Journal of Mathematics Research; Vol. 12, No. 3; June 2020
ISSN 1916-9795  E-ISSN 1916-9809
Published by Canadian Center of Science and Education

Optimal Control Problem for the Weak Nonlinear Equation of Thin Plate
With Control at the Coefficient of Lowest Term

Khayala I. Seyfullaeva
Correspondence: Sumgait State University, Sumgait, 43rd block, AZ5008, Azerbaijan

Received: March 1, 2020  Accepted: April 16, 2020  Online Published: April 26, 2020
doi:10.5539/jmr.v12n3p31 URL.: https://doi.org/10.5539/jmr.v12n3p31

Abstract

The paper deals with an inverse problem of determining the right-hand side of the linear equation of oscillations of thin
plates. The problem is reduced to the optimal control problem. Differentiability of the functional is studied. Necessary
condition of optimality is derived.
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1. Introduction

It is known that the oscillations of thin plates are described by the differential equations with partial derivatives of the
fourth order. For more detail, the reader is referred to (Komkov, 1975) and (Arman, 1977). Therefore, the study of optimal
control problems for the equation of the thin plate is of great theoretical and practical importance, see (Kabanikhin, 2009).
One of the approaches for solving the inverse problems is the optimization method. The essence of this method lies in the
fact that the inverse problem is reduced to the optimal control problem and this new problem is investigated by the
methods of optimal control theory.

The study of such problems started from the end of the twentieth century and is now intensively studied by many authors.
See for examples: (Kabanikhin, 2009), (Alifanov, Artyukhin, & Rumyantsev, 1988), (Sadek, Adali, Sloss, & Bruchjr,
1992), (Blanton & Sadek, 1994), (Tong, Williams, & Agrawal, 1998), (X. Zhang & J. Zhang, 1998), (Deineka, 2006) and
(Bouchitte & Fragala, 2007).

2. Formulation of the Problem
Our needs to find the pair of functions (u,v) €U xU_, from the relations

o 6°D ou  8°Dé%u  8°D Bl
p¥+A(DAu)+(1—v)(2 oy oy N o yjﬂ)(x, y)U +[ulu = 0
= f(X’ y’t)’ (X' y,t)EQ,
au(x, y,0

uey0) = otx), D), (xy) e @

u(O,y,t):O,%:O,u(x,o,t):o,%:o, 0<x<a 0<t<T,
3)

u(a,y, ) =0, M@V o ik py =0, MY o g<y<p, 0<t<T,

OX oy

J. K(X’ y,t)U(X, y!t)dt = g(X, y) y (4)

where (x,y)eQ={(x,y):0<x<a,0<y<b}, te©@T), Q=Qx(0,T), p(X,y) is a density of the mass at

the point (X, y¥), h(X,Y)is the heath thickness of the plate in the point (X, y), u(X,Y,t)- is deflection of the plate in
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Eh®

the point (X, Y) atthe moment t, A is Laplace operator with respectto X, Y, D "0

cylindrical rigidity,
v (0<v< 1j Poisson’s coefficient, E >0-Young's modulus, U = {u (x,y,t)eC[o, T]W ), at eCo,TL (Q)}
Uu = {D(X: Y) €L, (Q) 14, <v(x )<y ae. on Q} ) 0 (X, y) EV\722 @ My elL, (@ , KxytelL,(Q

g(x,y) e L,(©) are given functions, h(X, y)is a sufficiently smooth given function, @, b, o, £, T are given

positive numbers.

As a generalized solution of the problem (1)-(3) for each function u(x, y) from L,(€), we consider the function
u(x,y,t)eU such that for any Vu(X,y,t)eU, 5(x,y,T)=0 the integral identity

2 2 2 2 2 2
j{ A 017 + DAUAy + (1- v)[ ngy ;(;y _%% —gy?g;;}n}dxdydt—

© ()
~[p 1(x,y)n(x,y,O)dxdy+jvuqudyduﬂu\uqudydt:_[f(x,y,t)ndxdydt.
Q Q Q Q
is fulfilled.
This problem we reduce to the following optimal control problem: to find the minimum of the functional
2
J, () = J'D'K(x v, u(x, y, t;o)dt — g(x, y)} dxdy, (6)
52 0

subject to (1)-(3). The function »(X,y) is called a control. By U =u(X,Y,t;v) we denote the generalized solution of the
problem (1)-(3) corresponding to the control v(X, Y).

We regularize the problem (1)-(3), (6) by the following way: instead of the functional (6) consider the next one

3,(0) = Jo(0) + 2 [ (x, y)eixdy, ™

where a >0 is a positive number.

Note that by any fixed control v(X, y) boundary problem (1)-(3) has unique generalized solution from U (Quliyev &
Seyfullayeva, 2013).

In the considered problem all condition for existence of optimal control are fulfilled (Lions, 1972). Therefore the new
optimal control problem (1)-(3), (7) also has unique solution.

3. Existence of the Optimal Control
Theorem 1. Under the imposed conditions on the problem data, there exists an optimal control in problem (1)-(3), (7).
Proof. Let’s {vn}e U,qs be a minimizing sequence, i.e.

Inlin% J(,) = Dlgrll}‘ad J(v)
It is obvious that

||vn||L2 (@ Sconst . 8)

Therefore by (8), for solutions of problem (1)-(3) corresponding to v, , we obtain the estimation

un

ot

VV (@) +

<const vt e[0,T]. 9)

L (©)

By (8) and (9), property of weak compactness in the Hilbert spaces and imbedding theorem, it is possible to consider, that
as N—oo
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v, —> v, weaklyin L,(Q),

ou, _ou, Ou,
u, = Uy, -2,

uO
%
OX ox oy oy

strongly in L, (Q),

n n

o o oy oy

Take into account last relations in the definition of the generalized solution for the problem (1)-(3), by v =v,, U=U_,
passing to limitas N — 90, we have

2 2 2
[ _p o O b A Ay + () 280 OU _9°D, 0'u_4°D, 0'u 7 |dxdydt -
o ot at oxdy oxdy  oxE oy’ oyt ox

—[p (X, Y)n(x, y,0)dxdy + [ vou,ndxdydt + [|u,|u,ndxdydt = [ f(x, y, t)zdxdydt
Q Q Q Q

2 2 2 2 2
o’u, 0d°u, Oou _>8u0 o°u auO weakly in L, (Q)

Therefore,
lim J(v,) = inf J(0) =J(v,),

It shows that v, (X,y) provides the minimum to functional (7), i.e. is an optimal control.
The completes the proof.

4. Differentiability of the Functional (7) and Necessary and Sufficient Optimality Conditions
Let us introduce the adjoint problem to (1)-(3), (7) problem for the given control (X, y,t) € L,(Q):

2 2 (a2 2 (52D 2 (52D
pa—Z/+A(DAl//)+(1—v) 2 o [ D o [oD —V |- o |oD —5V +1)1//+2‘u‘1//:
ot Oxoy 8X6'y Cx oy’ 5'y OX

T (10)
xytu (x Yy u(x, y,tydt - g(xy)} (xy)eQ,
vy =0, pPET o, (xy)en, (1)
w(0,y,t) =w(a, y,t) =0, az//(g;(y,t):ay/(g;(y,t)zol 0<x<a, 0<t<T,
w(x0,1) = y(x,b,) =0, ‘3‘/’(;;/0'0 - a‘”(;)'/b't) -0, 0sy<h, 0<t<T. -

From the conditions imposed on the data of the problem (1)-(3), (7) follows that this adjoint problem has unique
generalized solution from the space W,”*(Q) (Quliyev & Seyfullayeva, 2013).

To derive the necessary conditions for optimality in the considered problem we take two arbitrary admissible controls
v(X,y) and L(X,Y)+0U(X,Y). The corresponding solutions of problem (1)-(3) are denoted by U(X,Y,t;v) and
u(x,y,t;o+0v) =u(x,y,t;v) +ou(Xx, y,t). Then du(x,y,t) =u(x,y,t;o+dv) —u(x,y,t;v)is a solution of
the boundary value problem

pa (5u) + A(DAGY) + ()| 2 82D 82(su) _az? az((szu) az? az((szu)}+
OXoy oxoy  Ox° oy oy: ox (13)
+ (0 + 0v)du + 2Ju + Gduldu = —udv
ou(x,y,0)=0, W =0, (14)
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o(ou(0, y,t)) _ o(du(a, y,t))

ou(0,y,t) =du(a, y,t) =0, 5 5 =0,
6((5u(x):) 1) a(u(x b t) (15)
ou(x,0,t) = du(x,b,t) =0, = 2 =0,
oy oy
Let’s show that
oou
o] Sl eclo] a0

For this purpose, we use Faedo-Galerkin’s method. Take the basis { (X, y)} from w?(), where the system
{cu (%, y)}I _, isorthonormal in L,(€2) and the approximate solution for the problem (14)- (16) search in the form

su™(x,y,t) = ZCiN (te; (x,Y)
i=1
from the equalities
o*ou™
[ p=—7—;(x, y)dxdy+ j DASU™ Aw; (x, y)dxdy +

Q

0?D o%ou™  8°D o%ou™  8°D d%ouM
+@1-v)f (28@ ody o7 o o ac Ja)j(x, y)dxdy + (17)
+ [ (v+6v)duw; (x, y)dxdydt + ZHU +6ou ‘5u”a)j (x, y)dxdy =
Q Q
= —[udve, (x, y)dxdy + [ f(x, y,tho;(x, y)dxdy, 1<j<N,
Q Q

Ny 9N _
¢ (0)=0, dtci t) =0.

t=0

Multiplying both sides of (17) by %cj“ (t) andsumover J from1to N, we get

Ipaéu oou™ 65u
o ot
2 2 N 2 2 N 2 2 N N
R PR i Lo i i WL
OXoy Oxoy — Ox° oy oy’ ox ot
+J.(u+§u)5ua dxdydt+2_ﬂu+6?5u ‘é‘u” oa” dxdy =
Q
=—J'uéoa(5u dxdydt+ff X, Y,t) 65u dxdy.
Q

It gives that

2
;;j{p(aéal:h‘ J + D(Aéu“ )ﬂdxdy:
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’D a%u™  o°D o%ou™  8°D d%su™ \osu™
=—(1-v)[| 2 ——— dxdy —
oXoy oOxoy  Ox° oy oy oOx ot
—f(u+(5u)5u 8t dxdydt 2”u+05u ‘5u” 65(; dxdy —
—fu& —dxdydt+jf X, Y,t) %dxdy
If to integrate this equality over t by the imposed conditions, we get
N 2
JKW] (o y,t))z}dxdyg
Q
t N
SZIHUH@ N‘dedydw
0Q at
¢ 2|oou™ (x, y,1) aou™ (x, y,1)
+2| |0 ———="“dxdyds + | | |u|dv 7dxd ds<
o =% y f [luloo y
2} [luf? M dxdyds+”‘6u”‘4dxdyds+
0Q at 0Q
t t N 2
+”\u\2\§v\2dxdyds+” dou”(x,y,H) dxdyds <
0Q 0Q at

SC{i[(&uN(x,y,s))Z+[‘%u gt(’y’s)] +(55U g((,y,s)J J{@(Su g,y,s)J .\

[Pt (P ] (80 i, acior
aXZ 8X8y 6y2 L, (Q)

where C the constant independent on the estimating quantities and admissible controls.
Due to equivalency of the norms in V\/} (©) We obtain

f[(&u“(x, y,t))2+ oou™ (x, y,t)j +[65UN(x, y,t)] +[5§UN(x, y,t)j +(A5UN(X, y,t))z}jxdys

o a X oy

| oou™ (x,y,s) 2+ oou™ (x,y,s) 2+ oou™ (x,y,s) 2+
ot Ox oy

o*ou™(x,y, s) azéu’“(x, Y,s) ’ N o*ou™ (x,y,s)
ox? oxoy oy’®
By virtue of well-known inequality (Ladijenskaya, 1973)

f[(azagNj J{azau’“j +[525L:N] }dxd <.[F ou® +8 ou® } dxdy
2 OX oxoy oy 8y

IA
O
ot—

0

] ]dxdyds+ CH&)HL @

and by (18), we have
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N > (aou™ (x,y,1) ’ oou™ (x, y,t) ’ oou™ (x, y,t) ’
[l o o[ Bfpna ][] s
+(625u“‘ (z<, y,t)J2 +[625UN (x, y,t))2 J{aZ(SuN (;(, y’t)T]dxdys

X oxoy oy

e 2] (22 ]

o%ou™ (x, y,s) 825uN(x, Y,S) ’ . o%ou™ (x,Y,s)
ox? axdy oy

j ]dxdyds+ CH&UHL @

Application of the Gronwall’s lemma leads to

" o (aou" (v, ) (au" (y ) (aout (xy.0))
j{(&u (x,y,t))+( . ]+[ > j+[ 5 j+

Q

(19)
26 N 2 25 N 2 25 N
. o°ou (;<,y,t) . o°ou” (x, y,1) . o°ou (x,y,t) dxdy<CH51)H vteoT]
oX OXoy 3)/2 L(©Q)’
From this integrating over t in (19), we get
oou™ 2
‘ wee | ot Lo SCH&DHLzm)v vte[o,T]. (20)

As follows from this inequality from the sequence {6u” (, y.t)} one can chose a subsequence (which is also denoted by
{au™ (x,y,t)}) that converges weakly in U to some function du(x,y,t) by N—>w.

Thus, by the weak lower semi-continuity of the norm in the Banach space, (20) implies estimate (16).

Theorem 2. Let’s all conditions of the Theorem 1 be satisfied. Then functional (7) is continuously Frechet differentiable
on U,q and its differential in the point Vo eU,, atthe increment & eL,(Q), v+dv €U, is defined by the expression

T
(J: (@), 00) = f[av(x, y)+ [u(x, y, tw(x, y,t)dt}b‘vdxdy.
Q 0
Proof. Let’s calculate the increment of the functional J o (v):

A, (0)=J,(0+)-J, (v) =

i @ K(u+ou)dt—g(x, y)] dxdy—% i U Kudt — g(x, y)J dxdy+% I[(“ o)t — o2t =

l\)\l—\

2
= jw Kudt — g(x, y)]} K§udt}dxdy+ ; | [ | K(Sudtj dxdy + a j vodt + = j (dv)?dt,
Q 0 0 Q\o
T
A, (v) = j [ j Kudt — g(x, y)j j K sudxdydt +or j voudt + R, 1)
Q\ o0 0 Q

where

% | (j K(sudtj dxdy + = [ (6v)2dt

0

is the remainder term.
Since AU is a generalized solution of the problem (13)-(16), for arbitrary function #(x,y,t)eU, »(x,y,T)=0,
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n(0,y,t)=0, o =0,7(x,0,t) =0, & =0,
n(a,y,t)=0,W=o,n(x,b,t)=o,%:o.

is valid integral identity
2 2 2 2/@ 2 2/
il 009 01 o suyag+ 1) 28D 200 0 [2>a (azu) 3 [2)6 (azu) .
a ot oxdy oxoy oxE oy: oy’ ox
+ (v + dv)oun + 2Ju + Béu\éun}dxdydt = —f udondxdydt.
Q

© (22)
Similarly, since w(X,Y,t) is a solution of the problem (10)-(12), for any function x(x,y,t)eU, x(x,y,00=0,

oy (x,0,1) _
oy

200,y,8) =0, w =0, 7(x,0,t) =0, 0,

Z(a, y‘t) :O’M:Ol l(X,b,t) :()lM:Ol
X oy

we have

0°’D 0%y @D 'y 9°D 3y
ooy ooy Ty oyt o

Oy Oy
—p VX | DAY +(L-v)| 2
I{ P o DAY+ V){

} +oyy + ZU(//)(}dXdydt—
Q

: (23)
=—[K(x, y,t){ [ KOy, Hu(x y,tydt - g(x, y)}xdxdydt--
Q 0

Let w(X,Y,t) =77(X, y,t) and let Au(x,y,t) =;((X, y,t) in (22) and (23), respectively. After subtracting (22)
from (23), we obtain

T T
IU Kudt — g(x, y)Jj Koudxdydt = [u(x, y, t)dvy (, y, t)dxdydt +
Q\o 0 Q

(24)
+ [ wousvdxdydt + jzﬂu +00u| - \u\]y/éudxdydt.
Q Q
Then from (21) and (24) follows
A, (v) = J[(w(x, y) +]’u(x, Y, Dw(X, y,t)dt}éudxdy+ R, (25)
where
R=R +R,,
R, = [ydusvdxdydt + | Zﬂu +60u| - \u\]u/éudxdydt .
Q Q
By (16), we obtain
R < Cllov]? (26)

L,(Q) *

Then from formula for increment of the functional (25) follows that differential of functional (7) is calculate by the
formula

T
(3(),00) = [| aw(x,y) + [u(x, y, hy(x, y,t)dt |dvdxdy . (27)
Q 0
Then as follows from (27) the gradient of the functional has a from
gradJ (v) =u(x, y,t)w(x, y,t) + ao(X, y) .
Thus due to known theorem from (Vasilyev, 1981) in order to the control function v, (X, y) was optimal, it is necessary
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fulfillment of the inequality

Q

I[av* (X, y)+ }u(x, vy, (X, y,t)dt}(u(x, y)—v,(x y))dxdy>0, VoeU,,. (28)

Since the functional (7) is strongly convex in U, and the problem (1)-(3) is linear, condition (28) is also sufficient for the
optimality.

Thus the following theorem is proved.

Theorem 3. Let’s the conditions of the Theorem 1 be satisfied. Then for the optimality of the control v, €U, for
problem (1)-(3), it is necessary the validity of the inequality

I{av* (% y) + [u(x, y, tp(x, y,t)dt}(v(x, y) -0, (X, y))dxdy =0

Q
for arbitrary v=0(X,y) €U, where u,(X,y,t) and w,(xy,t) are solutions of problems (1)-(3), (10)-(12), respectively.
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