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Abstract

The Hyper-Kloosterman code was first defined over finite fields by Chinen-Hiramatsu, see (Chinen, & Hiramatsu, 2001).
In the present paper we define the Hyper-Kloosterman codes over Galois rings R(pe,m). We show that this code is the
trace of linear code over R(pe,m). By the Hyper-Kloostermann sums over Galois rings, we determine the Hamming
weight of any codeword of this code over Galois rings.
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1. Introduction

It all starts with a paper by Kloosterman in 1926 (Kloosterman, 1926), in his study of certain positive definite integral
quadratic forms. In his paper, Kloosterman, introduced certain exponential sum (since then known as the Kloosterman
sum). Since then Kloosterman sums have enjoyed much attention of the finite fields. Some of this interest is due to
their applications in cryptography and coding theory; see for example: the search for the number of solution of certain
equations over finite fields, the distribution of values of Kloosterman sums, the divisibility properties of classical binary
Kloosterman sums , see (Pascale, Helleseth , & Victor, 2009) , the search for the weight of certain codes, called the
Kloosterman code, see (Jacques,1989), (Gilles, 1989) and (Chinen, & Hiramatsu, 2001). The hyper-Kloosterman code
was first defined over finite fields by Chinen-Hiramatsu, (Chinen, & Hiramatsu, 2001). In the present paper we define the
Hyper-Kloosterman codes over Galois rings R(pe,m). We show that this code is the trace of linear code over R(pe,m). By
the Hyper-Kloostermann sums over Galois rings, we determine the Hamming weight of any codeword of this code over
Galois rings.

2. Preliminaries

Some preliminaries on Galois rings are given below. For more details, the reader is referred to (Shuqin, & Han, 2004). Let
e ≥ 1 be a fixed integer, p a prime number. A monic polynomial h(x) ∈ Zpe [x] is said to be a basic irreducible polynomial
of degree m if (h(x) mod p)∈ Zp[x] is a monic irreducible polynomial of degree m. Galois ring Re,m = GR(pe,m) is the
unique unramified extension of degree m over Zpe and can be written as

Re,m = GR(pe,m) = Zpe [X]/(h(X))

where h(x) is a basic irreducible polynomial of degree m over Zpe . The ring Re,m is a local ring with unique maximal ideal
pRe,m. The unit set R∗e,m = Re,m\pRe,m in Re,m is a multiplicative group of order

♯R∗e,m = (pm − 1)pm(e−1) = pme − pm(e−1).

The set R∗e,m always contains a cyclic group of order pm−1. In analogy with finite fields, we will call an element a primitive
element of the Galois ring Re,m if it is a generator for this cyclic group. Let γe,m denote a primitive element in Re,m. Let
T ∗ = {1, γe,m, γ

2
e,m, ..., γ

pm−2
e,m }. The set T ∗ is called Teichmuller system. Let T = T ∗∪{0} = {0, 1, γe,m, γ

2
e,m, ..., γ

pm−2
e,m } .

For any element z ∈ Re,m the p-adic expansion has giving by:

z = z0 + pz1 + ... + pe−1ze−1

where zi ∈ T .

Let τ the Frobenius map of Re,m over Zpe given by

τ(z) = zp
0 + pzp

1 + ... + pe−1zp
e−1
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where z =
∑e−1

i=0 pizi ∈ Re,m and zi ∈ T . As we know τ is the generator of Galois group of Re,m/Zpe which is a cyclic group
of order m. The trace mapping tre,m : Re,m → Zpe is defined via

tre,m(x) = x + τ(x) + ... + τm−1(x)

for x ∈ Re,m

3. Hyper-Kloosterman Codes

Definition 3.1 In a similar way to the Hyper-Kloosterman codes over Galois fields defined for the first time by Chinen-
Hiramatsu , we define the hyper-Kloosterman code Cl(pe,m) of degree l − 1, (l ≥ 2, l is an integer ), over Galois ring, by
the image of the map:

φl : Rl
e,m → Z(pme−pm(e−1))l−1

pe

a 7→ φl(a) = {Tr(a, x)}x∈(R∗e,m)l−1

Where
Tr(a, x) = tre,m(a1x1 + a2x2 + ... + al−1xl−1 + al(x1...xl−1)−1)

a = (a1, ..., al) ∈ Rl
e,m, x = (x1, ..., xl−1) ∈ (R∗e,m)l−1 and tre,m = traceRe,m/Zpe

The symbol { }x∈(R∗e,m)l−1 represents a vector obtained by letting x run through the set (R∗e,m)l−1 (such a notation is often used
in the literature on the trace codes). The code Cl(pe,m) is a generalization, over Galois ring, of the hyper-Kloosterman
code. The Hyper-Kloosterman code over Galois fields has been investigated by many authors. See for example: (Chinen,
& Hiramatsu, 2001), (Chinen, 2003) and (Moisio, 2008).

Remark 3.1 The length of a code Cl(pe,m) is a power of the order of the group of invertible elements, R∗e,m .

(pme − pm(e−1))l−1 = (♯R∗e,m)l−1

Proposition 3.1 The code Cl(pe,m) is a linear code over Zpe .

Proof

φl is a module homomorphism and so his image is a sub-module of Z(pme−pm(e−1))l−1

pe . Therefore Cl(pe,m) is a linear code.

Definition 3.2 For a code C over Re,m , we denote the trace code of C (over Zpe ) by tre,mC:

tre,mC := (tre,mc1, ..., tre,mcn)|(c1, ..., cn) ∈ C

Proposition 3.2 The code Cl(pe,m) is a trace code over Galois ring.

Proof Let αl the map defined by:

αl : Rl
e,m → R(pme−pm(e−1))l−1

e,m
a 7→ αl(a) = {(a, x)}x∈(R∗e,m)l−1

Where

l ≥ 2, (l is an integer ), (a, x) = a1x1 + a2x2 + ... + al−1xl−1 + al(x1...xl−1)−1, a = (a1, ..., al) ∈ Rl
e,m and x = (x1, ..., xl−1) ∈

(R∗e,m)l−1. We see easily αl is a module homomorphism , and so his image is a sub-module. Let Cl(pe,m) = Im(αl), the
image of αl. Cl(pe,m) is a linear code over Galois ring Re,m. By definition of αl, we obtained Cl(pe,m) = tre,m(Cl(pe,m)).

In the following, Cl(pe,m) denote the code defined in the previous proof. That is to say:

Cl(pe,m) = tre,m(Cl(pe,m))

Construction of the generator matrix Gl(pe,m) of Cl(pe,m). where Cl(pe,m) = tre,m(Cl(pe,m)).

Let f1, f2, ..., f(pme−pm(e−1))l−1 be a fixed ordering of the elements of.

(R∗e,m)l−1 = { f1, ..., f(pme−pm(e−1))l−1 }

Let f j ∈ (R∗e,m)l−1 , so
f j = ( f1, j, f2, j, ..., f(l−1) j)
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Moreover we define I(x) for x = (x1, x2..., xl−1) ∈ (R∗e,m)l−1 by:

I(x) = (x1x2...xl−1)−1

Let f T
j the transpose of the vector f j.

Then we form the matrix as follows:

Gl(pe,m) =
(

f T
1 f T

2 ... f T
(pme−pm(e−1))l−1

I( f1) I( f2) ... I( f(pme−pm(e−1))l−1 )

)
Proposition 3.3 The matrix Gl(pe,m) =

(
f T
1 f T

2 ... f T
(pme−pm(e−1))l−1

I( f1) I( f2) ... I( f(pme−pm(e−1))l−1 )

)
is a generator matrix of the code Cl(pe,m)

Proof

Let a = (a1, ..., al) ∈ Rl
e,m

aGl(pe,m) = (a1, ..., al)
(

f T
1 f T

2 ... f T
(pme−pm(e−1))l−1

I( f1) I( f2) ... I( f(pme−pm(e−1))l−1 )

)

= (a1, ..., al)



f1,1 ... f1,(pme−pm(e−1))l−1

f2,1 ... f2,(pme−pm(e−1))l−1

...
...

f(l−1),1 ... f(l−1),(pme−pm(e−1))l−1

( f1,1... f(l−1),1)−1 ... ( f1,(pme−pm(e−1))l−1 ... f(l−1),(pme−pm(e−1))l−1 )−1.


= [a1 f1,1 + ... + al−1 f(l−1),1 + ... + al( f1,1... f(l−1),1)−1; ...; a1 f1,(pme−pm(e−1))l−1 + ... +

al−1 f(l−1),(pme−pm(e−1))l−1 + al( f1,(pme−pm(e−1))l−1 ... f(l−1),(pme−pm(e−1))l−1 )−1].

Which is a codeword of the code Cl(pe,m).

Therefore, the matrix Gl(pe,m) is a generator matrix of the code Cl(pe,m).

Remark 3.2 The matrix Gl(pe,m) is the type (l, (pme − pm(e−1))l−1) ; l-lengths and (pme − pm(e−1))l−1-columns.

4. Hamming Weights of the Codewords of Cl(pe,m)

Definition 4.1 Let C a code of length n. x = x1x2 . . . xn and y = y1y2 . . . yn two codewords on code C. The Hamming
distance of x and y, is given by

d(x, y) = ♯{i : xi , yi}.
The Hamming weight WH of a codeword x = x1x2 . . . xn of C is the number of non-zero xi for 1 ≤ i ≤ n.

WH(x) = ♯{i : xi , 0}
Definition 4.2 Additive characters over Galois rings.

An additive character of Re;m is a homomorphism from the additive group of Re;m to C∗; the multiplicative group of
complex field. We Define ψ(a) = exp(2πitre,m(a)/pe) for any given element a in Re;m and ” exp” denote the exponential
function : It is easily seen that ψ is an additive character of Re;m; called the canonical additive character. For b ∈ Re;m;
define ψb(a) = ψ(ba): a ∈ Re;m. ψ is also an additive character. In fact, we have:

Proposition 4.1 {ψb}b∈Re;m consists of all the additive characters of Re;m.

We present a well-known result, sometimes called the orthogonality of characters, as a proposition for later reference.

Proposition 4.2 Let b ∈ Re;m ; ψ be the canonical additive character of Re;m. Then:

∑
b∈Re,m

ψb(a) =

pme if a = 0
0 if a , 0

.

Definition 4.3 For l ≥ 2 and any a ∈ Rl
e,m the hyper-Kloosterman sums of degree l − 1 are defined by

Ke,m(a, p) =
∑

x∈(R⋆e,m)l−1

exp(
2πi
pe Tr(a, x))
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where Tr(a, x) = tre,m(a1x1 + a2x2 + ... + al−1xl−1 + al(x1x2...xl−1)−1) for a = (a1, a2, ..., al) and x = (x1, x2, ..., xl−1) , and

tre,m = traceRe,m/Zpe

The Kloosterman sums have been used by several authors to evaluate the Hamming weights of a certain linear code C(q),
called the Kloosterman code (see for example (Gilles, 1989) and (Jacques, 1989) ).

Theorem 4.1 For any codeword φl(a) ∈ Cl(pe,m), the weight of φl(a) is given by:

WH(φl(a)) = (pme − pm(e−1))l−1 − 1
pe

pe−1∑
λ=0

Ke,m(λa, p)

Proof.

Let ”exp” denote the exponential function. For all a ∈ Rl
e,m and all x ∈ (R∗e,m)l−1, exp(Tr(a, x)) is a pe-th root of unity, and

is equal to 1 or not according to Tr(a, x) = 0 or not. So we have:

pe−1∑
λ=0

e(λTr(a,x)) =

pe if Tr(a, x) = 0
0 if Tr(a, x) , 0

.

Therefore

♯{x ∈ (R∗e,m)l−1; Tr(a, x) = 0} = 1
pe

∑
x∈(R⋆e,m)l−1

pe−1∑
λ=0

exp(λTr(a, x))

=
1
pe

pe−1∑
λ=0

∑
x∈(R⋆e,m)l−1

exp(λTr(a, x))

=
1
pe

pe−1∑
λ=0

Ke,m(λa, p).

We know that, the unit set R∗e,m = Re,m\pRe,m in Re,m is a multiplicative group of order

♯R∗e,m = (pm − 1)pm(e−1) = pme − pm(e−1)

So the weight WH(φl(a)) for any codeword φl(a) it is obtened by :

WH(φl(a)) = ♯(R∗e,m)l−1 − ♯{x ∈ (R∗e,m)l−1; Tr(a, x) = 0}

= (pme − pm(e−1))l−1 − 1
pe

pe−1∑
λ=0

Ke,m(λa, p).

Example 4.1 For l = 2, p = 2, e = 2 and m = 1 we obtained Re,m = Z4 and the trace map te,m become identity map from
Z4. Z∗4 = Z4\2Z4 = {1, 3}. Without harming the generality, let’s x1 = 1 and x2 = 3 So x−1

1 = x1 = 1 and x−1
2 = x2 = 3.

C2(4, 1) it is the image of the map:

φ2 : Z2
4 → Z2

4
a = (a1, a2) 7→ φ2(a) = (a1x1 + a2x−1

1 , a1x2 + a2x−1
2 ) = (a1 + a2, 3a1 + 3a2)

We have:

φ2(0, 0) = (0, 0)
φ2(0, 1) = (1, 3)
φ2(0, 2) = (2, 2)
φ2(0, 3) = (3, 1)
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φ2(1, 3) = (0, 0)
φ2(1, 2) = (3, 1)
φ2(1, 1) = (2, 2)
φ2(1, 0) = (1, 3)

... etc

We obtened
C2(4, 1) = {(0, 0); (2, 2); (1, 3); (3, 1)}

5. Conclusion and Perspectives

We have generalized the hyper-Klosterman codes over Galois rings. This code is seen as a trace of a linear code over
galois rings. We get the Hamming weight of a codeword by the hyper-kloosterman sums. The first trivial example gives
the 1-quasi-cyclic or cyclic codes. We can therefore continue to study the properties of this code, quasy-cyclic properties
and others.
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