A Note on Testing Serial Correlation in Partially Linear Additive Measurement Error Models

Jing Li^{1}, Xueyan Li^{2}
${ }^{1}$ School of Applied Technology, China University of Labor Relations, Beijing 100048, P.R.China
${ }^{2}$ School of Science, Civil Aviation University of China, Tianjin, 300300, P.R.China
Correspondence: Jing Li, School of Applied Technology, China University of Labor Relations, Beijing 100048, P.R.China. E-mail: lijjingg@163.com

Received: October 11, 2019
Accepted: November 7, 2019 Online Published: November 13, 2019
doi:10.5539/jmr.v11n6p65
URL: https://doi.org/10.5539/jmr.v11n6p65

Abstract

The paper considers the problem of testing error serial correlation of partially linear additive measurement error model. We propose a test statistic and show that it converges to the standard chi-square distribution under the null hypothesis. Finally, a simulation study is conducted to illustrate the performance of the test approach.

Keywords: corrected profile least-squares, measurement error models, partially linear additive model, serial correlation

1. Introduction

Recently, testing serial correlation for semiparametric models have attracted more and more attention, see Li and Hsiao (1998) for semiparametric panel data models, Li and Stengos (2003) for semiparametric time series models, Liu et al. (2008) and Hu et al. (2009) for partially linear errors-in-variables models, Zhou et al. (2010) for partially nonlinear models, and Liu et al. (2011) for partially linear single-index errors-in-variables models. Recently, Yang et al.(2015) constructed a test statistic based on empirical likelihood method to test serial correlation for the following semiparametric partially linear additive measurement errors model

$$
\left\{\begin{array}{l}
Y=\mathbf{X}^{\mathrm{T}} \boldsymbol{\beta}+m_{1}\left(Z_{1}\right)+\cdots+m_{q}\left(Z_{q}\right)+\varepsilon \tag{1.1}\\
\mathbf{V}=\mathbf{X}+\boldsymbol{\eta}
\end{array}\right.
$$

where $Y, \mathbf{X}, Z_{1}, Z_{2}, \cdots, Z_{q}$ are response variable and explanatory variables, respectively. $\boldsymbol{\beta}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{l}\right)^{\mathrm{T}}$ are unknown regression coefficients, m_{j} is a unknown univariate component function, model error ε has mean zero and variance σ^{2}. We assume that $E\left\{m_{k}\left(Z_{k}\right)\right\}=0, k=1,2, \cdots, q$ for identifiability. Measurement errors $\boldsymbol{\eta}$ are independent of $\left(Y, \mathbf{X}, Z_{1}, \cdots, Z_{q}\right)$, $\mathrm{E} \boldsymbol{\eta}=\mathbf{0}, \operatorname{Cov} \boldsymbol{\eta}=\boldsymbol{\Sigma}_{\boldsymbol{\eta}}$. In this paper, based on some results of Yang et al. (2015), we will propose an alternative test approach for model (1.1).

The rest is organized as follows. A new test statistic is constructed in Section 2. Section 3 conducted simulation studies to illustrate the performance of the proposed approach. Conclusion is given in Section 4.

2. Test Statistic and Its Properties

For notational simplicity, we assume $q=2$ in model (1.1) as Liang et al. (2008). Suppose $\left\{Y_{i}, \mathbf{V}_{i}, Z_{1 i}, Z_{2 i}\right\}_{i=1}^{n}$ are generated from model (1.1), then we can get

$$
\left\{\begin{array}{l}
Y_{i}=\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\beta}+m_{1}\left(Z_{1 i}\right)+m_{2}\left(Z_{2 i}\right)+\varepsilon_{i} \tag{2.1}\\
\mathbf{V}_{i}=\mathbf{X}_{i}+\boldsymbol{\eta}_{i}
\end{array}\right.
$$

For this model, we consider the problem of model error ε_{i} is serially uncorrelated or not. Then, The null hypothesis is $\varepsilon_{i}, i=1,2, \cdots, n$ are independent, and the alternative hypothesis is a p-th order moving average (MA(p)), or p-th order autoregression $\operatorname{AR}(\mathrm{p})$, namely,

$$
\begin{array}{llll}
\varepsilon_{i}=\mu_{i}+\alpha_{1} \mu_{i-1}+\cdots+\alpha_{p} \mu_{i-p}, & \mu_{i} & \text { i.i.d. } & \left(0, \sigma^{2}\right), \\
\varepsilon_{i}=\mu_{i}+\alpha_{1} \varepsilon_{i-1}+\cdots+\alpha_{p} \varepsilon_{i-p}, & \mu_{i} & \text { i.i.d. } & \left(0, \sigma^{2}\right)
\end{array}
$$

where coefficients α_{i} satisfies some stationary conditions, for example, the roots of equation $\alpha(\mu)=1-\alpha_{1} \mu-\alpha_{2} \mu^{2}-\cdots-$ $\alpha_{p} \mu^{p}=0$ lie outside the unit circle.

Let $\gamma=\left(\gamma_{1}, \cdots, \gamma_{p}\right)^{\mathrm{T}}, \gamma_{k}=E \varepsilon_{i} \varepsilon_{i+k}, \quad k=1,2, \cdots, p, \quad i=1,2, \cdots, N$, with $N=n-p$. We can show that testing ε_{i} is serially uncorrelated is equivalent to testing $\gamma=\mathbf{0}$. By the method of Liu et al. (2008) and Hu et al. (2008), denote $e_{i}=\varepsilon_{i}-\boldsymbol{\eta}_{i}^{\mathrm{T}} \boldsymbol{\beta}, \bar{\gamma}=\left(\bar{\gamma}_{1}, \cdots, \bar{\gamma}_{p}\right)^{\mathrm{T}}$, with $\bar{\gamma}_{k}=E e_{i} e_{i+k}$. By the fact that ε_{i} is independent of $\boldsymbol{\eta}_{i}$, then if the null hypothesis of no serial correlation is true, we can obtain

$$
\begin{equation*}
\bar{\gamma}_{k}=E e_{i} e_{i+k}=E\left(\varepsilon_{i}-\boldsymbol{\eta}_{i}^{\mathrm{T}} \boldsymbol{\beta}\right)\left(\varepsilon_{i+k}-\boldsymbol{\eta}_{i+k}^{\mathrm{T}} \boldsymbol{\beta}\right)=E \varepsilon_{i} \varepsilon_{i+k}=\gamma_{k} . \tag{2.2}
\end{equation*}
$$

Let $\mathbf{U}_{i}=\left(U_{i 1}, \cdots, U_{i p}\right)^{\mathrm{T}}, U_{i k}=e_{i} e_{i+k}, k=1,2, \cdots, p, i=1,2, \cdots, N$, then the null hypothesis reduces to $E \mathbf{U}_{i}=\mathbf{0}$. To construct the test statistics based on \mathbf{U}_{i}, we can replace unknown e_{i} in \mathbf{U}_{i} by its estimator. In the following, the corrected profile least-squares approach of Liang et al. (2008) is applied to estimate model (1.1).
If \mathbf{X} can be observed exactly, and $\boldsymbol{\beta}$ is known, model (2.1) can be rewritten as the following standard bivariate additive model of Opsomer and Ruppert (1997)£

$$
\begin{equation*}
Y_{i}-\mathbf{X}_{i}^{\mathrm{T}} \boldsymbol{\beta}=m_{1}\left(Z_{1 i}\right)+m_{2}\left(Z_{2 i}\right)+\varepsilon_{i}, \quad i=1,2, \cdots, n . \tag{2.3}
\end{equation*}
$$

Let $\mathbf{Y}=\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)^{\mathrm{T}}, \mathbf{m}_{k}=\left(m_{k}\left(Z_{k 1}\right), m_{k}\left(Z_{k 2}\right), \cdots, m_{k}\left(Z_{k n}\right)\right), \mathbf{X}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \cdots, \mathbf{X}_{n}\right)^{\mathrm{T}}$,

$$
s_{1, z_{1}}^{\mathrm{T}}=\mathbf{e}_{1}^{\mathrm{T}}\left\{\mathbf{D}_{1}^{\mathrm{T}} \mathbf{K}_{1} \mathbf{D}_{1}\right\}^{-1} \mathbf{D}_{1}^{\mathrm{T}} \mathbf{K}_{1}, s_{2, z_{2}}^{\mathrm{T}}=\mathbf{e}_{1}^{\mathrm{T}}\left\{\mathbf{D}_{2}^{\mathrm{T}} \mathbf{K}_{2} \mathbf{D}_{2}\right\}^{-1} \mathbf{D}_{2}^{\mathrm{T}} \mathbf{K}_{2},
$$

with $\mathbf{e}_{1}=(1,0)^{\mathrm{T}}, \mathbf{K}_{1}=\operatorname{diag}\left\{K_{h_{1}}\left(Z_{11}-z_{1}\right), K_{h_{1}}\left(Z_{12}-z_{1}\right), \cdots, K_{h_{1}}\left(Z_{1 n}-z_{1}\right)\right\}, \mathbf{K}_{2}=\operatorname{diag}\left\{K_{h_{2}}\left(Z_{21}-z_{2}\right), K_{h_{2}}\left(Z_{22}-\right.\right.$ $\left.\left.z_{2}\right), \cdots, K_{h_{2}}\left(Z_{2 n}-z_{2}\right)\right\}, K_{h_{k}}(\cdot)=K\left(\cdot / h_{k}\right) / h_{k}, K(\cdot)$ is a kernel function and h_{k} is a bandwidth, $k=1,2$.

$$
\mathbf{S}_{1}=\left[\begin{array}{c}
s_{1, Z_{11}}^{\mathrm{T}} \\
s_{1, Z_{12}}^{\mathrm{T}} \\
\vdots \\
s_{1, Z_{1 n}}^{\mathrm{T}}
\end{array}\right], \mathbf{S}_{2}=\left[\begin{array}{c}
s_{1, Z_{21}}^{\mathrm{T}} \\
s_{1, Z_{22}}^{\mathrm{T}} \\
\vdots \\
s_{1, Z_{2 n}}^{\mathrm{T}}
\end{array}\right], \mathbf{D}_{1}=\left[\begin{array}{cc}
1 & Z_{11}-z_{1} \\
1 & Z_{12}-z_{1} \\
\vdots & \vdots \\
1 & Z_{1 n}-z_{1}
\end{array}\right], \mathbf{D}_{2}=\left[\begin{array}{cc}
1 & Z_{21}-z_{2} \\
1 & Z_{22}-z_{2} \\
\vdots & \vdots \\
1 & Z_{2 n}-z_{2}
\end{array}\right]
$$

By the backfitting method of Opsomer and Ruppert (1997), the estimators of \mathbf{m}_{1} and \mathbf{m}_{2} can be defined as

$$
\begin{equation*}
\hat{\mathbf{m}}_{1}=\mathbf{W}_{1}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}), \quad \hat{\mathbf{m}}_{2}=\mathbf{W}_{2}(\mathbf{Y}-\mathbf{X} \boldsymbol{\beta}) \tag{2.4}
\end{equation*}
$$

with $\mathbf{S}_{k}^{*}=\left(\mathbf{I}_{n}-\mathbf{1 1}^{\mathrm{T}}\right) \mathbf{S}_{k}, k=1,2$,

$$
\mathbf{W}_{1}=\mathbf{I}_{n}-\left(\mathbf{I}_{n}-\mathbf{S}_{1}^{*} \mathbf{S}_{2}^{*}\right)^{-1}\left(\mathbf{I}_{n}-\mathbf{S}_{1}^{*}\right), \quad \mathbf{W}_{2}=\mathbf{I}_{n}-\left(\mathbf{I}_{n}-\mathbf{S}_{2}^{*} \mathbf{S}_{1}^{*}\right)^{-1}\left(\mathbf{I}_{n}-\mathbf{S}_{2}^{*}\right)
$$

Replaced \mathbf{m}_{1} and \mathbf{m}_{2} of model (2.3) by their estimators $\hat{\mathbf{m}}_{1}$ and $\hat{\mathbf{m}}_{2}$, respectively, we can obtain the following linear model

$$
\begin{equation*}
Y_{i}-\hat{Y}_{i}=\left(\mathbf{X}_{i}-\hat{\mathbf{X}}_{i}\right)^{\mathrm{T}} \boldsymbol{\beta}+\varepsilon_{i}-\hat{\varepsilon}_{i}, i=1,2, \cdots, n, \tag{2.5}
\end{equation*}
$$

with $\hat{\mathbf{Y}}=\left(\hat{Y}_{1}, \cdots, \hat{Y}_{n}\right)^{\mathrm{T}}=\mathbf{S Y}, \hat{\mathbf{X}}=\left(\hat{\mathbf{X}}_{1}, \cdots, \hat{\mathbf{X}}_{n}\right)^{\mathrm{T}}=\mathbf{S X}, \hat{\boldsymbol{\varepsilon}}=\left(\hat{\varepsilon}_{1}, \cdots, \hat{\varepsilon}_{n}\right)^{\mathrm{T}}=\mathbf{S} \boldsymbol{\varepsilon}$, and $\mathbf{S}=\mathbf{W}_{1}+\mathbf{W}_{2}, \boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)$.
If we can observe \mathbf{X}_{i} without measurement error, Then the profile least squares estimator of β can be obtained by applying the least-squares approach to linear model (2.5). To solve the problem that \mathbf{X}_{i} cannot be observed exactly, Liang et al. (2008) constructed the following corrected profile least-squares estimator of β by the correction for attenuation technique,

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta} \in R^{l}}\left[(\overline{\mathbf{Y}}-\overline{\mathbf{V}} \boldsymbol{\beta})^{\mathrm{T}}(\overline{\mathbf{Y}}-\overline{\mathbf{V}} \boldsymbol{\beta})-n \boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma}_{\eta} \boldsymbol{\beta}\right]=\left(\overline{\mathbf{V}}^{\mathrm{T}} \overline{\mathbf{V}}-n \boldsymbol{\Sigma}_{\boldsymbol{\eta}}\right)^{-1} \overline{\mathbf{V}}^{\mathrm{T}} \overline{\mathbf{Y}} \tag{2.6}
\end{equation*}
$$

where $\overline{\mathbf{Y}}=\mathbf{Y}-\hat{\mathbf{Y}}, \overline{\mathbf{V}}=\mathbf{V}-\hat{\mathbf{V}}, \hat{\mathbf{V}}=\left(\hat{\mathbf{V}}_{1}, \cdots, \hat{\mathbf{V}}_{n}\right)^{\mathrm{T}}=\mathbf{S V}$ and $\mathbf{V}=\left(\mathbf{V}_{1}, \cdots, \mathbf{V}_{n}\right)^{\mathrm{T}}$. Therefore, the estimators of \mathbf{m}_{1} and \mathbf{m}_{2} can be defined as

$$
\begin{equation*}
\hat{\mathbf{m}}_{1}=\mathbf{W}_{1}(\mathbf{Y}-\mathbf{V} \hat{\boldsymbol{\beta}}), \quad \hat{\mathbf{m}}_{2}=\mathbf{W}_{2}(\mathbf{Y}-\mathbf{V} \hat{\boldsymbol{\beta}}) \tag{2.7}
\end{equation*}
$$

By the idea of Li and Stengos (2003) and Hu et al. (2009), we construct the following test statistic based on \mathbf{U}_{i} with e_{i} replaced by $\hat{\boldsymbol{e}}_{i}=y_{i}-\mathbf{V}_{i}^{\mathrm{T}} \hat{\boldsymbol{\beta}}-\hat{m}_{1}\left(Z_{1 i}\right)-\hat{m}_{2}\left(Z_{2 i}\right)$ as

$$
\begin{equation*}
T_{N}=\hat{\sigma}^{-2} \mathbf{V}_{N}^{\mathrm{T}} \mathbf{V}_{N} \tag{2.8}
\end{equation*}
$$

with $\hat{\sigma}^{-2}=\frac{1}{n} \sum_{i=1}^{n} \hat{e}_{i}^{2}, \mathbf{V}_{N}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \boldsymbol{\xi}_{i}$, and $\boldsymbol{\xi}_{i}=\left(\xi_{i 1}, \cdots, \xi_{i p}\right)^{\mathrm{T}}, \xi_{i k}=\hat{e}_{i} \hat{e}_{i+k}$.
For \mathbf{V}_{N} and T_{N}, we have the following result. The following assumptions are given by Liang et al. (2008) and they are can be easily satisfied.

Assumption 1. The function $K(\cdot)$ is a bounded symmetric density function with compact support.
Assumption 2. The densities $f_{k}\left(Z_{k}\right)$ of Z_{k} are Lipschitz continuous and bounded away from 0 , and have bounded supports $\boldsymbol{\Omega}_{k}$ for $k=1,2$.
Assumption 3. The second derivatives of $m_{k}(\cdot), k=1,2$ exist and are bounded and continuous.
Assumption 4. As $n \rightarrow \infty, h_{k} \rightarrow 0, n h_{k} / \log n \rightarrow \infty$ and $n h_{k}^{8} \rightarrow 0$ for $k=1,2$.
Theorem 2.1 Under the assumptions 1-4, if the null hypothesis of no serial correlation is true, we have

$$
\mathbf{V}_{N} \xrightarrow{D} N\left(\mathbf{0}, \sigma_{0}^{2} \mathbf{I}_{p}\right), \quad T_{N} \xrightarrow{D} \chi_{p}^{2} .
$$

where $\sigma_{0}=\sigma^{2}+\beta^{\mathrm{T}} \boldsymbol{\Sigma}_{\eta} \boldsymbol{\beta}, \chi_{p}^{2}$ is a χ^{2}-distribution with p degrees of freedom.
Proof of Theorem 2.1 By the Lemma 4.3 of Yang et al. (2015), we have

$$
\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \boldsymbol{\xi}_{i} \xrightarrow{D} N\left(\mathbf{0}, \sigma_{0}^{2}\right), \sigma_{0}=\sigma^{2}+\boldsymbol{\beta}^{\mathrm{T}} \boldsymbol{\Sigma}_{\eta} \boldsymbol{\beta}
$$

Therefore, we can obtain $T_{N} \xrightarrow{D} \chi_{p}^{2}$ as $N \rightarrow \infty$. This completes the proof.
3. Simulation Studies

To illustrate the performance of our test statistic, we conduct a simulation study in this section. Following Yang et al. (2015), we consider the following model

$$
y_{i}=x_{i} \beta+m_{1}\left(z_{1 i}\right)+m_{2}\left(z_{2 i}\right)+\varepsilon_{i}, \quad v_{i}=x_{i}+\eta_{i}, i=1,2, \cdots, n,
$$

with $x_{i} \sim N(0,1), z_{1 i} \sim U(0,1), z_{2 i} \sim U(-1,1), \eta_{i} \sim N(0,0.25)$, and $\beta=1, m_{1}\left(z_{1 i}\right)=2 \cos \left(2 \pi z_{1 i}\right), m_{2}\left(z_{2 i}\right)=z_{2 i}^{4}+2 z_{2 i}^{3}+$ $3 z_{2 i}^{2}-2 z_{2 i}-2$, and ε_{i} are generated from the following different processes:
(1) $\operatorname{AR}(1)$ error: $\varepsilon_{i}=\rho \varepsilon_{i-1}+\mu_{i}$; (2) MA(1) error: $\quad \varepsilon_{i}=\rho \mu_{i-1}+\mu_{i}$;
(3) $\operatorname{AR}(2)$ error: $\varepsilon_{i}=\alpha_{1} \varepsilon_{i-1}+\alpha_{2} \varepsilon_{i-2}+\mu_{i}$; (4) $\mathrm{MA}(2)$ error: $\varepsilon_{i}=\alpha_{1} \mu_{i-1}+\alpha_{2} \mu_{i-2}+\mu_{i}$.

For model error μ_{i}, three different distributions are discussed, (1) $\mu_{i} \sim N\left(0,0.5^{2}\right)$, (2) $\mu_{i} \sim U(-\sqrt{3} / 2, \sqrt{3} / 2)$, (3) $\mu_{i} \sim$ $\frac{1}{8} \chi_{8}^{2}-1$. The Epanechnikov kernel $K(x)=0.75\left(1-x^{2}\right) \mathbf{I}_{|x| \leq 1}$ and bandwidths $h_{1}=h_{2}=n^{-1 / 5}$ are used in the simulations. Take $\rho=0, \pm 0.2, \pm 0.5, \pm 0.8$ and $\left(\alpha_{1}, \alpha_{2}\right)=(0,0),(0,0.5),(0.3,0.4),(0.2,-0.6),(-0.4,0.5)$ and $n=100,200$. For each case, 1000 replications were run, we let the significance level $\alpha=0.05$, the rejection rate at was computed as the estimated size and power of the test. The results are presented in Tables 1-4.
Table 3.1. Empirical size and power for $H_{0}: \rho=0$ when $\varepsilon_{i}=\rho \varepsilon_{i-1}+\mu_{i}$

		Error		Distribution
n	ρ	$N\left(0,0.5^{2}\right)$	$U(-\sqrt{3} / 2, \sqrt{3} / 2)$	$\frac{1}{8} \chi_{8}^{2}-1$
$n=100$	0	0.048	0.042	0.048
	0.2	0.082	0.093	0.094
	-0.2	0.114	0.145	0.130
	0.5	0.507	0.462	0.474
	-0.5	0.570	0.588	0.552
	0.8	0.956	0.956	0.947
	-0.8	0.980	0.978	0.972
$\mathrm{n}=200$	0	0.059	0.045	0.044
	0.2	0.192	0.195	0.231
	-0.2	0.246	0.260	0.239
	0.5	0.872	0.880	0.891
	-0.5	0.89	0.906	0.904
0.8	1.000	1.000	1.000	
	-0.8	1.000	1.000	1.000

From the results, we can found that if the null hypothesis is true (that is $\rho=0$ or $\left.\left(\alpha_{1}, \alpha_{2}\right)=(0,0)\right)$, the estimated sizes are quite good, and the estimated sizes converge toward their nominal sizes as n increases. Under the alternative hypothesis,

Table 3.2. Empirical size and power for $H_{0}: \rho=0$ when $\varepsilon_{i}=\rho u_{i-1}+\mu_{i}$

		Error		Distribution
n	ρ	$N\left(0,0.5^{2}\right)$	$U(-\sqrt{3} / 2, \sqrt{3} / 2)$	$\frac{1}{8} \chi_{8}^{2}-1$
$n=100$	0	0.047	0.040	0.041
	0.2	0.080	0.100	0.091
	-0.2	0.123	0.113	0.113
	0.5	0.295	0.336	0.314
	-0.5	0.413	0.394	0.380
	0.8	0.547	0.601	0.585
	-0.8	0.626	0.649	0.658
$\mathrm{n}=200$	0	0.049	0.053	0.041
	0.2	0.182	0.171	0.202
	-0.2	0.222	0.232	0.217
	0.5	0.719	0.745	0.713
	-0.5	0.781	0.792	0.761
	0.8	0.937	0.957	0.946
	-0.8	0.958	0.957	0.959

Table 3.3. Empirical size and power for $H_{0}: \alpha_{1}=\alpha_{2}=0$ when $\varepsilon_{i}=\alpha_{1} \varepsilon_{i-1}+\alpha_{2} \varepsilon_{i-2}+\mu_{i}$

		Error		Distribution
n	$\left(\alpha_{1}, \alpha_{2}\right)$	$N\left(0,0.5^{2}\right)$	$U(-\sqrt{3} / 2, \sqrt{3} / 2)$	$\frac{1}{8} \chi_{8}^{2}-1$
$n=100$	$(0,0)$	0.047	0.053	0.044
	$(0,0.5)$	0.434	0.434	0.438
	$(0.3,0.4)$	0.669	0.667	0.637
	$(0.2,-0.6)$	0.651	0.624	0.616
	$(-0.4,0.5)$	0.980	0.987	0.980
$n=200$	$(0,0)$	0.050	0.041	0.056
	$(0,0.5)$	0.810	0.827	0.833
	$(0.3,0.4)$	0.956	0.961	0.966
	$(0.2,-0.6)$	0.960	0.957	0.964
	$(-0.4,0.5)$	1.000	1.000	1.000

Table 3.4. Empirical size and power for $H_{0}: \alpha_{1}=\alpha_{2}=0$ when $\varepsilon_{i}=\alpha_{1} u_{i-1}+\alpha_{2} u_{i-2}+\mu_{i}$

		Error		Distribution
n	$\left(\alpha_{1}, \alpha_{2}\right)$	$N\left(0,0.5^{2}\right)$	$U(-\sqrt{3} / 2, \sqrt{3} / 2)$	$\frac{1}{8} \chi_{8}^{2}-1$
$n=100$	$(0,0)$	0.055	0.048	0.043
	$(0,0.5)$	0.288	0.254	0.265
	$(0.3,0.4)$	0.297	0.295	0.300
	$(0.2,-0.6)$	0.358	0.358	0.343
	$(-0.4,0.5)$	0.511	0.522	0.510
$n=200$	$(0,0)$	0.048	0.055	0.055
	$(0,0.5)$	0.617	0.615	0.631
	$(0.3,0.4)$	0.711	0.668	0.669
	$(0.2,-0.6)$	0.748	0.758	0.774
	$(-0.4,0.5)$	0.888	0.893	0.899

the rejection rate seems very robust to the variation of the type of error distribution, and increases rapidly as the alternative hypothesis deviates from the null hypothesis. Compared with the results of Yang et al. (2015), our test performs well.

4. Conclusion

To test serial correlation of partially linear additive measurement errors models, a test statistic was proposed. The test statistic is shown to have asymptotic chi-square distribution under the null hypothesis of no serial correlation. Some simulations are conducted to illustrate the performance of the proposed method and and the results are satisfactory.

References

Hu, X. M., Liu, F., \& Wang, Z. Z. (2009). Testing serial correlation in semiparametric varying coefficient partially linear errors-in-variables model. Journal of System Science and Complexity, 22, 484-494. https://doi.org/10.1007/s11424-009-9180-8
Li, D. D., \& Stengos, T. (2003). Testing serial correlation in semi-parametric time series models. J. Time Ser. Anal., 24, 311-335. https://doi.org/10.1111/1467-9892.00309

Li, Q., \& Hsiao, C. (1998). Testing serial correlation in semiparametric panel data models. Journal of Econometrics, 87, 207-237. https://doi.org/10.1016/S0304-4076(98)00013-X
Liang, H., \& Thurston, H., \& Ruppert, D., \& Apanasovich, T. (2008). Additive partial linear models with measurement errors. Biometrika, 95, 667-678. https://doi.org/10.1093/biomet/asn024

Liu, F., \& Chen, G. M., \& Chen, M. (2008). Testing serial correlation in partial linear errors-in-variables models based on empirical likelihood. Communications in Statistics-Theory and Methods, 37(12), 1905-1918. http://dx.doi.org/10.1080/03610920801893780
Liu, X. H., \& Wang, Z. Z., \& Hu, X. M., \& Wang, G. F. (2011). Testing serial crrelation in partially linear singleindex errors-in-variables models. Communications in Statistics-Theory and Methods, 40(14), 2554-2573. https://doi.org/10.1080/03610926.2010.489174

Opsomer, J. D., \& Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. Annals of Statistics, 25, 186-211. https://doi.org/10.1214/aos/1034276626

Yang, J., \& Guo, S., \& Wei, C. H. (2015). Testing serial crrelation in partially linear additive errors-in-variables models. Communications in Statistics-Simulation and Computation, 45(9), 3114-3127. https://doi.org/10.1080/03610918.2014.920881

Zhou, Z. G., \& Qian, W. M., \& He, C. (2012). Testing serial correlation for partially nonlinear models. Journal of the Korean Statistical Society, 39(4), 501-509. https://doi.org/10.1016/j.jkss.2009.10.008

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

