

special case of non-deterministic Turing-machine, briefly NTM , which can be represented as single-root-and 

multiple-leaf algorithm-tree, i.e., DTM NTM . 

Lemma 2.4.  

1) For single-root-and-single-leaf algorithm-tree, its breadth   1N B  ;   

2) For single-root-and-multiple-leaf/multiple-root-and-single-leaf algorithm-tree, breadth  N B  of algorithm-tree 
  RT A Q  is equal to the product of  n R  times  n L , i.e.,      N B n R n L  , in which  n R  is root-vertex number 

and  n L  is leaf-vertex number of the algorithm-tree   RT A Q ; 

3) For multiple-root-and-multiple-leaf algorithm-tree, if root-vertex number is s  and leaf-vertex number is m , then its 

breadth 

   , ,

1 1

s m

R i L k

i k

N B N B 

 

  

Proof. 

The clause 1) and clause 2) is obvious, the proofs are unnecessary. Only proof for clause 3) as below. 

In induction. For root-vertex ,1RV , branch number from root-vertex ,1RV  to all leaf-vertex is  

   ,1 , ,1 ,

1

m

R L k R L k

k

N B N B 



  

For root-vertex ,2RV , branch number from root-vertex ,2RV  to all leaf-vertex is    ,2 , ,2 ,

1

m

R L k R L k

k

N B N B 



   

Thus the total branch number in algorithm-tree   RT A Q  is    , ,

1 1

s m

R i L k

i k

N B N B 

 

 .        ▌ 

Property 2.5.  

Depth  N D  of algorithm-tree   RT A Q  is equal to the maximal hierarchy number of algorithm-tree   RT A Q  

minus one. i.e.,       1N D L B H B    

Definition 2.6.  

An algorithm  A Q  is named as k  homogeneous algorithm, if and only if its degree of vertex in any hierarchy and 

any branch is an integer constant k . An algorithm  A Q  is named as iH  homogeneous algorithm, if and only if its 

degree of vertex in same hierarchy is an integer constant i . 0 k n  , 0 i n  . 

Definition 2.7.  

For time-complexity     T A Q f n , i.e., running time cost of  A Q , if 

algorithm-set         1 2, , , lA Q A Q A Q A Q ,     i iT A Q f n ,     j jT A Q f n , and 

   i jf n f n , ,i j l ; then named as    
T

i jA Q A Q . 

Definition 2.8.  

For space-complexity, only defined by that it is number of processor,     S A Q g n , i.e., running processor cost of

 A Q , if         1 2, , , lA Q A Q A Q A Q ,     i iS A Q g n ,     j jS A Q g n , and    i jg n g n , ,i j l ; then named as 

   
S

i jA Q A Q . 

2.2 Optimization for Algorithm  A Q  

Definition 2.9.  

If given problem Q  is solvable and its valid algorithm-set           1 2, , , ,m OA Q A Q A Q A Q A Q , and 

       1 2, , , m OA Q A Q A Q A Q  in which terms in descending-sort by time-complexity or space-complexity, and  OA Q  

is the optimal algorithm from optimization. If algorithm-set  A Q  can be divided into two proper subsets  PA Q , subset 

in polynomial time/space solvable, and  NPA Q , subset in non-deterministic polynomial time/space solvable, such that 

     P NPA Q A Q A Q  and  PA Q P ,  NPA Q NP . And if  PA Q  , then algorithm-set  A Q  can be named as 

 P A Q , and if  PA Q  , then algorithm-set  A Q  can be named as  NP A Q , especially if    P NPA Q A Q  , 

then the problem Q  can be named as unsolvable.  

 P A Q  is easy-to-solvable, and  NP A Q  is hard-to-solvable. 
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Lemma 2.10.  

Under  NP A Q ,     P NP NP A Q    . 

Proof. 

There exists three cases in  A Q : 

1)    A Q P P A Q   , 

2)      P NPA Q A Q A Q , and  PA Q P ,  NPA Q NP , these will imply  A Q P , hence 

       P NPA Q A Q A Q P A Q   , 

3)    A Q NP NP A Q   , 

Because    NP A Q P A Q    , therefore it is impossible to optimize  A Q  from  NP A Q  to  P A Q , hence 

implies the class NP  exists.                                                 ▌ 

2.3 Definitions for Non-Deterministic Multiple-Tape Turing-Machine 

Depth-first read means that we read the algorithm-tree each branch by each branch, i.e., each path by each path, and the 

reading must go upon every branch in algorithm-tree one time and only one time.  

Breadth-first read means that we read the algorithm-tree each hierarchy by each hierarchy, and the reading must go upon 

every hierarchy in algorithm-tree one time and only one time. 

Definition 2.11.  

Breadth-first read kNTM which generating k  homogeneous algorithm can be defined as below: 

kNTM  ” n  Tapes and n  Heads; 

Input n  bit string 1w  on Tape 1, and scanned by Head 1; 

Input n  bit string 2w  on Tape 2, and scanned by Head 2 

 

Input n  bit string nw  on Tape n , and scanned by Head n ; 

Denote number of “1” in string iw  by  im w , then      1 2 nm w m w m w k     

1) Head 1 scans across 1w  on Tape 1, and reject if “0” is found in 1w , and accept if “1” is found in 1w ; 

2) If Head 1 accept , Head 2 scans across 2w  on Tape 2, and reject if “0” is found in 2w , and accept if “1” is found in 

2w ; 

3) If Head 2 accept , Head 3 scans across 3w  on Tape 3, and reject if “0” is found in 3w , and accept if “1” is found in 

3w ; 

 

n ) If Head  1n  accept , Head n  scans across nw  on Tape n , and reject if “0” is found in nw , and accept if “1” is 

found in nw ;” 
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Figure 6. An example of 2  homogeneous algorithm-tree generated from kNTM  

2.4 Some Properties of Brute-Force Algorithm 

The time-complexity calculation is corresponding to k  homogeneous/ iH  homogeneous algorithm-tree   RT A Q , 

there exists continued product of binomial below 

     
1

~
n

n

j j

j

T n i T n i O n


 
   

 
， , 0n j  , where , jn i are integers . 

If   1jn i  , i.e., 1 1i n  and 2 3 ni i i n     then      11 ~ 1 1T O O , or if 1 2 1ni i i n     , then    1 ~nT O n ; 

If   2jn i  , i.e. 1 2 2ni i i n     , then    2 ~ 2n nT O ; 

 

If  jn i n  , i.e., 2 0i ni i i    , then    ~n nT n O n ; 

And if        1 2, 1 , , 1nn i n n i n n i       , then    
1

~ !
n

j

j

T n i O n


 
  

 
 . 

For the binary search,  ~ log
2s

n
T O n
 
 
 

,  ~ log
2

n

s

n
T O n n
 
 
 

, in which, s  is step number of binary search.  

For the    ~ nT n O n , the function nn  is power-exponent function, and its base number indicates branch-number of 

algorithm  A Q , the exponent indicates hierarchy-number of algorithm  A Q . 

3. P vs. NP Problem 

If we name polynomial time-complexity as polynomial bound, and exponential time-complexity as exponential bound, 

then the P vs. NP problem is that whether there exists an algorithm bridge from exponential bound to polynomial bound 

such that P=NP. For some given problems, as if under brute-force search it is exponential time-complexity, there indeed 

exists such algorithm that the problem is solvable in polynomial time, such as binary search for the certain problem that 

selecting someone within  random integers. But for other exponential time problems, we have no ability to solve them in 

polynomial time, perhaps only we do not yet found the exact faster algorithm. With another word, all of P problems are 

solvable in polynomial time, and some of NP problems are also solvable in polynomial time, but other of NP problems 

seems that they are solvable only in exponential time.   
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Because of the incompleteness of algorithm-set, i.e., we do not know whether human has found all valid algorithms, so we 

have the difficult point hard to proof in computation theory called as P vs. NP problem.  

Definition 3.1. 

Comprehensive equivalent complexity       ,CEC T A Q S A Q , if both   T A Q POLY , i.e.,   T A Q  is polynomial 

time solvable (the same below), and   S A Q POLY , i.e.,   S A Q  is polynomial space solvable(the same below), then

CEC POLY , named as CEC POLY ; if at least   T A Q EXP , i.e.,   T A Q  is exponential solvable (the same below), 

or   S A Q EXP , i.e.,   S A Q  is exponential solvable(the same below), then CEC EXP , named as CEC EXP . With 

another word, CEC EXP  means that at least one of   T A Q EXP and   S A Q EXP appears. 

Obviously, under parallel processing, if denote processor number by s , then the case 1s   is serial processing, and the 

case 1s   is parallel processing.  

Definition 3.2.  

For any 1s  , i.e., under both serial processing and parallel processing, if CEC POLY , named as the first-type NP 

problem, denoted by 1NP ; if CEC EXP , named as the second-type NP problem, denoted by 2NP .  

Obviously 1 2NP NP NP .  

So, we obtain that under 1s  and   1A Q NP , there exists a mapping 

             1 : , ,sg T A Q EXP S A Q POLY T A Q POLY S A Q POLY       

That is 

   1 1:sg NP A Q P A Q     

Conjecture.  

NP  is yielded from hierarchy-branch structure, natural HBS , inside problem Q . And 1NP  is yielded from the 

problem Q  which HBS  is not coupled with string-length  n w , 2NP  is yielded from the problem Q  which HBS  

is coupled with string-length  n w .                                           ▌ 

With another word, for any 1s  , 1NP  is easy-to-solvable both in polynomial time and polynomial space; 2NP  is 

hard-to-solvable if one of time-complexity and space-complexity is exponential, or both exponential in time-complexity 

and space-complexity. 

 

Figure 7. Venn-diagram for 1 2P NP NP   

Lemma 3.3.  

 NP A Q    

Proof.  

Because of the Lemma 3.3. is an existence lemma. We can proof this lemma by existence of examples. 

Example 1. An example for 1NP  

 
1 2

1 2

, , ,

1 2 1
n

n

n

n n n

i i i

i i i

a
  

   
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1) If 1s  , the sum needs 1nn   steps, and     ~ nT A Q O n , and only brute-force search can be used.  

2) If we properly divide the continued-sum into m  subsets and each subset contains i  elements, then the sum in each 

subset needs  1i   steps, and the sum in all subsets needs  1m  steps, then the total steps is 
          1 1 1 1 ~n n nm i m mi n T A n O n        ; 

3) If 1s m  , then time-complexity   
    

 
~

~
S A Q O s

T A Q O i ,     ~S A Q O s m ;  

4) The continued-sum exists only one solution; 

5) This Example 1. belongs to 1NP P .   

Example 2. An example for 2NP  

Consider a simple secret-code, key for password coding system, its code-element number is n , and code-length is i n , 

and we can construct i n  bit key via at first permutation of n  code-element, so we can obtain nn  essential-code, 

and then each time select i  essential-code to bind into i n  bit key by second permutation of  i  essential-code , 

thus the total number of i n  bit key is     1 2 1
nn n n n n

iP n n n n i      and !
n

n

n n

n
P n . 

The detail is below. 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

, , ,

, , ,

, , ,

n

n

n n n n

a a a

a a a

a a a









 

We select one element from each row to produce nn  essential-code in column in which every essential-code is 

different with others, for n  row code-element is not same as others. Then select i  essential-code from nn  

essential-code to bind, i.e., chain these i  essential-code into i n  bit key by second permutation of  i  

essential-code as below,  

Suppose essential-code  1 2,, , iA A A A , chain these i  essential-code by the method of second permutation below 

 1 2, , , !i

i IP A A A i  

Thus the total number of i n  bit key is     1 2 1
nn n n n n

iP n n n n i      and !
n

n

n n

n
P n .    

1) To break the key, if 1s   only brute-force search can be used, and needs computation of     ! ! !
nn n

ii P i n  steps. 

2)  if 1ns n   , then   
    

  
~

~ !

nS A Q O n

nT A n O n i  ,    1~n nS n O s n  ; 

3) This Example 2. belongs to 2NP .  

That existence of the two examples implies that  NP A Q   , under 1s  . And existence of the Example 2. implies 

that  CEC EXP NP A Q    , under 1s  .                          ▌ 

The Lemma 3.3. shows that  NP A Q  is valid both in syntax and in semantics, i.e., it is both be generated by NTM  

and exists at least some real interpretations.     

 

Theorem 3.4. (Seesaw Theorem)   

1) For   2

nA n NP , 1s  , and 1ns n  ，then     ~nT A n O n ,     1~n nS A n O n 
.  

In fact，we have stronger result, the clause 1) is a corollary from clause 2) below. 

2) For   2

nA n NP , 1s  , and is n ,  0 1i n   , i.e., 1n i  , then     ~n n iT A n O i n  ,     ~n iS A n O n  

Proof.  

In induction. In hierarchy-first-read to algorithm-tree   RT A Q .  

For the first hierarchy vertex must need 1  processor, at this time 0i  , then     ~n n i nT A n O i n n  , 

    0~ 1nS A n O n  ; 

For the second hierarchy vertex must need 1n  processors, because of the 1  processor used in the first hierarchy 

have finished its work in first hierarchy and now can be used in the second hierarchy vertex, at this time 1i  , then 

    i 1~ 1n n nT A n O i n n    ,     1~nS A n O n ; 

For the third hierarchy vertex must need  2 1n n   processors, because of the 1n  processors used in second 

hierarchy have finished their work in the second hierarchy and now can be used in the third hierarchy vertex, at this 
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time 2i  , then     2~ 2n n i nT A n O i n n    ,     2~nS A n O n ; 

For the fourth hierarchy vertex must need   3 2 1n n n    processors, because of the  2 1n n   processors used in the 

third hierarchy have finished their work in third hierarchy and now can be used in the fourth hierarchy vertex, at this 

time 3i  , then     3~ 3n n i nT A n O i n n    ,     3~nS A n O n ;   

 

Thus, for the thn  hierarchy vertex, at this time 1i n  , must need  

     
       

1 2 3 4 2

1 2 3 2 1

1

1 ~

n n n n

i i i i n

p n n n n n n

n n n n n n O n

   

   

      

      
 

processors, therefore     1~n nS A n p O n  , depth of algorithm-tree   n

RT A n  is  D N , 

         1 ~ 2 1n n iT A n D N n O i n n O n       .                                      ▌ 

The Seesaw Theorem above means that in algorithm for 1s  , if we hope to save time, then will cost more space, and 

if we hope to save space, then will cost more time. 

If we see parallel processing as a special algorithm, named as  1sNP A Q , that contains 1ns n   parallel processors, 

this Theorem 3.4. shows us that if for 2NP  there exists a mapping  

             1 : , ,n n n n

sf T A n EXP S A n POLY T A n POLY S A n EXP        

That is 

   1 2 2:sf NP A Q NP A Q     

This means that parallel processing is no ability to become  2NP A Q  into  P A Q . 

Theorem 3.5.  

For  1 2sA Q NP  , algorithm  2 1sNP A Q  is the fastest algorithm in time-complexity, but the worst cost algorithm in 

space-complexity. 

Proof. 

Theorem 3.4. has show that there exists a mapping 1sf   such that  

             1 : , ,n n n n

sf T A n EXP S A n POLY T A n POLY S A n EXP       

Now we will proof only that algorithm  2 1sNP A Q  is the fastest algorithm in time-complexity. 

Recall the proof process in Theorem 3.4., each processor works immediately at first time therefore no waste time can 

be found, and for algorithm  nA n  only brute-force search can be used,   2

nA n NP , therefore algorithm  2 1sNP A Q  

is the fastest algorithm for time-complexity   nT A n .                     ▌ 

Corollary 3.6.  

For 1s  , 2is  ，and   22nA NP , then     2 ~ 1 2n n iT O D N   ,    2 ~ 2n iS O . 

Proof. 

In induction. In hierarchy-first-read to algorithm-tree   2n

RT A .  

For the first hierarchy vertex must need 1  processor, at this time 0i  , then     2 ~ 2 2n n i nT A O i   , 

    0~ 2 2 1n iS A n O   ; 

For the second hierarchy vertex must need 2 1 processors, because of the 1  processor used in the first hierarchy have 

finished its work in first hierarchy and now can be used in the second hierarchy vertex, at this time 1i  , then 

    12 ~ 2 1 2n n i nT A O i     ,     12 ~ 2 2n iS A O   ; 

For the third hierarchy vertex must need  22 2 1  processors, because of the 2 1  processors used in second hierarchy 

have finished their work in the second hierarchy and now can be used in the third hierarchy vertex, at this time 2i  , 

then     22 ~ 2 2 2n n i nT A O i     ,     22 ~ 2 4n iS A O   ; 

For the fourth hierarchy vertex must need   3 22 2 2 1    processors, because of the  22 2 1   processors used in the 

third hierarchy have finished their work in third hierarchy and now can be used in the fourth hierarchy vertex, at this 

time 3i  , then     32 ~ 2 3 2n n i nT A O i     ,     32 ~ 2 8n iS A O   ;   

 

Thus, for the thn  hierarchy vertex, at this time 1i n  , must need  
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     
       

1 2 3 4 2

1 2 3 2 1

2 2 2 2 2 2 1

2 2 2 2 2 2 1 ~ 2

n n n n

i i i i i n

p

O

   

    

      

      
 

processors, therefore     1 12 ~ 2 2n i n nS A p O     , depth of algorithm-tree   2n

RT A  is  D N , 

         2 1 2 ~ 1 2 1n n iT A D N O n n O n        .                                    ▌ 

Corollary 3.7.  

For 1s  , and  1 2!sA n NP  , obvious  1 !sA n  is iH  homogeneous algorithm, then      ~ 1 !T n O i n i  ！ , 
    ~ 1 !S n O n i ！ . 

Proof. 

In induction. In hierarchy-first-read to algorithm-tree   !RT A n .  

For the first hierarchy vertex must need 1  processor, at this time 0i  , then     ! ~T A n O n ,     ~ 0! 1S A n O ！ ; 

For the second hierarchy vertex must need n processors, because of the 1  processor used in the first hierarchy have 

finished its work in first hierarchy and now can be used in the second hierarchy vertex, at this time 1i  , then 
     ! ~ 1 1T A n O n  ,      ! ~ 1 1S A n O n   ; 

For the third hierarchy vertex must need  1n n processors, because of the n  processors used in second hierarchy 

have finished their work in the second hierarchy and now can be used in the third hierarchy vertex, at this time 2i  , 

then        ! ~ 1 2 1T A n O i n n n n     ,        ! ~ 1 2S A n O n n n n n    ; 

For the fourth hierarchy vertex must need   1 2n n n   processors, because of the  1n n  processors used in the third 

hierarchy have finished their work in third hierarchy and now can be used in the fourth hierarchy vertex, at this time 
3i  , then  

         ! ~ 1 2 3 1 2T A n O i n n n n n n       ,            ! ~ 1 2 1 1 3S A n O n n n n n n n n       ;   

 

Thus, for the thn  hierarchy vertex, at this time 1i n  , must need  

         

 

1 2 1 2 1

2 !

p n n n n i n n n n i

n i

        

  
 

processors, therefore      ! ~ 2 !S A n p O n i   , depth of algorithm-tree   !RT A n  is  D N , 
       ! 1 1 ~T A n D N O n   .                                                          ▌ 

Theorem 3.8. 

If  f n  is a function and  n g m , for 1s   and   1sA Q f n NP   , then   
 

   1 1

n g m

s sA f n A f g m


  , 
     O n O f g m .   

Proof. 

Reduction to absurdity. 

For function  n g m , just only bit-number transformation function, do not change any properties of algorithm  A Q  

but bit-number function, of cause there exists a reverse-function  1m f n  such that m  satisfies definition of 

bit-number,  

If m  does not satisfy definition of bit-number, this is contradiction with that bit-number of string w , i.e., string-length

 n w , is only one restriction, i.e., it is finite. 

Therefore Theorem 3.8. has been proofed.                                                      ▌ 

Corollary 3.9. 

For 1s   and  1 1sA Q NP  , If   2

2 2

j nin n , and 2 1in n , in which both , 0i j   and both ,i j  integer constant, then 

2 2

2

log

log log

n n
j

i n



， and 

2 2

2 2

log

log log

1 2

n n

i n nn n  ，
2 1

2

n

ji n


 . 

Proof. 

For  1 1sA Q NP  , there does not exist natural hierarchy-branch structure, i.e., natural HBS within problem Q , therefore 

there does not exist sequential logic structure within problem Q , so we can treat input 1n  freely. If we make s i , then 
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from   2

2 2

j nin n we obtain below 

 2 2 2log log logj i n n n  , then 
2 2

2

log

log log

n n
j

i n



, 

And from 2 1in n , and ,   2

2 2

j nin n , then 
2 1

2

n

ji n


 .                                         ▌ 

4. Conclusion 

Because of P vs. NP problem is a hard problem in algorithm analysis, therefore it is an interesting problem. 

Author divides the NP problem into two types, 1NP  and 2NP . 1NP  is the class of both time-complexity and 

space-complexity are polynomial, 2NP  is the class of at least one of time-complexity and space-complexity is 

exponential. And if we see parallel processing and serial processing as an unified processing, i.e., processor number is 
s , and obvious that under if 1s   then serial processing, and if 1s   then parallel processing. And proofs that there 

exists mapping 1sg   such that 1 1:sg NP P  , and mapping 1sf   such that 1 2 2:sf NP NP  , therefore under 1s  , 

2NP P NP  , obviously under 1s  , 1 2NP NP NP P NP   . 
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