Journal of Mathematics Research; Vol. 12, No. 2; April 2020
ISSN 1916-9795  E-ISSN 1916-9809
Published by Canadian Center of Science and Education

Feedback Systems on Extended Hilbert Space-Normality and
Linearization

Messaoudi Khelifa
Correspondence: Messaoudi Khelifa, Faculty of MI, Department of Mathematics, University of Batna2 05000, Algeria

Received: January 27, 2020  Accepted: February 25, 2020  Online Published: March 6, 2020
doi:10.5539/jmr.v12n2p28 URL: https://doi.org/10.5539/jmr.v12n2p28

Abstract

The study of the normality of a feedback system on an extended Hilbert space has been made. The results of approximation
of the solutions of such a nonlinear system by another linear are also established. This study represents an extension of
the work of (Vaclav Dolezal, 1979), on a Hilbert space.
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1. Introduction

In recent decades, special attention was devoted, to the study and the development of systems analysis, more precisely:
electrical engineering, telecommunications and economic systems around the world. The fundamental publication of
(G.Zames, 1963), has shown the important role of functional analysis in the study of nonlinear systems. (Vaclav Dolezal,
1979) introdced the feedback systems described by certain special types of operators, defined on appropriate spaces. He
has established, a series of existence and uniqueness results, of the solutions of this system on a Hilbert space H. He
obtained among others conditions of causality, stability and Lipschitz continuity. In addition, (Vaclav Dolezal, 1980;
1990) demonstrated, how these results are applicable, in several domains such that: control theory, network theory,
solving the Hammerstein equation...etc. The techniques used by the author are based, on the surjectivity theorem, of the
monotonic and coercive maximal operators of (R.T.Rockafellar, 1970). Since, the resolution of some special cases of
feedback systems, on normed spaces, is often a difficult task, (Vaclav Dolezal, 1979) introduced, the notion of extended
Hilbert space He, and obtained, a normality result for a feedback system, on this space. Morover, (Vaclav Dolezal, 1991),
showed how to use such a space, in the study of stability robustness, and the sensitivity of this system. In the present
work, we propose to formalize and generalize in He, the results obtained in H. One of our fundamental results is that, the
behavior of [A}, A,] is completely determined, by the inverse of some application M, = I +A,(a+A;) (see (2)). Note that,
in the case where the operators A; and A; are not linear, and if (u;.u2) — (e1.e2), then (e, e2) = (M;zlul, up + AlM,jzlul).
If one of the two operators is linear, the writing of the solution (ej, €3), can take forms, that do not necessarily depend, on
the inverse of the operator M,,,, (section 4, (4)&(5)). These forms, play an important role in the study of the sensitivity
(Vaclav Dolezal, 1990), and give suitable estimates of the solutions in the sense of section 3.2. For more details, on
the study of the inverse of such an operator, which is non linear, one consult (Vaclav Dolezal, 1998; 1999; 2003). It is
then natural, to proceed to the approximation method. Therefore, to find an approximate solution of [A, A;], supposed
nonlinear, by one linearizes, in the neighborhood of zero. We then consider, a linear [AO,A(Z)] on He, and prove that, if
(ur,u2) — (e1.e2) € H? and (uy uy) - (e?’eg) € H?, where (u;.uy) € H3, with [|uy|| < r, [[ua]] < 7 (r > 0) and (e e2), (e?’e(z))

the respective solutions of [A}, A,] and [AO, Ag]. There exists, ki1, k12, k21, k22, positive real constants such that
ller = €3]] < kut sl + Kz lleeall

and
lle2 = €3]] < kot llus | + Koz lfueal -

Our work is organized as follows: in section 2, we recall some definitions concerning, the existence and uniqueness of
solutions of feedback systems on a vector space, the definitions of an extended Hilbert space, the spaces M and Lip.
Section 3 is reserved for our results of, normality and linearization of nonlinear feedback systems on H,. Section 4
contains the reminders of the results used in this paper.
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2. Definitions and Notations

Let H be a real vector space, 28 the set of parts of H, A an application of H into 2" and D(A) = {x € H; Ax # 0}, the
domain of A. We say that, A is an operator, if D(A) = H and Ax is a singleton for all x in H.

Definition 2.1.
(@) We call feedback system on H, and we write F'S, any pair [A|, A>] of applications of H in 27.

(b) We say that, an element (e e) (error) of H? is a solution of [A;, A,], corresponding to the given (u1,up) (input) of H?
and we write (u; up) > (ey.ey), if there exists (y1y2) (output) in Aje;XAze; such that:

{ €1 =ur =y (1

ey = Uy + )1
The meaning of the preceding notions, can be understood for exemple, from a physical point of view, by looking at the
above representative schema
Definition 2.2. We say that the F'S [A;,A;] on H is:
(i) Resoluble, if for all (u; uy) € H?, there exists a solution (e1.e2) € H?, corresponding to (u;,u>).
(if) Unambiguous, if each solution is unique.
(iii) Normal, if it is resoluble and unambiguous.

The existence and uniqueness results of the solutions of [A;, A,] over H, are based on the mapping M,, : H — 2! defined
for all (a, x) € H?, by

M,x = x+ Asx(a + A x). 2)

Let H be a Hilbert space, <, > the scalar product over H, ||.|| the norm induced by the scalar product, H, a vector space
containing H, and P={P,; @ € I} a non-empty family of linear operators on H,. For all P € P, x will denote an element
of Hp := PH.

Definition 2.3. We say that, H, is an extended Hilbert, or an extension of H, if the following axioms are verified:
()P =P YPec®P.

(i) (PyPy = PPy and PP, € P), VP, P, € P.

(iii) If x € H,, then Px € H, VP € P.
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(iv) If VP € P, the element x¥ is in Hp, and Pyx*V = Pyx'F?) VP, P, € P, where Py = P, P,. Then, there exists x in H,,
such that x*) = Px, VP € P.

(v) If x € H, then ||Px|| < ||x]|, VP € P.

i) If x € H, and ||Px|| < a, VP € P, where a > 0. Then x € H and ||x|| < a.
It is straightforward to cheque that:

(a)VPy, Py € P, PyP, = PyP, = Py, where Py = P, P;.

(b)VP e P, PH, = Hp, and Hp is a closed subspace of H.

(¢)If x € H, and Px =0 forall P € P, then x = 0.

(d) The element x € H, in axiom (iv) is unique.

(e) (Px,y) = {x, Py), for every x,y € H and every P € P.

Exemple2.1. Let R be the set of real numbers, R” (n € N*), n times the product of R, and C (Rﬁ R"™) the vector space
of the continuous functions x : R, — R". C(R,;R") denotes the subspace of the functions of C (R,;R"), which are
bounded, for the norm defined by: for all x € C (R,; R"?), ||x|| = sup {|x(?)| ; # € R} where |.| is a norm of R".

For the family P= {Pa : C(R:R") - C(R;R"); @ € R, | where, forall @ € R,

(Pox) (1) = {.x(n)if t € [0, o[ ;x(@) if 1 € [, +00[,

C (R,4;R™) is an extended space of C (R,; R").

Exemple2.2. Let L, (R,) be the space of the functions r € R, + x(¢) € R, which are locally square integrable on R,
and L, (R,) the subspace of the functions x, which are square integrable on R,.

We define the family P = {P, : I (R,) - Ly (R,); @ € R, ] by:

(Pox) () = {.x() if t € [0,a];0if ¢ € Ja, +00[ .

forall @ € R,. L, (R,) is an extended space of L, (R,).
Definition 2.4. An operator A : H, — H, is called causal if, YP € , PA=PAP.

Definition 2.5. An normal F'S [A;,A2] on H,, is called causal if, for (u; u,) — (e1.e2) and (u/]’u’z) — (ellye;), such that
VP € P, Puy = Pu, and Puy = Pu,, then Pe; = Pe| and Pe; = Pe,.

Definition 2.6. We say that, an operator A : H — H is hemicontinuous in xy € H, if for all w € H and for any
real sequence ¢, — 0; the sequence A(x( + t,w) converges weakly to A(xp) in H. A is hemicontinuous on H, if it is
hemicontinuous in any point of H.

Before stating the results of normalities, we introduce the two following spaces:

(Nx1 — Nxz, x1 — x2)

M={N : H— H such that uy := inf 5 > —00
X1, X2 € H llxr = x2]
X1 # X2
and
Nx; — N
Lip={ N : H — H such that ||N|* := sup N = N
Xix € H [lx1 = 2l
X1 F X2

It is clear that Lipis ¢ Mand YM,N € M,Va >0
()M + N,aN e M, upyren = py + py and gy = apy.
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(if) N is monotone (respectively strictly monotone) iff uy > 0 (respectively py > 0).

On the other hand, VM, N € Lip, Vo, € R

@@0) INII* = |unl, [IN]I* = 0 and ||N||" = 0 iff N is constant.

(iv) @N + M, NM € Lip, llaNI|I" = | INII*, IN + MII" < [INII* + [IM|" and INM||* < INII" IM][" .
(v) If N is linear, then N is bounded iff N € Lip, in this case ||[N||* = ||N]|.

3. Fundamental Results

This section is divided into two subsections. In the first one, we give and prove two normality results. In the second, we
have formalize and obtained linearization results.

3.1 Normality of the Feedback System on H,
The first result of normality in this work is:

Theorem 3.1. Let A,A>:H, — H, be two causal operators, whose A; is linear, and for all P € $, A|p and A,p the
respective restrictions of PA; and PA, to Hp. We assumed that for any P €

(i) Aip € M, A;p is hemicontinuous and y4,, < 0.
(it) Aop € M, and pg4,, > 0.
(iii) ftasy + pia, 1420l > 0.
Then, the F'S [A1,A>] on H, is normal and causal.
-1 ;o ro . ’ ’
If |Aspll < K, (ptayy + a, 1A2pIP) < : (u112) o (ere2) € H? and () 11,) > (e} ;) € H2, with (uy_u}, up-uy) € H?
then (el,e/] s ez,e/z) € H? and
||el,e/1“ < Ak ”ul,u/ln + AK? ||u2,u’2|

If in addition, A,p € Lip and ||A;p||" < k¥, then

||ez_e/2“ < Akk* ”“1—”1“ + (1 + /lk*kz) ||u2_u2|| ,

where A, k and k* are positive real constants.
Proof. Let for all P € P, Np = I + AypA;p. The operator Np satisfies the conditions of lemma 4.3, so it is invertible,

* -1
the inverse N;,l € Lip and HN;IH < ||Azpl| (quP + Ua,, ||A2p||2) . Moreover Np is the restriction to Hp of the operator
PN, with N = I + A,A; and it is causal. Indeed, since for all P € P, P[P(I + AA1) — (I + PA;A)] = 0, then PN =
P(I + AyA;) =1+ PAyA, (see (c) in section 2). So, forall P € P, PN = I + PA,PA| =1 + AypA1p = Np and

PNpP

P(I+ApA1p) P = P(P + AypAipP) = P(P + PAyPA, P)
P(P+ P?APA;) = P* (I + PAyPA) = P (I + AgpAy,) = PNp.

We deduce (cf lemma 4.3, lemma 4.6), that the operators N, N;1 are invertible and causal. According to corollary 4.2 and
(4) the FS [A1,A>] is normal,

(er,e2) = ((1 + A2A) Ny — Asun), up + A(I + AxAy) (g — Azuz))
therefore
(Pel,Pe’l) = (N;l (Puy —Azpuz),N;l (Plxt/l —AZPM,Z))

and

IPerep]l = V5! (Pur = Aspu) = N3 (P = Asps )|

< |~ H(Pm — Aspuy) — (Pu'l - Azpu;)H
B A e

< kA (Hm - u1|| + [|A2p]] ”’42 - "‘2”)

B P
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where the axiom (v) was used.

According to the axiom (vi), e 1_e’1 € H and
ler-e; )l = el =] + 442 s = ).

If now Pu; = Pl/1 and Pu, = Pu’z, the causality of A, and the first inequality above leads to Pe; = Pe'1 ,. According to (1)
ey = Aje; + up and 6/2 = Ale/l + ”/2’ then Pe, = PAey + Puy = PA;Pe; + Puy and Pe/2 = PAle'1 + Pu/2 = PAlPe/1 + Pu/z.
So Pe; = Pe, and the FS [A}, Ay] is causal. On the other hand,

Pe;, = Pup+ PA(I+AA) (uy — Ay)
= Puy + PAPU + AA) " (1 — Asu)
= Pup + PA P + AxA) ' P(uy — Asu)
= Puy +A1pNp' (Puy — Agpuy)

likewise
Pey = Puy + A1pNp' (Puy = Aypusy).
therfore
IPeer-e)]| < flua = airf| +
+ ”AlPN;l (Puy = Agpuz) — A1pNy' (Pt Azpu’z)H

< fun = ]|+ il NG| (1 = ) + Ao (1 - )|

<z = sl + A relt” [NE|7 (s = 0| + APl [y = )

< | = | + ARk (||u1 —uy|| + K |Ju - u2“)

IA

AR [y = uy || + (1 + K%K7)

juz = 0]

hence e, — ¢, € H and

||ez - 6/2” < Akk* ||u1 - u/] “ + (1 + /lkzk*) |u2 - u’2” .
The second result of normality in this work is:

Theorem 3.2. Let Aj,Ay:H, — H, be two causal operators whose A; is linear, and for all P € P, A;p and A,p, the
respective restrictions of PA; and PA; to Hp. It is assumed that, for any P €

(@) A1p € Lip and py,, > 0.
(it) Aap € M, Ayp is hemicontinuous and py,, < 0.
(i) i, + M A1l > 0.
Then the F'S [A;,A>] on H, is normal and causal.
Moreover, if [|Ap|| < k, (,uA“, + Ha,p ||A“o||2)_1 <A (uup) = (erep) € Hf and (“;,“'2) - (e’l’e'z) € H? with (ul_url, ug_u'z) €
H?, then, (el,ell, ez,elz) € H?,
ler-e | < Ak lun = [+ @+ A0 23, o = ]

and / , )
leo-esll = 28 o =+ (1 (14 20%) ) oo ]

where A and k are two positive real constants.

Proof. Let z € H, and be the two operators M,, B,:H, — H, defined respectively by: M, x = x + Ax(z + A;x) and
B.x = z+ Ajx for all x € H,. It is clear that M, = I + A;B, and that, for all P € P, PB, = P(z+ Ay) = Pz+ PA|P =
P(z+AP) = PB,P and

PM_P

P(I+A,B.)P = P(P+A,B.P) = P> + PA;,B.P
P? + PA,PB.P = P*> + PA>PB, = P + PA>B,
P(I +AsB,) = PM.,
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therfore B, and M, are causal. With the same argumentation used in the proof of theorem 3.1, we have on Hp, for all
Pe®P, PM, = P(I + A,B;) = I + PA;,B, and therfore PM, = I + PA,PB, = I + AypBp, = Np, where Bp, = 7 + A;p.
Then the operator Np is the restriction to Hp of the oprerator PM, and Np satisfy the conditions of lemma 4.4, so it is

. . . — . — * 71 .
causal, invertible, the inverse NP1 € Lip, and ||NP1|| < ||Arpll (uA]P + Ha,p ||A1p||2) < Ak (Lip € M, pa,, = up,, and
lA1pll = lIBpll"). Tt is deduced (cf, lemma 4.1) that the operator M, is invertible. According to corollary 4.2, the F'S
[A1,A;] is normal and the solution is given (see (3)) by

(e1,€2) = (M uy,up + A\ M uy).

Using (5), on get

(e1.€)) = (N7 + AT'u) = A7 e, N7ty + AT'up) — AT'1y)).
where N = I + A»A, so
PN~ (Puy + PAT'ur) — PN™'(Pu; + PAT'w))|
+[[PAT iy — PAT o
NG s = | + (I3[ + 1) Azl ez = ]
Ay =y | + (1 Ak i, [z = ]|

1Pter = e

IA

IA

IA

where lemma 4.1 was used. From where
||el - e/1|| < /lk“m - ”1” +(1+ /lk)ug:P ”“2 - u2||

Using the first inequality above, we deduce the causality of the F'S [A;, A>] as in the proof of theorem3.1. On the other
hand

(62,6’/2) = (Ltz +A1N_1(M1 + AIluz) —Al_luz,
iy + AN, + AT u)) - A7)

therefore
Plex-¢)) = P(ur—uy)+PAPN (uy + A7 ur)
—PAINT () + AT'uy) + PAT! (u) — 1)
= P(uy— )+ AipNp' Plur + A7 ')
—A1pNp' P, + AT u)) + ATpP () - )
= P(uy—uy)+ A1pNp' (Puy + PAT' )
—A1pNp (P, + PAT' 1) + ATpP (u) — 1)
= P(ua—uy)+ A1pNp' (Puy + ApPur)
—A1pNp (P, + ATLPUY) + ATpP (u) — 1)
and
IPe2 =] < [l = ]| (1 + [JA7])
+||A1pNp (Puy + ATpPuz) — A pNp' (Puy + ATpPus)||
< (0 I e = Vs o =
AN AT ez = o]
< A fuy =]+ (1 (1 4+ A2) ) ) [l = ]
From where
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”ez - 6/2” < A? “u1 - u/] ” + (1 + (1 + /Ucz)u/}]lp) ||u2 - u/2“ .

3.2 Linearization of FS[Ay, A2] on H,

Let a non linair 'S [A;, A;] on H,. The main idea in this subsection is to linearize [A;, A>] in the neighbourhood of the
zero. We then consider a linear F'S [A?, Ag] on H, and prove that, if (u;u) — (e1.e2) € H? and (uy uy) (8(1),62) € H?

where (1) u) € HI% with [lu]], |luz]l < r (r > 0) and (ey.e2), (e(l) e(z)) the respective solutions of [A}, A;] and [AO, Ag] . There
existes ki, k12, kp1 and kp, positive real constants such that

ller = €8] < Ky llarll + Kz ol
and

lle2 = €3]] < kot llusl + Koz ezl -

The inequalities above are given by theorem 3.3. To have suitable estimates, in the sense that the solutions of the two
systems become sufficiently close. It is assumed that, one of the two operators of [A, A;] is linear, this is the subject of
theorems 3.4 and 3.5. Before establishing the first linearization result of this part, we need the following two notions:

Definition 3.1.

(i) We say that a normal F'S [A;, A2] on H, is Lipschitz continuous for the first inputs, if there are positive numbers A,
and Ay; such that ||e1 - e’1|| < A ||u1 - u1|| and ||e2 - e’2|| < A “ul - “1“ where (u; u*) - (e1.e3), (u/l’u*) > (€, ¢,) and
U — ”/1 € H.

(i) We say that a normal F'S [A;, A,] on H, is Lipschitz continuous for both inputs, if there are positive numbers Ay, 42,
A1 and Ay, such that:

lex = eyl < A = 2| + 12 [l =
and

le2 = eal] < Aan s = 2| + o2 [z =

where (u; uy) — (ej.e2), (“/1,”’2) = (e'1 e’z) and (u1 - u’l,uz - “z) e H>.
Let in the Hilbert space Hp be the closed ball B,, centered in zero with radius r > 0. Then we have:

Theorem 3.3. Let A}, A, : H, — H, be the causal operators. For all P € P, A|p, A;p, the respective restrictions of PAj,
PA, to Hp. Assume that:

(a) Ayp, Asp € Lip for any P € P.

(b) There exist a linear and causal operator A? : H, — H, such that: for all x € B,,

(410 = 43,) | < @ 1

-1
where for all P € P, AY,, is the restriction of PA? to Hp, 0 < a; < pa,, and v = #211,, (uAy, + Ha,, ||A1p||*72) )

(c) There exist a linear and causal operator Ag : H, = H, such that: for all x € B(jiyja,,1)r

(42 - 42,) 4| < @2 1
where for all P € P, Agp the restriction of PAg to Hp and a, > 0.
(d) (s, — a2) + (ua,, — @1) (ars 1A1pl) 7> > 0. Then:
(i) The FS’s [A;, A;] and [AO, Ag] on H, are normal and Lipschitz continuous for the first inputs.

@) If (uy,up) = (e1e2) € He2 and (uy.up) — (e(l),eg) € Hg where (11 uy) € H,% with |[u1]], |lu2]] < r and (e e2), (e?’eg)
the respective solutions of [A}, A>] and [AO, Ag] .We have:

A

e =€l < kun llall + koo ol

lez=€dl| < kot lluall + Koz llual]
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where

kiy = kv (az +1Apl* +ar ||A2P||), kiz = kay

kar = ary + [[A% [ ki, koo = K [AY | @2
and
k= (ua, —ar)
Proof. Let x € B, since |[(41p — A3,) x| < ai [lxl s0 A150 = 0, moreover for x # 0
A% < [[(Are = A%) ]| + 14 1pxl < @1 + w1,

then ”A(l) | < aj + ||Aipll", hence it is bounded on H,

»l

On the other hand, <A(1)Px, x> ={(Aipx,x) + <A(1) pX — Alpx, x> therefore

<(A|p —A?P) X, x> ={(Apx,x) — <A(1’Px, x>

From the cauchy-schwarz inequality,

A, x) = (4% 2| < [|(Ar =A%) 2] il < s I

By definition of u,,,, we have for all x € B,, (x #0), (A1px,X) > ua,, |Ix|I* therefore, for all x € Hp, <A(1’Px, x> >

<A(1) X x)

(,uAlP—al)IIxIIZ,fromwhere e
X

> uga,, —ai, and thus Hao, 2 fia,, — a1 > 0. The operator A?P is linear and bounded

so it is hemicontinuous, according to lemma 4.1, A? p is invertible. It is similarly shown that ||Agp|| < a + ||A2p||" and
Hag, > Ua,, —az. Letnow, for all x and zin H,, M ;x = x + A»(z+ A1 x), ng =X +A(2)(z + A(l)x), Mp,x = x+ Ayp(z+ A1px),
and My x = x + AY,(z + A)px) or Mp, = I + AppBp;, and M} = I+ A}, BY, . (with Bp. = 2+ Ap, B)_=z+A),). Using,
lemma 4.5, Mp, and M?,Z are invertible and therefore according to corollary 4.2, the F'S [A, A>] is normal, moreover (cf,

lemma 4.2) M;! € Lip,

“M;Zl * < ME})& (qup + Up,, ”BPZH*_z)*l

-1 *=2 -1
= a4y + 1, IALEII)

= V.

where up, = pa,, and [|Bp|l" = l|A1pll" .

Now, we demonstrate that [A{, A;] is Lipschitz continuous for the first input. We know (cf lemma 4.5) that for all P € P,

PM:' = N,'P and M is causal, so

P€1
Pe/1

PM;'uy = PM,' Pu; = N;' Puy;
PM;'uy = PM,' Pu, = Np'Pu,.

Since N;l € Lip (cf lemma 4.2) with Np = I + A,pB.p, we have

[Pler —e)|| < |[Np'Puy = Np'Pu |
< N[ I1PGe = up|
< /111 ||u1 - u;” .
hence, e; — 6/1 € H and ”el - 8/1” < Ap ||u1 - “1“ , where A1 = v.
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On the other hand, e; = Aje; + uy and e/2 = Alf,/l + Uy SO

[P (e -]

IA

AL [er — €|
At Al [Jur = uy]

IA

we deduce that ”62 - 6/2” < Ay; ||u1 - ”1“ , where 151 = ||A1pll" 1.

—

. . . 2
To demonstrate that [A(f, Ag] is normal, it is sufficient to check that u A9, + Ha0, ||A(1)P > 0. We have u A9, 2 Hay — @23

Ha0, 2 Hap — a4l and ”A(I)P” <ar+ Al so

0 *=2 0 *—2
Hag, + Hao, A7, 2 Hag — a2+ Y0, [
> pa,, —az + (Ha, —a1) ||A(1)P||
> piay, — ay+ (Ua,, —ar) (ar + Al > 0.

.y
Since M?,Z is invertible, (Mgz) € Lip and

*=2 -1
9

J022.)" [ = G =)™ (i, =2+ Gt =) 45,

o\ YIF L -1 0
5”1 = G s, 5

therefore
,2)_1

A5, € Lip and they are hemicontinuous with y A0, > 0 and u A9, + Hao, ”A1 b

H—

0
1P

lemma 4.2, [A(l), Ag] is normal. The Lipschitzian continuity of [A(l), Ag] is demonstrated in the same way as that of [A}, A].

The two operators A ) According to

On the other hand, the operator Ng =1+A9,A%, is such that: AgP € Lip and it is hemicontinuous, A?P € Lip,u A0, > 0 and

2P°°1P
_2)_1
<

Hag, + Hao, ||A?P“*_2 > 0. By using lemma 4.2, NY is invertible, N3~! € Lip and ||N1(3‘l H* <K (/‘Agp + g0, ||A‘])1D
P
k. Then we can write from (5)
Mplx-MY'x = Mplx— Ny (x+A%'2) + A%z
= Mplx— NSl - NOAS z + A%l
= Mplx— Ny 'x+(1- Ny ')Az
= Ny (Mp. - N9)Mplx+ Ng (NS - 1) A%z
= =Ny (Mp.w - Npw) + N3 A5,40,A0;2
= =Ny (0 + Agp (2 + Arpw) — w — AJAT,w) + Ny A2
= —Ng_l (A2P (z+Apw) — AgPA?Pw) + NE,"Ang
= —Ngil [A2p (z+ Ajpw) — Agp (z+Apw)
+AY, (2 + Ajpw) — AJ,A% pw] + NSAY,z
= =Ny '(Aop — AJp) (2 + A1pw) — N2 (AYp(z + Arpw)
—ASpATpw)) + Np ' AS 2
= =N (Azp — A%p) (2 + Arpw)
~NY'(AYpz + ASLA pw — A, A% w) + NOT'AY 2

—Np " (Agp = ASp) (2 + Arpw) = Ny ' AY (Arp — A w

where w = M x. Since [lwll = ||M;!x|| < ||M5!||" Il < vr,Vx € B, then w € B,, and A0 = 0, s0

llz+Arpwll < ll2ll + A pwll < llzll + 1A llwll
llzll + v 1A I [l

IA
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It is deduced that for all x, z € B,, z + A1pw € B(svja,r)- and

“M;le - Mgzlx” = ”N?fl “ “(AzP — A 2+ A1Pw)||
+ Ve lAss [ lcarr = ATl

A

< N3 axlle + Arpeoll + [|AS]| an leol]
< ka llzll + az 1Al lwll) + kay [|AS || lell
< kay ll2ll + kllwll (a2 1A oI + ay ||AS,|])
< kay ll2ll + vk(az A1 eIl + ay [|AS,|]) ]
< ko X+ ki izl
hence
ller = €| <k lluall + Kz o]
On the other hand,
lea =3l < [|Arpdu — AT M |
=AM uy = ASp My + A My — A MG |
= [(are =A%) M+ A3, (Mgl = M )|
< [JAse = AL v+ Ao 11 = s
< apvllull + ||AYp|| Gy lleea Dl + ko lluall)
< (@ + [|JASp| ki) el + Ko [JADp | el
< kot llunll + kaz [luall,
where

koy =av+ ||A(1)P||k11 and ky = ”A?P”klg

The second linearization result is:

Theorem 3.4. Let A|, A, : H, — H, be, the causal operators whose A; is linear, and let for all P € P, A;p and A,p be the
respective restrictions of PA;, PA;, to Hp. we suppose that:

a)Ap € Lip and s, <0 forany P € P.
(b) Azp € Mand pyu,, > 0 for any P € P.
(c) There exists a linear and causal operator, A(l) :H, —» H, withu A0, S 0, and a; > O such that:
for all x € Bo(1+a,p0)r
(410 = 43,) | < @ 1l

where for all P € P, A?P is the restriction of PA? to Hp and

2 -1
@ = [lA2pl (ary + sy, I1A2p17)

(d) pasy + (ay, — ar) Azpl* > 0. Then:
(i) The FS’s, [A1, Az] and [A?, A2] on H,, are normal and Lipschitz continuous for both inputs.
(i) If (u1.u2) = (e1.e2) € H?; (uyup) = (e?,e(z)) € H? where (u; u;) € H12, with ||uy||, lluzll < 7 and (e e2); (e(l’yeg) the
respective solutions of [A[, A,] and [AO, Az] . Then
llev = ]| < Alurll + AllA2pl ez
and

lle2 = &|| < (ara + A[|ASp|[) (laar I + 1Azl Hlueall)
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where

-1 _
A= an Al (s + s [A2ol) (s + s, N2

Proof. Let for all xand zin H,, My.x = x+Asp(z+A1px); M) x = x+AJ,(z+A),x); Bp, = z+Ap and B), = z+A(,. The
operators Mp, and M?,Z are causal; Mp, and M?,Z are invertible. Indeed, A;p is hemicontinuous, so Mp, and Mgz satisfy the
conditions of lemma 4.3. Then M, and M? are invertible (see lemma 4.4).

Demonstrate that [A}, A,] is Lipschitz continuous for both inputs. We know from (4) that:

er = (I+AA) (- Asuz) = Mpl(uy — Azpur);
er = up+A(I+AA) " (uy — Ayuy)

therefore (see lemma 4.6)
Pe; = PM,l(uy = Agpitz) = Np' P(uy = Agpitr)

Np' (Puy — AspPus);

Pe, = Np'(Pu; - AypPuj),
and
IP(er =€) = [|N5" Pur = AspPus) = N3 (P, = Ao i)
< NG [P (e = ) = AspP (2 )|
< N (s = i l] + el ez = )
< @l = wll + 1zl - )
from where

ller = e]| < v [lur = ;]| + A2 NA2pl |z = 3]

where A;; = @ and Ay, = @ ||A2p|| .

Always from (4)

e = up+A ((1 + A1) (uy - Azuz))
= w+ AlPM;J; (1 — Aspun);
ey = 1+ A ((+AA) 7 (u — Aguy))

, 1 ,
= Uy, + A1pMp, (u; — Aspu,),

therefore
Pe2 = PM2 + PA]PM;Zl (Ml - AZPMZ)
= Puy + ApNp' (Puy — AspPuy);
Pe, = Puy+PApM; () — Agpidy)
= Pu/2 +A1pN;1(PM/1 _AZPPM/Z)
then
P(ez - e/z) = P(Mz - uz) +A1pNp'! ((Pul — AxpPuy) — (Pu; — Aszu’z))
= P(uz - uz) +A1pNp'! (P(Ml — 1)) + AgpP(uz - ”2))
and
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Hp(e2 - e;)H < HP(M2 - u’z)H + “Ale;I (PGur = u) + AgpPlus - u’z))“
< HP(M2 - u’z)H + “A”:N;l (PG — ) + AspPlus - u’z))“
<z = o]+ 1A NG| (s =y [+ DAzl ez = )
< e = wy| (1 + @A IA2PD + @ ApI |Jur — uy|
< o[l = + A2 [l - w5

where 421 = @ ||A1pll and A2y = 1 + A2 [|A2p|] .

Then /
lex = el = do i = + Ao e = 1.

To estimate the solutions of [A;, A,] and [A(l), Ag], notice first that Vx € Bo(1 4yl HN;le < ”N;IH* Ixll < @ x| <

w(1 + ||Azp|)r, so N;lx € B 4{jApl)r- Since

V7' = N9 V61 (V% = Np) N34

V67 40p (4%, = A1p) N34

< NS nAsel (4% - Aur) N7
< an [V | WAzl [N ] < ka7 |
< kay Al [N “NIxll < kay@ | Aspll Ix]] < Al

-1
where 1 = ka; @ ||Azpll and k = [|Agpll (tary + pao IA2pIP) . Let w = uy — Agpuy, then, for uy and uy in B,, we have

Wil = lluy = Azpusll < llurll + lAzpll lluzll < (1 + [|A2plD)7, 8O W € B(i4ayyy, then
oo =l = (7" = )
< Alwll < Al + 2N|A2p|l ezl
and
ex—e) = ApNp'w—ALNY'w
= AipN'w=ANUN"w+ AL N W = AV N
from where
leo =Sl < [[(Are =A%) N1 + A3, (1w = 80w
< an [N wl| - [JAd | Nt = N0
< ayw|wll+ A 1wl
< (ar@ +24%,) Q] + 1Aspll lal))

The third linearization result is:

Theorem 3.5. Let Al,Az,Ag : H, — H, be the causal operators, where A;is linear, and be for all P € P, A|p, Asp, the
respective restrictions of PA;, PA,, to Hp. We assume that:

(a) Aip € M, with uy,, > 0 forany P € P,.
(b) Azp € Lip, with uy,, < 0 forany P € P.

(c) There exist a causal and linear operator, Ag :H, - H,, AgP and, there exists a; > 0 such that, for all x € B4 ,ja !

(42 = 43,) 1| < a2 140,
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where for all P € P, AgP is the restriction of PAg to Hp, u 49, <0and

-1
p = IA1pl (1, + pary IALEIP)

(d) pa,, + (ay, — a2) |A1pl* > 0. So
(i) The FS’s [Ay, Ay] and [A 1, Ag] on H,, are normal and Lipschitz continuous, for both inputs.
(i) If (u1.up) = (e1.e2) € H; (uyun) = (e?!eg) € H? where, (uj uy) € HI% with [lu1||, ||uz]] < r and (e e2), (e(l),eg) the

respective solutions of [A;, A;] and [Al s Ag] . Then

ller = €| < Allull + Apty! Mol

and
lle2 = €3]] < AlApI Il + Ay 1A PN ol
where ) .
A= ay Al (s, + sy WALEIP) (s + g 1ALAIP)
Proof

(i) Let for all x and z in H,, M_x = X+ Ay(z+ A x); M0x = x+AJ(z+A)x); Bp. = z+Ajp and B)_ = z+A{,,. The operators

M, and Mg are causal; Mp, = I + A,pBp, and Mgz =1+ AgPsz are invertible (see lemme 4.3), threfore M, and M? are
invertible (see lemma 4.4).

Since the operator Agp is hemicontinuous, the F'S [A{, A;] and [Al, A(z)] are normal.

Let’s show that, [A|, A] is Lipschitz continuous for both inputs. We know that

-1 1.
(e1,e2) = (M ui,up + AtM,, wy);

;o 1 1
(e,e)) = (M up,u, +A1MM; up).
Since, from lemma 4.4

M uy = Ny +A£1u2) —A;luz

u

we have
Pey = PN 'uy +Ajpua) — PA  pun;
Pe/1 = PN_l(u/] +A1_,13u/2)—PA1_,13u/2,
and (see lemma 4.6)
HP(el - e'l)H < ||PNF Gy + ATht) — PGy + AT
ATt - Arbu]
< [N ler = | + [JATEIL [l = o]
+ ||A1_}, : Uy — u2”
< ol -]+ 0+ o) AT iz - s
then,
lev=eill < plla =il + @+ o) A a ]

IA

A =+ o = |

with 21 = p and 45> = (1 + p) ||AT} -
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On the other hand
e = U+ AlpM;;ul
= wy+Arp (N7 (1 + ATpin) - Apiny);
ey = uy+Ap (N7 + Ajpiy) — Apisy),
therefore
P€2 = Pu2 +PA1P (N_I(Ltl +AI},M2)—AI},M2);
Pey = Puy+PAp(N7\(u) + Ajpuy) — Ay ),
hence
|P(e2-<2)] =

(Pus = Pu) + Avp (PN a1 + Ajhun) = A hun) = Ave (PN + Ahy) = Ahas )|

V5 + AT - Avhn) — (N5 + A pu) - A

< [luea = | + Al (|| 1<u1 + Agpun) = Ny, + A | + A s = Apas])

< JJuz = || + 141" (||N; Thia) = () + ATpit || + [|ATpu — ATpu )

— Aphi|| + || AT - AT o))

— || + APl AT

< |Juz - u2|| + APl (

2~ “2“

Al

< plAI s — || + (1 +(o+

= ot e = |+ o2 [z = 5

where ;1 = p| A-L|" . Therefore [A;, A,] and [Al, Ag] are Lipschitz continuous for

both inputs.
(@) Let (uy,up) — (e1.e2) € HZ and (uj up) — (e(l) eg) € Hez, where (1) u) € H?, with |[u;|], |luz|] < r, and (e e2), (e(l) eg) the

respective solutions of [A;, A;] and [Al, Ag] .Setw =u; + AI},uz, then

[AipN | A1l o]l + ! lluall)

IA1pll (L + pix) ),

IAN A

-1
therefore, AjpN™'w € BIIAlpHp(Hu;‘ e AS

lev=etll = [[Mwn = M
= ||V + ATpun) — Apuz = NNy + Ajpun) + Ajpus|
o]
= V=Nt

IV (A2 1p = Aspaip) N7

V1 (A2, - Azp) AupN 1

IA A

naxp ||Ap|l |l .
‘We deduce that

ller = €]| < Alwll < Al + Aty o
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where w = u; + AI}Juz and A = nayp||A1p|| . On the other hand

ez =3 = [lAupbzur =AM ]| = [|are (N = M)
< (Al HNO—‘ (N - N)N-'WH
= Al [N (48pA1p = Aspaip) N7
< DAl (A2, - Azp) AipN
< Al [N JAS, — Aap|[ AL ING]" 1wl
from where
les=ell| < AlAl W
< AlA Il + A, 1A o]l

4. Conclusion

(Vaclav Dolezal, 1979), introduced the notion of feedback systems in general, and established normality and linearization
results on a Hilbert space. The notion of extended Hilbert space has also been introduced and one result of normality on
this space has been demonstrated ( theorem 4.1). The importance of this theory and its fields of application is examined
by the author in a series of publications of which the most interesting are cited in the references below. Considering the
imprtance of extended spaces. In the present work, we have been interested, in the formulation and the establishment, of
the results of normalities and linearizations, on this space.
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Appendix

This section is devoted to the reminders of the results of ((Vaclav Dolezal, 1979), corollary 1,2, 3,5; lemma 6,7, 8,10 &
theorem 8) relating to our work.

Corollary 4.1. The FS [A}, A;], where A and A, are two operators on H, is normal if and only if M, is bijective, for all
a in H. In this case, for (i), u,) in H? the solution is given by

(e1,€2) = (M uy,up + A M, uy). 3)

Corollary 4.2. Let A; and A, be two operators on H, of which A; is linear. [A}, A;] is normal if the operator I + AA; is
bijective. In this case, for (u;,u,) in H? the solution is given by

e1 = (I +AAD) ™ () — Ap); 4)
er = uy + Ai(I + ArA) " (uy — Agup).

Lemma4.1. Let N € M, with uy > 0; if N is hemicontinuous, then N is invertible, N~' € Lip, uy-1 > 0 and ||N‘1H* <uy
If N € Lip then uy-1 > py |IN|I"2.

Lemma 4.2. Let A, € M be a hemicontinuous operator and A € Lip with ua, > 0. If pa, + pa, llA ||*’2 > 0, then the
operator I + AA is invertible, (I + A2A1)_1 € Lip and

1+ A" < 1z (s, + paa, HALE2)

If A; and A, are causal, (I + A2A1)’1 is also causal.

Lemma 4.3. Let A; € M be a linear operator, such that p4, > 0 and A; € Lip a hemicontinuous operator with uu, < 0. If
Ua, + ta, lIA2]* > 0, then I + A»A, is invertible, (I + A2A;)™" € Lip and

12+ A < 1A (as + s, 1A2IP)

If A and A, are causal, (I + AA;)™" is also causal.

Lemme 4.4. Let A; € M be hemicontinuous with ps, < 0and A; € M a linear operator with 4, > 0. If pa, +pa, lIA; I >
0, then I + A,A, is invertible, (I + A,A,)"! € Lip and

2+ A0~ < 1A (s, + s, IA4I)

If, in addition de plus, A| and A, are causal, then (I + A,A) 7! is also causal.

Lemma 4.5. If A, A, : H, — H, are two operators, where A; is linear and invertible, and the operator N = I + A»A; is
invertible, then for the given a in H,, the operator M, = I + Ay(a + Ay) is invertible and the inverse M;l is given by:

M;lsz_l(x+Al_la)—Al_1a, Vx € H,. (®))

Lemma 4.6. Let A : H, — H, be causal, and for every P € P, A, : Hp — Hp the restriction of PA to Hp. Then A is
invertible and the inverse A~' : H, — H, is causal iff A p 1s invertible for each P € P. In that case

PA™ = A}'P, VPP

and AI‘,1 is the restriction of PA~! to Hp

Théoreme 4.1. Let A;, A;:H, — H, be tow causal operators. For all P € P, A|p and A;p the restriction of PA; and PA;
to Hp. Suppose that for each P € P

(@) Aip € Lip and uyu,, > 0;
(ii) A,p € M and it is hemicontinuous;

(iid) Hary + pa,, IA1PI72 > 0.
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Then, the F'S [A1,A,] over H, is normal and causal.

Moreover if, there exists A > O such that, for all P € P
! (g + pa, A1) < 4,
and, if (u; u*) - (ey.e;) € H?; (u'l’u*) - (e'l’e;) € H2; uj_u; € H, thenej_e,| € H,
Jer-e = Al
If, in addition there existes k > 0 such that, for all P € P, ||Ap|" < k, also ez,e/2 € H,

fea-&] < i

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

44



