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Abstract

In this paper, we study the boundary value problem of a Riemann-Liouville fractional g-difference equation. By applying
the Leggett-Williams fixed point theorem and the properties of the Green’s function, three positive solutions are obtained.
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1. Introduction

The g-difference calculus was firstly developed by (Jackson, 1908) and (Jackson, 1910). The fractional g-difference
calculus had its origin in the works by (Al-Salam, 1966) and (Agarwal, 1996). With the wide application in various fields,
in recent years, the research on the qualitative properties of solutions of fractional differential equations has attracted great
interest. Among them, there have been many results about the existence of solutions of fractional differential equations
(see (Bai & Lii, 2005)-(Jleli & Samet, 2016) and references therein). In those works, the authors mainly apply the
following methods: the monotone iterative method, the upper and lower solutions method, Krasnosel’skii and Schauder
fixed point theorem, Leggett-Williams fixed point theorem.

(Ferreira, 2010) studied the existence of nontrivial solutions for the following nonlinear fractional g-difference equation
Dgy(x) = —f(x,y(x), x€(©,1), g€ 0,1, 1<a<2,
subjected to the boundary conditions
y(0)=0, y1) =0,

where f : [0, 1]XR — R is a nonnegative continuous function. (Ferreira, 2011) went on studying the existence of positive
solutions for the following nonlinear fractional g-difference equation

(Dyy)(x) = =f(x,y(x), x€(0,1), ge(0,1), 2<a<3,
subjected to the boundary conditions
¥(0) = Dyy(0) = 0, Dgy(1) =B 20,

where f : [0, 1] X R — R is a nonnegative continuous function.

By constructing a special cone and using Guo-Krasnosel’skii fixed point theorem, (Li, Han, & Sun, 2013) investigate
the existence of positive solutions for the following boundary value problem of nonlinear fractional g-difference equation
with parameter

(Dgu)(x) + Af(u(x)) =0, xe€(0,1),
subjected to the boundary conditions

u(0) = D,u(0) = Dyu(1) = 0,
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where g € (0,1), 2 <a <3, f:C(0,1),(0, c0)).

(Zhai & Ren, 2017) obtained the existence of positive and negative solutions for a fractional g-difference equation

(D2u)(t) + Af(t,u() = 0, 1€ (0,1), (1.1)
u(0) = Dyu(0) = Dyu(1) = 0, (1.2)

where 0 < g < 1, 2 < @ < 3, f € C([0, 1] X [0, +00)) — [0, +00).

(Kang, Chen, Li, Cui, & Ma, 2019) gained the existence of three positive solutions for a Riemann-Liouville fractional
g-difference equation boundary value problem (1.1)-(1.2).

(Jleli & Samet, 2016) studied the following fractional g-difference equation boundary value problem

(Dguw)(0) + p(tyu(r) =0, q€l0,1), t€(ab), 1<a<?2,
u(a) = u(b) =0,

where ,Dj denotes the Riemann-Liouville fractional g-derivative of order @ and ¢ : [a,b] — R is a continuous function.
Inspired by papers (Kang et al., 2019), (Zhao, Sun, Han, & Li, 2011), (Zhang, 2016) and (Tariboon & Ntouyas, 2014), we
study the following nonlinear boundary value problem for a fractional g-differential equation:
(Dgx)@) + f(t,x(1) =0, 0<g<1, te(ab), a=0, 2<a<3, (1.3)
(@) = (DIN@) = (DINb) = 0, (1.4)

where aDZ denotes the Riemann-Liouville fractional g-derivative of order «, f € C([a, b] X [0, +0)) — [0, +00).
2. Preliminaries
For the convenience the reader, we give some background materials from fractional g-calculus theory.
Letg € (0,1) and a € R. For s € R, we define
s

1_
(5], = T

The g-analogue of the power function (s — 7)" with n € N is

n—1

(s-00 =1, (s—n® = ]_[((s —a)-(t-a)q), neN, s,teR.
i=0

If € R, then

00

(s—a)—(t—-a)yq

— @ = (5 g
(s=-1,"=(~-0a B S

In addition, from (Jleli & Samet, 2016), we have

t—a\@
(s—t)g”:(s—a)“(l—s Z) , sa @2.1)
- 0

The g-gamma function is defined by

(1-qp "
T,(s) = ﬁ, s e R\(0,~1,-2,---},

and satisfies I'y(s + 1) = [s], T (s).
Definition 2.1 Let f : [a,b] — R. The fractional g-integral of Riemann-Liouville type is given by

WIgf)®) = f(), a<t<b,

1 !
(alg (@) = m@ f (t— (g5 — (1= @)a) " f($)adys, @>0, a<t<b.
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The fractional g-derivative of Riemann-Liouville type is defined by

WD = f(), a<t<b,
DN = (Dl 1), @>0, a<t<b,

where (8 is the smallest integer greater than or equal to «.

Lemma 2.2 For any s, t € [a, b], the following formulas hold:

Dyt = ) = [aly(t = ),
s(aDy(t - S)gl)) = —[al,(t - (gs + (1- q)a))‘(la—l)’

where ;(,D,) denotes the g-derivative with respect to the variable i.
Lemma 2.3 Let f : [a,b] — R be a given function, g € (0, 1), we get some results as follows:
(1) If (4D, /)(#) = 0, fora < t < b, then f is an increasing function.
(ii) If (4D f)(?) <0, fora < t < b, then f is a decreasing function.

Lemma 2.4 If f, g are g-integral on [a, b], f(s) < g(s) for all s € [a, D] , then
(b b
() [ f(adgs < [ 8(5)adys.

) | [} Fadys| < [ 1 (adlys.

From (Tariboon, Ntouyas, & Agarwal, 2015), let f : [a, b] — R, p be a positive integer, we obtain the following compound
operation rule for g-integral and g-derivative:

DI @) = f(), >0, a<t<b, (2.2)

L) = P FO, @ >0, a<t<b, (2.3)
a V4 _ P ga a)a P k _

ASDLF(1) = (D10 f() — Z Fq(oz+k D@, astsboasp-l. (2.4)

3. Main Results
Lemma 3.1 If x € C[a, b] is a solution of boundary value problem (1.3)-(1.4), then x satisfies

b
x(1) = f G(t,gs + (1 — Qa)f(s, x(5))adys, t € [a,b],
where

(@-2)
UG — (1~ = (1= (gs — (1~ @)™, a<gs+(-qa<i<b,

G(t,gs+ (1 —q)a) = —— a2
[y() %(r —a)!, a<t<gs+(1-qa<b,

Proof. By the definition of the fractional g-derivative, we have
aDoal x(t) = —f(1,x(1)), a<t<b,
then
A2 aDy L) x(t) = —oI] f(1, x(1)), a<1<b.
Using (2.2), (2.3) and (2.4) with p = 3, we get
x(0) =1t — ) + ot — ) + es(t — a)*

f (t = (g5 = (1 = @)™ f(s, x(5))adlys, (3.1

B 1
[y(@)
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for some constants cy,cz,c3 € R. Using the boundary value condition x(a) = 0, we must set c; = 0. Applying the
Riemann-Liouville fractional g-derivative of order a to both sides of (3.1), we obtain

(DIx)(1) = ¢ [a — 1yt = @) + ol = 2], (1 — @)

rw f [a = 11,0t — (qs — (1 = Q) F(5, x(5))adlys.

By using the boundary value condition (aDZ x)(a) = 0, we must set ¢, = 0. Then the boundary condition given by (1.4)

yields

cila = 11,(b—a)* 2 - — 11,6 = (gs = (1 = @a) £ (5, x(5))adys = 0

SO

f (b= (gs — (1 = @a)* 2 f(s5,x(5))adys.

T e- a)f' T (@)
Thus, we have
(t—a)! b o
x(1) = b-ar T, @ fa (b - (g5 — (1 = @a)™? f(s, x(5))adys

1 t
_ @) f(t —(gs—(1 - ‘])a))((la_l)f(s, X(S))adqs
q a
(t—a)"! ! -
T b-a @) f (b= (g5 — (1 = @)a) 2 f(s, X(5))adys
(t— a)afl

b
t b—ar T, @ f, (b - (gs — (1 = @a)" ™ f (s, X(5))adys

f (1 = (g5 — (1 = )™ f(s, x())adlys,

1
Ly(@)
which yields the desired result.

From (Ferreira, 2010), let@ > 0 and s < ¢ < z, we get
-9 > @z-0f. (3.2)
Lemma 3.2 Suppose 2 < @ < 3, then the function G defined by Lemma 3.1 satisfies the following conditions:
(1) G(t,gs + (1 —q)a) > 0 and G(t,gs + (1 — q)a) < G(b,qs + (1 —g)a)foralla <t,s < b,
a—1
2) (ZZ_TZ) G(b,qs+ (1 —qa) <G(t,gs+ (1 —qa), a<ts<bh.
Proof. Let
(b=(gs=( =)™ 0
b—a)?
—(t—-(gs—(1=q@a)®, a<gs+(1-qua<t<bh,

(b - (g5 — (1 - @a)y™
(b )a/ 2

git,gs + (1 —qa) =

ot gs+ (1 —ga) = (t—a)', a<t<gs+(—qa<b.

It is clear that g»(t,gs + (1 — g)a) > 0.
Whena < gs + (1 — g)a <t < b, from (2.1), we have

@itgs+ (1= ) = (1 = L= Do gyt — - ata - L= Dy

=(t-a)""! [(1 - q(s—_a))(a_Z) B (1 B q(s——a))(" 1)]'
b-a 0 t—a J,
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On the other hand, since

gs-a) _qs-a)

< , a<s<t<hbh,
b-a t—a

using (3.2), we obtain g (¢, gs + (1 — g)a) > 0, therefore, G(¢,gs + (1 — g¢)a) > 0.

Moreover, for fixed s € [a, b], using Lemma 2.2, we have

b — (a5 — (1 — an@?
( (qS(b _( a)jz)a))a (t—a)"? = [a— 1], - (gs — (1 - Pa))*?

_gqs—a) )“"2) _ (1 _gqs—a) )“"2)}

t(aDqgl(t’ gqs+ (1 - Q)a)) = [a' - l]q

b-a t—a

=[a = 1],¢t - a)*? [(1

0 0

>0,

ie., gi1(t,gs + (1 — g)a) is an increasing function of ¢. Obviously, g»(¢,gs + (1 — g)a) is increasing in ¢, therefore
G(t,gs + (1 — g)a) is an increasing function of ¢ for fixed s € [a, b]. This concludes the proof of (1).

Ifa<gs+(1—-¢g)a<t<b,from(2.1), we have

¥ s—a)\(@2) s—a) \(@=D
Gliogs + (- gy 1= (1= 55)) 7 - (1= 452"

Gb,gs+(1=@a) 4 _ go-i [(1 ~ [,(s__[,))m_z) (- M)m_n]

b—-a ) b-a )o
t—a\e!
> (=)
b-a

Ifa<t<gs+(1-gqg)a<b,then

G(t,qgs + (1 —g)a) _(t—a)“‘l
Gb,qgs+(1 —qa) \b-al

this finishes the proof of (2).

For the convenience, we denote
A =1G(12, g5 + (1 — @)a) — G(t1, g5 + (1 — @)a)|.

Remark 3.3 The function G(z, gs + (1 — g)a) has some other properties. We can obtain the following inequalities:

() Fora<ti <t <gs+(1—-q)a<b,weget

t —ay*!

_|o-@s-a-ga)&™ L (b-(gs=(1-ga)i
AT T eba 279 T (@b — )2

(- (gs— (1 - @a)y™

T -a)?

1 [ q(s —a) (@-2)
" Ty(a) b—a

It — @) = (1 —a)*'|

(62 =)' = (11 — )|

0

Srq @ [(ta—a)* " =t — @) "].
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(i) Fora<t <gs+ (1 —qa<t, <b,weget

1 [(b-(gs— 1 -g@a)d™
I'y(@) (b—-a)*?
_(b=(gs— (1 - @)™
Cy(@)(b—a)*?

(th-a) ' =t —(gs—(1 - q)a))z“‘“]

(n—a)!

1 b — —( - 2072)
T, : (qs(b —( a)a—qz)a)) [(ta—a)" = (11 —a) '] = (= (gs — (1 — @a)* ™"
q
1 b — —(1 - fla—Z)
Ty : (qs(b : a)wf]z)a)) [(t2 = @)™ = (1 = @) +1(12 = (gs = (1 = @) ™"
q
1
Ty ?~ " = -+ (-1
q

(i) Fora<gs+ (1 —qa <t <t, <b, we get

1 [b-(gs—1-@api™

A= Ly(a) (b —a)e? (h-a)' = (-(gs-(1- Q)a))(aa_l)}
q
1 b— —(1 - Ela—z)
e [( (qs(b _( a)ai]z)a)) (h—a)" =t —(gs—(1 - q)a))gy—l)] ’
q

by using the similar procedure of Remark 3.1 in [13] and the derivation process of (i)-(ii), we obtain

1
T (@)

A< (- ' -t -+t —(gs— (1 - Qa)®™P = (t1 — (gs — (1 - )a)* 1.

Let Cla, b] be the space of all continuous real functions defined on [a, b] with the maximum norm ||x|| = rrgaz(] [x(2)|. It is
tela,

well known that Cl[a, b] is a Banach space under the sup norm. Define the cone P C C|a, b] as following:
P={xeCla,b]: x(t) =0,t € [a,b]}.

From Lemma 3.1, we know that x(z) is a solution of boundary value problem (1.3)-(1.4) if and only if it satisfies

b
x(t) = f G(t,gs + (1 — Qa)f(s, x(5))adys, t € la,b]. (3.3)

Then, the positive solutions x(¢) of problem (1.3)-(1.4) are the fixed points of T in C[a, b] that defined by

b
(Tx)(t) = f G(t,gs + (1 — @a) f(s,x(5))adys, 1€ [a,b]. (3.4)

Then we have the following results.

From (Zhai & Ren, 2017), let & > 0, {s,,} is a sequence and s,, — s as m — oo, we have
(5m— D@ 5 (s—D@, steR. (3.5)

Lemma 3.4 If the operator 7" defined by (3.4), then T : P — P is completely continuous.

Proof. The operator T : P — P is continuous in view of continuity of G(¢, gs + (1 —g)a) and f(¢, x(t)). So we only prove T
is compact. Let Q C P be bounded. There exist g € L'[a, b], such that f(t, x(t)) > g(t) for t € [a,b]. Let M = fab 8(8)qdys,
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then 0 < M < +co. From Lemma 3.2, we get

b
|Tx| = rIEaZ] f G(t,gs + (1 — Qa) f(s, x(5))adys
b
< max ]G(b, gs+(1- q)a)f (s, x(8))adys

gs+(1-q)acla,b

b — a-1 b
< —( T 22) f g(S)aqu
q a

_ M®b-a)!
Ty

This shows that the set 7(QQ) is uniform bounded. After that, for given #,,t, € [a, b] with #; < ,, we obtain

b
ITx(t2) - Tx(ey)] < f AF(5, x(5))adys

b
< max A $)ad,s
gs+(1-g)acla,b] fa 8(8)ady

=M max A.
gs+(1-g)aela,b]

In view of Remark 3.3 and (3.5), one has Tx(¢;) — Tx(;) as t; — t,. By means of the Arzela-Ascoli theorem, 7 : P — P
is completely continuous. The proof is completed.

From (Bai & Lii, 2005), the map 6 is a said to be a nonnegative continuous concave functional on a cone P of a real
Banach space E provided that §: P — [0, co) is continuous and

0x + (1 = )y) = 20(x) + (1 — DO(), x,yeP, 1e[0,1].

Next, we take v € (a,b), set u = ﬁ, then 0 < u < 1. We set the nonnegative concave continuous function 6 on P be
defined by

0(x) = [IEI[lvi’I}}] x(1). (3.6)

We denote

Po={xeP:ll<r}, P,={xeP:|xl<r}

P(O,r1,r2) ={x € P:0(x) > ry,|Ix]l < 2},
b b
prl= f G(b.qs + (1 = Qa)edys, w™' = f G(b,gs + (1 = q)a)udys,

where r, ry, ry are positive constants.
For the convenience, we show the Leggett-Williams fixed point theorem as follows.

Lemma 3.5 Let P be a cone in a real Banach space E, and r; > 0 be a constant. Suppose 6 is a nonnegative continuous
concave functional on P such that 8(x) < ||x||, for all x € }_’,3. LetT : 13,3 - 13,3 be a completely continuous operator.
Assume there are numbers r, r; and r, with O < r < r; < r, < r3 such that

(i) The set {x € P(@,r,r) : 8(x) > ry} is nonempty and 8(T x) > ry for all x € P(0,r, 12);

@) ||Tx|| < rforx <r;

(>iii) 8(T x) > ry for all x € P(, ry, r3) with ||T x|| > r».

Then T has at least three fixed points x;, x; and x3 € P,, with ||x|]| < r, r; < 6(x2), r < |lx3l and 6(x3) < ry.

Theorem 3.6 Suppose f(¢, x) is a nonnegative continuous function on [a, b] X [0, +co) and there exists #, — a such that
f(tn, x(t,)) > 0,n =1,2,--- , and there exist constants 0 < r < r; such that

(Hy) f(t,x) < prfor (t,x) € [a,b] X [0, r];

(H) f(t,x) > #rl for (¢, x) € [v,b] X [r1, 3], where r3 > l%;

= Ta-

18



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 1; 2020

(H3) f(t, x) < kx + B for (¢, x) € [a, b] X [0, +00), where k, 8 are positive numbers.
Then the boundary value problem (1.3)-(1.4) has at least three positive solutions x;, x and x3.

Proof. Set r; > max{pﬁ 7o e -1, then for x € P,3, we have from (3.4), (H3) and Lemma 3.2,

b
17 = max f Gt, s + (1 = Q)a) (s, x(5))adys

f max G(t,qs + (1 — @)a)f(s, x(5))adys

t€la,b]

= f G, gs + (1 = @a)f(s, x(5))adys

a

b
< f G(b,gs + (1 — q)a)(kx(s) + B).dys

b
< (Il +B) f Gb,gs + (1 - Oa)ed,s

_ Hldl+
P
< rs,

i.e, Tx € P,,. Therefore, T : P,, — P,, be a completely continuous operator. By (H;), we can get

b
17Xl = f G(b,gs + (1 = @)a) (s, x(5))adys

b
< prf G(b,gs + (1 — g)a)dys

=r.

Hence assumption (ii) of Lemma 3.5 is satisfied.

To check condition (i) of Lemma 3.5, we choose xg = w for t € [v,b],u € (0,1). It is easy to see that xy =

—(”“;T”" € P(e ri ), 6(x) = 9(“‘ “)") > ry, consequently, {x € P(6, 1, Zxr) : 6(x) > r1} # 0. Hence, if

a—1

x € P, r, yq,, ), then r < x(t) < H{,,, r fort € [v,b],u € (0, 1). Thus, from (H>,) and Lemma 3.2, we have

b
0(Tx) = mubl]f G(t,gs + (1 — @)a)f(s, x(5))qdys

f mln G(t,gs + (1 — q)a) f(s, x(5))adys

telv,b]

_ a-1
> f min (2= Gb,qs + (1 = Q) (s, x(5)udys

telvb] \b — a

b o
:I (Z:Z) lG(b"IS‘F(l—q)a)f(s,x(s))adqs

b
= f 1 G(b, gs + (1 = @)a) f(s, X(5))adys

w b
S f WGb.gs + (1 - q)a)adys

a—1

= rl 9
i.e, &(Tx) > ry forall x € PO, r, #rl). This shows that condition (i) of Lemma 3.5 is satisfied.
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Finally, for x € P(0, ry, r3) with ||Tx|| > #rl, we obtain

b
0(Tx) = tr€1[1irb1]f G(t,gs + (1 — @)a) f(s, x(5))adys

b _ a-1
> f min (2= Gb,qs + (1 = Q) (s, x(5))udys

tevb] \b — a

b a—
- f =) ' Glb.gs + (1 = Qs ¥y

b—
b
= ! f max G(t,qs + (1 = g)a) f(s, 2()adys
o f€la,

= "I

>ry.
This confirms that condition (iii) of Lemma 3.5 is fulfilled. By Lemma 3.5, the boundary value problem (1.3)-(1.4) has at
least three positive solutions xj, x, and x3.

Remark Compared with (Ferreira, 2011), t € [a, b] is wider than ¢ € [0, 1]. When a = 0,b = 1, lemma 3.1 and lemma
3.2 are consistent with the existing results.
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