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Correspondence: Gossouhon SITIONON, Université Félix Houphouet Boigny, Abidjan, 22 BP 582 Abidjan 22, UFR
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Abstract

In this study we perform a modal analysis of the linear inviscid shallow water equations using a non constant bathymetry,
continuous and discontinuous Galerkin approximations. By extracting the discrete eigenvalues of the resulting algebraic
linear system written on the form of a generalized eigenvalue / eigenvector problem we first show that the regular variation
of the bathymetry does not prevent the presence of spurious inertial modes when centered finite element pairs are used.
Secondly, we show that such spurious modes are not present in discontinuous Galerkin discretizations when all variables
are approximated in the same descrete space. Such spurious inertial modes have been found very damageable for the
quality of inertia-gravity and Rossby modes in ocean modelling.
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1. Introduction

For most discretization schemes, the numerical approximation of shallow water models for geophysical flows is a delicate
problem. See ( Eldred C. & Le Roux D.Y.(2018), Eldred C. & Le Roux D.Y.(2019)). Indeed, the coupling between the
continuity and momentum equations usually produces non physical oscillations in the solution, called spurious oscilla-
tions. Numerical study of the shallow water equations for finite element pairs that have two velocity components per
node brings out three kind of modes namely the physical geostrophic and inertia-gravity modes and non physical spurious
inertial modes which appear when the number of discrete momentum equations exceeds, at least by a factor of two, the
number of discrete continuity equations. Existence and proportions of theses modes can be found in some papers such as
( Le ROUX, 2012) but their authors have only considered the case of constant bathymetry. Indeed, it has been shown that
the spurious inertial modes have the frequency ± f , when the Coriolis factor f and the bathymetry H are constant, by using
Fourier analysis. Such a Fourier study is not possible when the bathymetry H(x, y) is no longer constant. The first aim
of this paper is to examine numerically the existence and proportions among all the discrete frequencies, of the spurious
inertial modes for five finite element pairs in the case of a variable bathymetry and compare the results obtained with those
of constant bathymetry. The second aim of this paper is to find a method that makes velocity and surface elevation free of
spurious inertial modes, namely, the discontinuous Galerkin method.

We first present the model and perform the temporal and space discretizations. The continuous and discontinuous Galerkin
formulations are then presented and concluding remarks complete the study.

2. Governing Equations

In this study we focus on the inviscid shallow water (SW) equations linearized around a state of rest, with a variable
bathymetry H(x, y) and a constant Coriolis force f . Let Ω be the domain and Σ its boundary. The linearized inviscid
shallow water equations in cartesian coordinates are expressed as follows:

ũt + f k × ũ + g∇η̃ = 0, (1)
η̃t + ∇.(Hũ) = 0, (2)

where g is the gravitational acceleration, ũ = (̃u, ṽ) is the velocity field vector, η̃ is the surface elevation with respect to
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the reference level z = 0, k is a unit vector in the vertical direction such that k × ũ = (−̃v, ũ) and let x = (x, y).
The system (1) –(2) is solved subject to periodic boundary condition to mimic the Fourier analyses of previous studies.

3. Discretization of the Inviscid Linear Shallow-Water Equations

3.1 The Finite Element Method

For a given time step ∆t = tn+1 − tn, (n = 0; 1; 2; ... and t0 = 0), the time discretization of (1) –(2) is written using a Crank
Nicolson scheme. See ( Adou, Sitionon & Coulibaly, 2016). By looking for periodic Fourier solutions such as

(̃un(x, tn), η̃n(x, tn)) = (u(x), η(x))eiωtn , (3)

where u(x) and η(x) are the amplitudes of the velocity field and the free surface elevation respectively, with tn = n∆t. We

let α =
E − 1

∆t
2 (E + 1)

with E = eiω∆t and we obtain

αu + f k × u + g∇η = 0, (4)
αη + ∇.(Hu) = 0. (5)

To obtain the weak formulation either the gradient term in (4) or the divergence term in (5) is integrated by parts, which
requires two different weak formulations, F1 and F2 respectively, defined as follow.
Formulation F1: Let V1 be a subspace of (H1(Ω))2, Q1 be a subspace of L2(Ω), u ∈ V1 and η ∈ Q1. The weak
formulation is obtained by multiplying (4) by a test function φ(x) and then multiplying (5) by a test function ζ(x), with
φ(x) ∈ V1 and ζ(x) ∈ Q1, and integrating over the domain which leads to

α

∫
Ω

u.φdΩ + f
∫

Ω

(k × u).φdΩ − g
∫

Ω

η∇.φdΩ = 0, (6)

α

∫
Ω

ηζdΩ +

∫
Ω

∇.(Hu)ζdΩ = 0. (7)

Formulation F2: Let u belongs to V2, a subspace of (L2(Ω))2 and let η be in a subspace Q2 of H1(Ω). Equation (4) is
multiplied by a test function ϕ(x) with ϕ(x) ∈ V2 and equation (5) is multiplyed by a test function ψ(x) belonging to Q2
and we integrate over the domain Ω to obtain

α

∫
Ω

u.ϕdΩ + f
∫

Ω

(k × u).ϕdΩ + g
∫

Ω

ϕ.∇ηdΩ = 0, (8)

α

∫
Ω

ηψdΩ −

∫
Ω

Hu.∇ψdΩ = 0. (9)

The Galerkin method approaches the solutions of (6)-(9) in a finite dimensional subspace. Consider a triangulation Th,
of the polygonal domain Ω, where h is the parameter representative of the mesh length which measures the resolution.
Let V j,h and Q j,h, be the finite-dimensional subspaces of V j and Q j, respectively, for j = 1, 2. The solution uh (resp. ηh)
belongs to V j,h (resp. Q j,h) defined as beeing the set of functions uh (resp. ηh) whose restriction on a triangle K of Th

belongs to Pm1 (K) × Pm1 (K) (resp. Pm2 (K)), where Pm1 (K) ( resp. Pm2 (K)) denotes the set of polynomials of degree m1
(resp. m2) defined on K.

The introduction of the finite element basis leads to a formulation as in (6)-(9), but with u, η replaced by the finite element
trial functions uh, ηh and φ, ϕ, ζ, ψ replaced by the corresponding finite element test functions φh ∈ V1,h, ϕh ∈ V2,h,
ζh ∈ Q1,h and ψh ∈ Q2,h. Further, the solutions uh, ηh are expanded over each triangle K of Th in the finite element basis
such that

u ' uh =

Ns∑
p=1

upφp, η ' ηh =

Nv∑
s=1

ηsζs, (10)

for the formulation F1, and for the formulation F2, we obtain

u ' uh =

Ns∑
p=1

upϕp, η ' ηh =

Nv∑
s=1

ηsψs, (11)

where ηs and up represent the nodal values of surface elevation and velocity field respectively, while ζs, ψs and φp, ϕp are
the basic functions of surface elevation and velocity components respectively. Nv is the number of surface elevation nodes
and Ns is the number of velocity nodes in the mesh.
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Equations (6) –(7) lead to∑
K∈Th

∑
p∈IK

[
αup + f k × up

] ∫
K
φpφqdx − g

∑
K∈Th

∑
s∈K

ηs

∫
K
ζs∇.φqdx = 0, (12)

∑
K∈Th

∑
s∈K

αηs

∫
K
ζsζrdx +

∑
K∈Th

∑
p∈IK

up.

∫
K
∇.(Hφp)ζrdx = 0, (13)

and equations (8) –(9) yield

∑
K∈Th

∑
p∈IK

[
αup + f k × up

] ∫
K
ϕpϕqdx + g

∑
K∈Th

∑
s∈K

ηs

∫
K

(∇ψs).ϕqdx = 0, (14)

∑
K∈Th

∑
s∈K

αηs

∫
K
ψsψrdx −

∑
K∈Th

∑
p∈IK

up.

∫
K

Hϕp(∇ψr)dx = 0, (15)

where φp = (φp, φp), ϕp = (ϕp, ϕp), IK is the set of velocity nodes belonging to K. Each system in (12) –(15) can be
rewritten as a generalized eigenvalues problem

(
C G
D O1

) (
U
η

)
= α

(
−Mu O3

O2 −Mη

) (
U
η

)
(16)

where Mu is the Nu ×Nu mass matrix for u, Mη is the Nη ×Nη mass matrix for η, D is the Nη ×Nu divergence matrix, G is
the Nu × Nη gradient matrix, O1 is the Nη × Nη null matrix, O2 is the Nη × Nu null matrix, O3 is the Nu × Nη null matrix,
C is the Nu × Nu Coriolis matrix and

U =
(

u1 v1 u2 v2 ... uNu vNu

)T
, η =

(
η1 η2 ... ηNη

)T
, (17)

with Nu and Nη being the number of velocity and surface elevation nodes, respectively.

3.2 The Discontinuous Galerkin Method

The time discretized equations (4)-(5) are considered and the discontinuous Galerkin method is now employed for the
space discretization. Details can be found in ( Cokburn, 1997), ( Cokburn, 2003) and (Shipton J & Gibson T.H. & Cotter
C.J., 2018).

In order to describe the weak formulation, a few notations are first defined. Let {Th}h>0 be a partition of the domain Ω into
a finite number Nel of disjoint open elements Kel such that

Ω = ∪
Nel
i=1Ki and Ki+ ∩ Ki− = ø for i+ , i−, (18)

where h is the maximum diameter of the element, Ω is the adhesion of Ω and each element Ki has a Lipschitzian boundary
∂Ki. The mesh length parameter h is assumed to be constant. Let Γ be the finite set of M inter-element boundaries
ΓKi = Ki+ ∩ Ki− with i+ > i− within the domain, with all possible combinations

Γ = ∪M
i=1ΓKi and ΓKi+

∩ ΓKi+
= ø for i+ , i−. (19)

Each inter-element boundary ΓK ∈ Γ is associated with a unique fixed unit normal vector denoted by nK = (nx
K , n

y
K).

Further, for any function ζ ∈ VK := H1(K), where ζ represents u, v or η, and for each element K, the trace of ζ on interior
edges ΓK is denoted by ζ±, or ζL (L for left) and ζR (R for right). For x ∈ ΓK we have

ζg(x) = ζ−(x) = lim
ε→0−

ζ(x + εnK) ζd(x) = ζ+(x) = lim
ε→0+

ζ(x + εnK). (20)

To obtain the weak formulation both gradient term in (4) and divergence term in (5) are integrated by parts, which lead to
the weak formulations F3 defined as follow.
Formulation F3: Let V3 be a subspace of H1(K), ∀K ∈ Th, u ∈ V3 × V3 and η ∈ V3. The weak formulation is obtained
by multiplying (4) by a test function φ(x) = (φ(x), φ(x)), then multiplying (5) by a test function φ(x) with φ(x) ∈ V3 × V3
and φ(x) ∈ V3, and integrating over the domain leads to
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α

∫
K

u.φdx + f
∫

K
(k × u).φdx − g

∫
K
η∇.φdx +

∫
∂K

gηφ.nkds = 0, (21)

α

∫
K
ηφdx −

∫
K

Hu.∇φdx +

∫
∂K

Hφu.nkds = 0. (22)

The Discontinuous Galerkin method approaches the solutions of (21)-(22) in a finite dimensional subspace. Let V3,h be
the finite-dimensional subspaces of V3. The solution uh (resp. ηh) belongs to V3,h × V3,h (resp. V3,h) defined as beeing the
set of functions uh (resp. ηh) whose restriction on a triangle K of Th belongs to Pm1 (K) × Pm1 (K) (resp. Pm1 (K)), where
Pm1 (K) denotes the set of polynomials of degree m1 defined on K.

The introduction of the finite element basis leads to a formulation as in (21)-(22), but with u, η replaced by the finite
element trial functions uh, ηh and φ replaced by the corresponding finite element test function φh ∈ V3,h × V3,h, φh ∈ V3,h.

Equations (21) –(22) lead to

α
∑
K∈Th

∫
K

uh.φhdx + f
∑
K∈Th

∫
K

(k × uh).φhdx − g
∑
K∈Th

∫
K
ηh∇.φhdx

+
∑
K∈Th

∫
∂K

gη∗φ.nKds = 0, (23)

α
∑
K∈Th

∫
K
ηhφhdx −

∑
K∈Th

∫
K

Huh.∇φhdx +
∑
K∈Th

∫
∂K

Hφu∗.nKds = 0, (24)

where φh = (φh, φh), (u∗, η∗) denote the numerical trace of (u, η) on the boundary element ∂K with u∗ = (u∗, v∗). Note
that the finite volume scheme is obtained from (23) - (24) when m = 0, and hence the third term in the left hand side of
(23) and the second term in the left hand side of (24) are all zeros as the test function belongs to P0(K). To complete
the definition of the approximate solution (uh, vh, ηh), it only remains to choose a unique numerical flux (u∗, v∗, η∗) at the
cell interface as to render the method consistent and stable. By using the Rusanov flux which guarentees the stability, we
obtain (

gη∗nK

Hu∗.nK

)
=

 gnK {η} −
√

gH
2 [u]

HnK . {u} −
√

gH
2 [η]

 , (25)

with ζ ∈ {u, v, η}, [ζ] = ζR−ζL is the jump of ζ and {ζ} =
ζR + ζL

2
is the mean of ζ. After expanding u and η on each triangle

K of Th, in terms of their respective nodal values and basis functions, we obtain the generalized eigenvalue problem(
C + Su G

D Sη

) (
U
η

)
= α

(
−Mu O

O −Mη

) (
U
η

)
, (26)

where Mu is the 2N × 2N mass matrix for u, Mη is the N × N mass matrix for η, D is the N × 2N divergence matrix, G is
the 2N × N gradient matrix, O is the null matrix, C is the 2N × 2N Coriolis matrix, Su is the 2N × 2N stabilization matrix
for u, Sη is the N × N stabilization matrix for η and

U =
(

u1 v1 u2 v2 ... uN vN

)T
, η =

(
η1 η2 ... ηN

)T
. (27)

Note that Su and Sη are the stabilization matrices regrouping the jumps of u and η, respectively.

4. Numerical Results

All numerical results are obtained using FreeFem++ of (Hecht, F , 2012). Equations (12) –(15) are solved in a rectangular
domain of length Lx and width Ly on a structured mesh, the Coriolis force f being constant. The boundary of the domain
is subject to periodic conditions.

This test is performed using finite element pairs P0 − P1, PDG
1 − P1, PDG

1 − P2, PNC
1 − P1, P2 − P1, and PDG

1 − PDG
1 . The

structured mesh is composed of right isosceles triangles, and a and b denote the number of segments on the length and
on the width of the domain, respectively. Several variable bathymetries have been tested and all of them lead to the same
conclusions. We vary the values of a and b and in each case we compare the number of eigenvalues of (16) and (26) with
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the product ab. The results presented in this study have been obtained with three variable bathymetries H1, H2 and H3
defined by (28), (29) and (30) respectively, and shown in Figure 1. The bathymetry H1 is defined by

H1(x, y) = H0(1 − d.e−c((x−x0)2+(y−y0)2)), (28)

where H0 is the depth around which the pertubation takes place, and c and d well chosen constants, with c = 0.02 and
d = 0.003, and (x0, y0) is the origin of the domain Ω. The bathymetry H2 on Figure 1 is defined by

H2(x, y) = H0(1 + d.e−c((x−x0)2+(y−y0)2)), (29)

while the bathymetry H3 reads

H3(x, y) =


1.63, ∀(x, y) ∈ [−2.39,−1.195] × [−1.43, 1.43]
0.3x + 1.99, ∀(x, y) ∈ [−1.195, 1.195] × [−1.43, 1.43]
2.3485, ∀(x, y) ∈ [1.195, 2.39] × [−1.43, 1.43].

(30)

−4

−2

0

2

4

−2

−1

0

1

2
−1.5

−1

−0.5

0

xy

Z

−4

−2

0

2

4

−2

−1

0

1

2
0

0.5

1

1.5

xy

Z

−4

−2

0

2

4

−2

−1

0

1

2
1.6

1.8

2

2.2

2.4

2.6

xy

z

Figure 1. The bathymetries: (left) H1, (center) H2 and (right) H3

At initial time, an anti-cyclonic velocity field is in geostrophic equilibrium with a prescribed Gaussian distribution of the
surface elevation, centered at the origin of the domain. This leads to the following initial conditions

η̃(x, y, t = 0) = κe−σ((x−x0)2+(y−y0)2), (31)

ũ(x, y, t = 0) =
g
f

k × ∇η̃(x, y, t = 0), (32)

with κ and σ are well chosen constants, for example κ = 0.02 and σ = 0.003. In the model, the equations were adimen-
tionalized with the inertial period T = 104504s, the characteristic time. When computing the eigenvalues of (16), we
obtained three kind of values: some values equal to 0, some values equal to ±7.6178 and the others are such that their
absolute value is greater than 7.6178. To get the dimentionalized value, we divide each pulsation value by T . Indeed we
have E = eiω∆t , eiω∆t = eiω′∆t′ and eiω∆t = eiωT∆t′ . So the numerical value ω′ computed is such that ω′ = ωT . Thus
7.6178/T ' 7.2894 × 10−5 and this correspond to f = 2Ωe sin(Φ) = Ωe = 7.2921 × 10−5rad.s−1 for Φ = 30◦. The
parameter Φ is equal to 30◦ in the simulation. This implies the following remark.

Remark 1. In the numerical results the values f = ±7.6178 correspond to the spurious inertial modes, the values 0
correspond to the geostrophic modes and the others values such that their absolute value is greater than 7.6178 correspond
to the inertia-gravity modes. We set fsp = 7.6178.

We vary the values of a and b in the range of integers J2; 12K. In each case we compare the number of geostrophic modes
ω = 0, inertial modes ω = ± f and inertia-gravity modes corresponding to values of ω such that |ω| > fsp with the product
ab.

In the continuous case we have one geostrophic mode ω = 0, zero spurious inertial mode ω = ± f and 2 inertia-gravity
modes ω = ±

√
f 2 + gH(k2 + l2), where k and l are the wave numbers in the x- and y-directions, respectively. We denote

by GM the geostrophic modes, IGM the inertia-gravity modes, S IM the spurious inertial modes, FE the finite element

and RS IM the ratio of spurious inertial modes, namely RS IM =
NS IM

NGM + NS IM + NIGM
, where NS IM , NGM and NIGM
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are the number of spurious inertial modes, the number of geostrophic modes and the number of inertia-gravity modes
respectively.

In order to determine the influence of bathymetry on the existence and proportions of the spurious inertial modes, we
firstly compute the number of modes when the bathymetry is constant. We vary the value of (a, b) in any (a, b) ∈ J2; 12K2

and results are shown in Table 1.

Table 1. Results of eigenvalues computed with a constant bathymetry for the P2 − P1, PNC
1 − P1, P0 − P1, PDG

1 − P1,
PDG

1 − P2, PDG
1 − PDG

1 , finite element pairs, for any (a, b) ∈ J2; 12K2

Mode P2 − P1 PNC
1 − P1 P0 − P1 PDG

1 − P1 PDG
1 − P2 PDG

1 − PDG
1

type ω number ω number ω number ω number ω number ω number
GM 0 ab 0 ab 0 ab 0 ab 0 4ab 0 6ab
SIM ± fsp 6ab ± fsp 4ab ± fsp 2ab ± fsp 10ab ± fsp 4ab ± fsp 0
IGM ωg 2ab ωg 2ab ωg 2ab ωg 2ab ωg 8ab ωg 12ab

RSIM 6/9 4/7 2/5 10/13 4/16 0

Note: ωg any pulsation ω such that |ω| > fsp.

For all variable bathymetries considered in this study we obtained the same values and numbers of spurious inertial and
geostrophic modes. However, if the number of inertia-gravity modes is the same, their value changes only slightly, from
one bathymetry to another. For example, when taking (a, b) = (5; 3) we obtain as maximum mode values 8.8942, 8.8943
and 8.8944 for bathymetries H1, H2 and H3 respectively.

Table 2. The geostrophic, spurious inertial and inertia-gravities modes proportions for the P2 − P1, PNC
1 − P1, P0 − P1,

PDG
1 − P1, PDG

1 − P2, PDG
1 − PDG

1 finite element pairs, for any (a, b) ∈ J2; 12K2 with variable bathymetries

Modes Continuous P2 − P1 PNC
1 − P1 P0 − P1 PDG

1 − P1 PDG
1 − P2 PDG

1 − PDG
1

GM 0 ab ab ab ab 4ab 6ab
SIM ± fsp 6ab 4ab 2ab 10ab 4ab 0
IGM |ω| > fsp 2ab 2ab 2ab 2ab 8ab 12ab
RSIM 6/9 4/7 2/5 10/13 4/16 0

Further, when using (a, b) = (5; 3) we obtain 90, 60, 30, 150, 60, 0 values equal to ± fsp, namely f = ±7.6178, corre-
sponding to the number of spurious inertial modes for the finite element pairs P2 − P1, PNC

1 − P1, P0 − P1, PDG
1 − P1,

PDG
1 − P2, PDG

1 − PDG
1 , respectively.

As a conclusion, the mode proportion results obtained in this section are consistent with those of Table 5 of (Le ROUX,
2012) for all finite element pairs that have two velocity components per node considered in this study. The physical
parameters that are employed to discretize the SW equations do not affect the results in these tables for any (a, b) ∈
J2; 12K2. Thus, the results obtained in Table 5 of (Le ROUX, 2012) in the case of a constant bathymetry are the same as
for the variable bathymetries used in this study. A regular variation of the bathymetry does not change the proportions of
the modes.

We compute the eigenvalues of (26) using the Rusanov flux and we noted that a finite element space discretization using
the discontinuous Galerkin method does not reveal any spurious inertial mode for constant and variable bathymetries. This
is explained by the fact that the approximation spaces of the velocity field and the elevation of the free surface elevation
are the same. Thus the principal responsable of spurious modes seems to be the interaction of different approximation
spaces of the finite element pairs that are used.

5. Conclusion

The study of the generalized eigenvalue problems presented in this paper allowed us to evaluate the proportions of the
modes resulting from the discretization of the shallow water equations. The results obtained in section 4, show that the
regular variation of the bathymetry does not influence the number of spurious inertial modes. We therefore retain that in
the case of a constant bathymetry and in the case of bathymetries with regular variations, the proportions of the inertial
spurious modes for the P2−P1, PNC

1 −P1, PDG
1 −P1, PDG

1 −P2 and P0−P1 finite elements pairs are 2/3, 4/7, 10/13, 1/4, 2/5,
respectively. This study then makes it possible to generalize some results of Table 5 of (Le ROUX, 2012) to the case of
bathymetries with regular variations.
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The numerical results obtained from the discrete linear equations resulting from the formulations F1 and F2 show that
the interaction between the approximation spaces of velocity field and the free surface elevation is the real cause of the
appearance of spurious inertial modes. This is why in order to eliminate these spurious inertial modes we carry out a
discretization in space of the 2D shallow water equations by using the discontinuous Galerkin method that approaches the
velocity field and the free surface elevation in the same approximation space. We then determine the eigenvalues and the
eigenvectors of the discrete linear system and we analyze these eigenvalues that correspond to the different modes of the
system and we observe the absence of spurious inertial modes.
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