Blow-up for Discretizations of a Nonlinear Parabolic Equation With Nonlinear Memory and Mixt Boundary Condition

Camara Zié ${ }^{1}$, N^{\prime} gohisse Konan Firmin ${ }^{2}$ \& Yoro Gozo 1
${ }^{1}$ Université Nangui Abrogoua, UFR-SFA, Département de Mathématiques et Informatiques, Côte d'Ivoire
${ }^{2}$ Université Péléforo Gon Coulibaly de Korhogo, Département de Mathématiques et Informatiques, Côte d'Ivoire
Correspondence: Camara Zié, Université Nangui Abrogoua, UFR-SFA, Département de Mathématiques et Informatiques, 14 BP 1588 Abidjan 14, Côte d'Ivoire. E-mail: ziecamara892@yahoo.fr

Received: September 22, 2019 Accepted: October 25, 2019 Online Published: November 4, 2019
doi:10.5539/jmr.v11n6p29
URL: https://doi.org/10.5539/jmr.v11n6p29

Abstract

In this paper, we study the numerical approximation for the following initial-boundary value problem

$$
\left\{\begin{array}{l}
v_{t}=v_{x x}+v^{q} \int_{0}^{t} v^{p}(x, s) d s, x \in(0,1), t \in(0, T) \\
v(0, t)=0, v_{x}(1, t)=0, t \in(0, T) \\
v(x, 0)=v_{0}(x)>0, x \in(0,1)
\end{array}\right.
$$

where $q>1, p>0$. Under some assumptions, it is shown that the solution of a semi-discrete form of this problem blows up in the finite time and estimate its semi-discrete blow-up time. We also prove that the semi-discrete blows-up time converges to the real one when the mesh size goes to zero. A similar study has been also undertaken for a discrete form of the above problem. Finally, we give some numerical results to illustrate our analysis.

Keywords: semi-discretization, nonlinear parabolic equation, blow-up, numerical blow-up time, nonlinear memory, finite difference, discretization

1. Introduction

Consider the following problem

$$
\begin{gather*}
v_{t}=v_{x x}+v^{q} \int_{0}^{t} v^{p}(x, s) d s, x \in(0,1), t \in(0, T) \tag{1}\\
v(0, t)=0, v_{x}(1, t)=0, t \in(0, T) \tag{2}\\
v(x, 0)=v_{0}(x)>0, x \in(0,1) \tag{3}
\end{gather*}
$$

which models the temperature distribution of a large number of physical phenomenon from physics, chemistry and biology. In particular, the above problem has a lot of applications in the theory of nuclear reactor kinetics see (Kozhanov, 1994 for more physical motivations). The initial datum $v_{0}(x)$ is a continuous function in $(0,1), v_{0}(0)=0, v_{x}(1)=0, q>1$, $p>0$. The conditions $v_{0}(0, t)=0$ means that the temperature is maintained nil on the boundary $x=0$. Here $(0, T)$ is the maximal time interval on which the solution v of (1)-(3) exists. The time T may be finite or infinite. When T is infinite, we say that the solution u exists globally. When T is finite, the solution u develops a singularity in a finite time, namely

$$
\lim _{t \rightarrow T}\|v(\cdot, t)\|_{\infty}=\infty,
$$

where $\|v(\cdot, t)\|_{\infty}=\max _{0 \leq x \leq 1}|v(x, t)|$. In this case, we say that the solution v blows up in a finite time and the time T is called the blow-up time of solution v. Solutions of nonlinear parabolic equations which blow up in finite time have been the subject of investigations of many authors see (Brandle et al., 2005; Galaktionov et al., 2002; Groisman, 2006; Hirata, 1999; N'gohisse and Boni, 2008 and the references cited therein). In particular, in (Galaktionov et al., 2002; Groisman et al., 2004; Hirata, 1999; Koffi and Nabongo, 2016; Li, 2009; Quittner and Souplet, 2007; Sobo et al., 2016; Souplet, 2004; Zhang et al., 2010; Zhou, 2007), the above problem has been considered and existence and uniqueness of a classical solution have been proved. Under some assumptions, the authors have also shown that the classical solution blows up in a finite time and its blow-up time has been estimated.

The aim of this paper is the numerical study of the above problem.
Let I be a positive integer and define the grid $x_{i}=i h, 0 \leq i \leq I$, where $h=\frac{1}{I}$. Approximate the solution v of the problem (1)-(3) by the solution $V_{h}(t)=\left(V_{0}(t), V_{1}(t), \ldots, V_{I}(t)\right)^{T}$ of the following semi-discrete equations

$$
\begin{gather*}
\frac{d V_{i}(t)}{d t}=\delta^{2} V_{i}(t)+V_{i}^{q}(t) \int_{0}^{t} V_{i}^{p}(s) d s, 1 \leq i \leq I, t \in\left(0, T_{b}^{h}\right) \tag{4}\\
V_{0}(t)=0 \tag{5}\\
V_{i}(0)=\varphi_{i}>0,0 \leq i \leq I \tag{6}\\
\varphi_{i+1}>\varphi_{i}, \quad 0 \leq i \leq I-1
\end{gather*}
$$

where

$$
\begin{gathered}
\delta^{2} V_{i}(t)=\frac{V_{i+1}(t)-2 V_{i}(t)+V_{i-1}(t)}{h^{2}}, \quad 1 \leq i \leq I-1, \\
\delta^{2} V_{I}(t)=\frac{2 V_{I-1}(t)-2 V_{I}(t)}{h^{2}} .
\end{gathered}
$$

Here, $\left(0, T_{b}^{h}\right)$ is the maximal time interval on which $\|v(., t)\|_{\infty}$ is finite, where $\|v(., t)\|_{\infty}=\max _{0 \leq x \leq 1}|v(x, t)|$. When T_{b}^{h} is finite, we say that the solution $V_{h}(t)$ of (4)-(6) blows up in the finite time and the time T_{b}^{h} is called the semi-discrete blow-up time of the solution $V_{h}(t)$.
Abia et al., (1998) have considered the equation (1)-(3) in the case where the source $v^{q} \int_{0}^{t} v^{p}(x, s) d s$ is replaced by v^{p}. They have considered a scheme as the one given in (4)-(6). They have shown that the semi-discrete solution blows up in the finite time and its blow-up time goes to the real one when the mesh size tends to zero.
In this paper, firstly, we show that under some assumptions, the solution of the semi-discrete problem defined in (4)-(6) blows up in a finite time and estimate its semi-discrete blow-up time. We also show that the semi-discrete blow-up time converges to the real one when the mesh size goes to zero. In addition we give the blow-up rate of the solution of the semi-discrete problem. A similar study has been also undertaken for a full discrete form of (1)-(3). Let us notice that in (Abia et al.,1998), only the semi-discrete scheme has been analyzed. One may find in (Mai et al., 1991; Brandle et al., 2004; Ferreira et al., 2004; Li and Xie, 2004; Kozhanov, 1994; N'gohisse and Boni, 2011; Pablo and al, 2005), similar studies concerning other parabolic problems. Let us notice that many authors have used numerical methods to study the phenomenon of blow-up but they are only a few studies on the convergence of the numerical blows-up time for solutions which blow-up in L^{∞} norm. For instance in (Groisman, 2006), the authors have proved the convergence of numerical blow-up time for solutions which blow up in L^{p} norm with $1<p<\infty$.
The rest of the paper is organized as follows. In the next section, we give some results which will be used later. In the section 3 , under some conditions, we prove that the solution of the semi-discrete problem blows up in a finite time and estimate its semi-discrete blow-up time. In the fourth section, we show that, under some additional hypothesis, the semi-discrete blow-up time goes to the real one when the mesh size goes to zero. In the fifth section, we obtain similar results as in sections 3 and 4 using a discrete scheme. Finally, in the last section we report on some numerical experiments to illustrate our analysis.

2. Properties of the Semi-discrete Problem

In this section, we give some results which will be used later. The following lemma is a semi-discrete form of the maximum principle.
Lemma 1 Let $a_{h} \in C^{0}\left([0, T], \mathbb{R}^{I+1}\right)$ and let $W_{h} \in C^{1}\left([0, T], \mathbb{R}^{I+1}\right)$ be such that

$$
\begin{gathered}
\frac{d W_{i}(t)}{d t}-\delta^{2} W_{i}(t)+a_{i}(t) W_{i}(t) \geq 0,1 \leq i \leq I, t \in(0, T) \\
W_{0}(t) \geq 0, t \in(0, T) \\
W_{i}(0) \geq 0,0 \leq i \leq I
\end{gathered}
$$

Then we have $W_{i}(t) \geq 0,0 \leq i \leq I, t \in(0, T)$.
Proof. For the proof, see (N'gohisse and Boni, 2011).
The semi-discrete form of the comparison lemma is staded as follow.

Lemma 2 Let $f \in C^{0}(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ and let $W_{h}, X_{h} \in C^{1}\left([0, T], \mathbb{R}^{I+1}\right)$ be such that for $t \in(0, T)$

$$
\begin{aligned}
\frac{d W_{i}(t)}{d t}-\delta^{2} W_{i}(t)+f\left(W_{i}(t), t\right) & >\frac{d X_{i}(t)}{d t}-\delta^{2} X_{i}(t)+f\left(X_{i}(t), t\right), \quad 1 \leq i \leq I \\
& W_{0}(t)>X_{0}(t) \\
W_{i}(0) & >X_{i}(0), \quad 0 \leq i \leq I
\end{aligned}
$$

Then we have $W_{i}(t)>X_{i}(t), 0 \leq i \leq I, t \in(0, T)$.
Proof. See (N'gohisse and Boni, 2011) for the proof.
The lemma below shows the positivity of the solution.
Lemma 3 Let V_{h} be the solution of (4)-(6). Then we have

$$
V_{i}(t)>0,0 \leq i \leq I, t \in\left(0, T_{b}^{h}\right)
$$

Proof. From Lemma 1, $V_{h}(t) \geq 0$ for $t \in\left(0, T_{b}^{h}\right)$. Suppose that there exist $i_{0} \in\{1, \ldots, I\}$ and $t_{0} \in\left(0, T_{b}^{h}\right)$ such that $V_{i_{0}}\left(t_{0}\right)=0$. We observe that $\frac{d V_{i_{0}}\left(t_{0}\right)}{d t} \leq 0$ and $\delta^{2} V_{i_{0}}\left(t_{0}\right) \geq 0$. We deduce that

$$
\frac{d V_{i_{0}}\left(t_{0}\right)}{d t}-\delta^{2} V_{i_{0}}\left(t_{0}\right)+V_{i}^{q}\left(t_{0}\right) \int_{0}^{t} V_{i}^{p}(s) d s<0
$$

But this contradicts (4) and we have the desidered result.
Lemma 4 Let V_{h} be the solution of (4)-(6). Then we have

$$
V_{i+1}(t)>V_{i}(t), 1 \leq i \leq I-1, t \in\left(0, T_{b}^{h}\right)
$$

Proof. Let $Y_{i}(t)=V_{i+1}(t)-V_{i}(t)$, for $0 \leq i \leq I-1$. Since from Lemma $3 V_{1}>0$ for $t \in\left(0, T_{b}^{h}\right)$, we get $Y_{0}(t)>0$ for $t \in\left(0, T_{b}^{h}\right)$. Let t_{0} be the first $t \in\left(0, T_{b}^{h}\right)$ such that $Y_{i}\left(t_{0}\right)>0$ for $t \in\left(0, t_{0}\right), 1 \leq i \leq I-1$, but $Y_{0}(t)=0$ for a certain $i_{0} \in\{1, \ldots, I-1\}$. Without less of generality, we may suppose that i_{0} is the smallest i which satisfies the equality. We observe that

$$
\begin{gathered}
\frac{d Y_{i_{0}}\left(t_{0}\right)}{d t}=\lim _{k \rightarrow 0} \frac{Y_{i_{0}}\left(t_{0}\right)-Y_{i_{0}}\left(t_{0}-k\right)}{k} \leq 0, \\
\delta^{2} Y_{i_{0}}\left(t_{0}\right)=\frac{Y_{i_{0}+1}\left(t_{0}\right)-2 Y_{i_{0}}\left(t_{0}\right)+Y_{i_{0}-1}\left(t_{0}\right)}{h^{2}}>0, \quad \text { if } 1 \leq i_{0} \leq I-2, \\
\delta^{2} Y_{i_{0}}\left(t_{0}\right)=\frac{-3 Y_{I-1}\left(t_{0}\right)+2 Y_{I-2}\left(t_{0}\right)}{h^{2}}>0 \quad \text { if } i_{0}=I-1 .
\end{gathered}
$$

We deduce that

$$
\frac{d Y_{i_{0}}\left(t_{0}\right)}{d t}-\delta^{2} Y_{i_{0}}\left(t_{0}\right)+Y_{i_{0}}^{q}\left(t_{0}\right) \int_{0}^{t} Y_{i}^{p}(s) d s<0, \quad \text { if } 1 \leq i_{0} \leq I
$$

But this contradicts (4) and the proof is complete.
The following result reveals the property of the operator δ^{2}.
Lemma 5 Let $V_{h} \in \mathbb{R}^{I+1}$ such that $V_{h} \geq 0$. Then we have

$$
\delta^{2} V_{i}^{p} \geq p V_{i}^{p-1} \delta^{2} V_{i}, \quad 1 \leq i \leq I
$$

Proof. See (N'gohisse and Boni, 2011).
Lemma 6 Let W_{h} and $V_{h} \in \mathbb{R}^{I+1}$. If $\quad \delta^{-}\left(V_{I}\right) \delta^{-}\left(W_{I}\right) \geq 0$ and

$$
\delta^{+}\left(V_{i}\right) \delta^{+}\left(W_{i}\right) \geq 0, \delta^{-}\left(V_{i}\right) \delta^{-}\left(W_{i}\right) \geq 0, \quad 1 \leq i \leq I-1,
$$

then

$$
\delta^{2}\left(V_{i} W_{i}\right) \geq V_{i} \delta^{2} W_{i}+W_{i} \delta^{2} V_{i}, \quad 1 \leq i \leq I
$$

where $\delta^{+}\left(V_{i}\right)=\frac{V_{i+1}-V_{i}}{h}$ and $\delta^{-}\left(V_{i}\right)=\frac{V_{i-1}-V_{i}}{h}$.

Proof. See (N'gohisse and Boni, 2011).

3. Blow-up in the Semi-discrete Problem

In this section under some conditions, we prove that the solution V_{h} of (4)-(6) blows up in a finite time and estimate its semi-discrete blow-up time. Our first result on the blow-up is the following.
Theorem 1 Let V_{h} be the solution of (4)-(6) and suppose that there exists a positive constant $A \in(0,1]$ such that the initial datum at (6) satisfies

$$
\begin{equation*}
\delta^{2} \varphi_{i}+\varphi_{i}^{q} \geq A \sin \left(i h \frac{\pi}{2}\right) \varphi_{i}^{q}, \quad 1 \leq i \leq I \tag{7}
\end{equation*}
$$

Then the solution V_{h} blows-up in a finite time T_{b}^{h} which is estimated as follows

$$
T_{b}^{h} \leq \frac{2}{\pi^{2}} \ln \left(1-\frac{\pi^{2}}{2 A} \frac{\left\|\varphi_{I}\right\|_{\infty}^{1-q}}{(1-q)}\right)
$$

Proof. Let T_{b}^{h} be the time up to which $\left\|V_{h}(t)\right\|_{\infty}$ is finite. Our aim is to show that T_{b}^{h} is finite and obeys the above inequality. Introduce the vector J_{h} defined as follows

$$
J_{i}(t)=\frac{d V_{i}(t)}{d t}-C_{i}(t) V_{i}^{q}(t), \quad 0 \leq i \leq I, \quad t \in\left(0, T_{b}^{h}\right)
$$

where $C_{i}(t)=A e^{-\lambda_{h} t} \sin \left(i h \frac{\pi}{2}\right), \quad 0 \leq i \leq I, t \in\left(0, T_{b}^{h}\right)$, with $\lambda_{h}=\frac{2-2 \cos \left(i h_{2}\right)}{h^{2}}$.
A routine computation reveals that

$$
\frac{d J_{i}}{d t}-\delta^{2} J_{i}=\frac{d}{d t}\left(\frac{d V_{i}}{d t}-\delta^{2} V_{i}\right)-C_{i}(t) q V_{i}^{q-1} \frac{d V_{i}}{d t}+\delta^{2}\left(C_{i} V_{i}^{q}\right), \quad 1 \leq i \leq I
$$

We observe that

$$
\frac{d C_{i}}{d t}-\delta^{2} C_{i}=0, C_{i-1}<C_{i}, \quad 1 \leq i \leq I
$$

and due to Lemma 4 we find that

$$
\delta^{-}\left(V_{I}^{q}\right) \delta^{-}\left(C_{I}\right) \geq 0, \delta^{+}\left(V_{i}^{q}\right) \delta^{+}\left(C_{i}\right) \geq 0
$$

and

$$
\delta^{-}\left(V_{i}^{q}\right) \delta^{-}\left(C_{i}\right) \geq 0, \quad 1 \leq i \leq I-1
$$

From Lemma 5 and Lemma 6, we get

$$
\delta^{2}\left(C_{i}(t) V_{i}^{q}(t)\right) \geq C_{i}(t) q V_{i}^{q-1}(t) \delta^{2} V_{i}(t)+V_{i}^{q}(t) \delta^{2} C_{i}(t), \quad 1 \leq i \leq I
$$

Using the above estimates, we discover that

$$
\frac{d J_{i}}{d t}-\delta^{2} J_{i} \geq \frac{d}{d t}\left(\frac{d V_{i}}{d t}-\delta^{2} V_{i}\right)-C_{i} q V_{i}^{q-1}\left(\frac{d V_{i}}{d t}-\delta^{2} V_{i}^{q}\right)+V_{i}^{q}\left(\frac{d C_{i}}{d t}-\delta^{2} C_{i}\right), \quad 1 \leq i \leq I
$$

With the help of (4), we obtain for $1 \leq i \leq I$ that

$$
\frac{d J_{i}}{d t}-\delta^{2} J_{i} \geq q V_{i}^{q-1} \frac{d V_{i}}{d t}-C_{i} q V_{i}^{q-1}\left(V_{i}^{q} \int_{0}^{t} V_{i}^{p}(s) d s\right)
$$

Due the fact that $\frac{d V_{i}}{d t}=J_{i}(t)+C_{i} V_{i}^{q}$, we arrive at

$$
\frac{d J_{i}}{d t}-\delta^{2} J_{i} \geq\left(q V_{i}^{q-1} \frac{d V_{i}}{d t} \int_{0}^{t} V_{i}^{p}(s) d s\right) J_{i}, \quad 1 \leq i \leq I, t \in\left(0, T_{b}^{h}\right)
$$

Obviously, we have $J_{0}(t)=0$, and $J_{h}(0) \geq 0$ because of (7). We deduce from Lemma 1 that

$$
J_{h}(t) \geq 0 \text { for } t \in\left(0, T_{b}^{h}\right) .
$$

Which implies that

$$
\frac{d V_{I}}{d t}-C_{I} V_{I}^{q} \geq 0, \quad t \in\left(0, T_{b}^{h}\right)
$$

This estimation may be rewritten in the following form

$$
\begin{equation*}
\frac{d V_{I}}{V_{I}^{q}} \geq A e^{-\lambda_{h} t} d t \tag{8}
\end{equation*}
$$

Applying Taylor's expansion to obtain

$$
\cos \left(\frac{\pi h}{2}\right)=1-\frac{\pi^{2} h^{2}}{4}+\frac{\pi^{3} h^{3}}{48} \sin \left(\frac{\pi h}{2} \theta\right) \text { where } \theta \in[0,1], \text { this implies that } \lambda_{h} \leq \frac{\pi^{2}}{2} .
$$

Therefore using (8), we discover that

$$
\frac{d V_{I}}{V_{I}^{q}} \geq A e^{-\frac{\pi^{2} t}{2}} d t, t \in\left(0, T_{b}^{h}\right)
$$

Integrating this inequality over $\left(0, T_{b}^{h}\right)$, we obtain

$$
T_{b}^{h} \leq \frac{2}{\pi^{2}} \ln \left(1-\frac{\pi^{2}}{2 A} \frac{\left\|V_{I}(0)\right\|_{\infty}^{1-q}}{(1-q)}\right), t \in\left(0, T_{b}^{h}\right)
$$

From Lemma 4, $\left\|V_{h}(t)\right\|_{\infty}=V_{I}(t)$. Use the fact that $V_{I}(0)=\left\|\varphi_{h}\right\|_{\infty}$ to complete the rest of the proof.
Remark 1 Integrate the inequality (8) over $\left(t_{0}, T_{b}^{h}\right)$ to obtain

$$
T_{b}^{h}-t \leq \frac{2}{\pi^{2}} \ln \left(1-\frac{\pi^{2}}{2 A} e^{-\lambda_{I}} \frac{\left\|V_{h}(t)\right\|_{\infty}^{1-q}}{1-q}\right) \quad \text { for } t \in\left(0, T_{b}^{h}\right)
$$

Since $\left\|V_{h}(t)\right\|_{\infty}=V_{I}(t)$ and $\lambda_{I}=0$ we get,

$$
T_{b}^{h}-t_{0} \leq \frac{2}{\pi^{2}} \ln \left(1-\frac{\pi^{2}}{2 A} \frac{V_{I}^{1-q}\left(t_{0}\right)}{1-q}\right) \quad \text { for } \quad t_{0} \in\left(0, T_{b}^{h}\right)
$$

4. Convergence of the Semi-discrete Blow-up Time

Here, we show that the solution of the semi-discrete problem blows up in a finite time and its blows-up time goes to the continious one when the mesh size goes to zero. We denote

$$
v_{h}(t)=\left(v\left(x_{0}, t\right), \ldots, v\left(x_{I}, t\right)\right)^{T}, \quad\left\|V_{h}(t)\right\|_{\infty}=\max _{0 \leq i \leq I}\left|V_{i}(t)\right|
$$

and $C^{4,1}([0,1] \times[0, T])$ the space of function k-times continuously differentiable by report has x in $[0,1] l$-times continuously differentiable by report has t in $[0, T]$. In order to obtain the convergence of the semi-discrete blow-up time, we firstly prove the following theorem about the convergence of the semi-discrete scheme.
Theorem 2 Assume that the problem (1)-(3) has a solution $v \in C^{4,1}([0,1] \times[0, T])$ and the initial datum at (6) satisfies

$$
\begin{equation*}
\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}=o(1) h \rightarrow 0 \tag{9}
\end{equation*}
$$

Then for h sufficiently small, the problem (4)-(6) has a unique solution $V_{h} \in C^{1}\left([0,1], \mathbb{R}^{l+1}\right)$ such that

$$
\max _{0 \leq i \leq I}\left\|V_{h}(t)-v_{h}(t)\right\|_{\infty}=O\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+h^{2}\right) \text { as } h \rightarrow 0
$$

Proof. Since $v \in C^{4,1}$, there exists a positive constant K such that

$$
\begin{equation*}
\frac{\left\|v_{x x x x}\right\|_{\infty}}{12} \leq K, \quad\|v\|_{\infty} \leq K \tag{10}
\end{equation*}
$$

The problem (4)-(6) has for each h, a unique solution $V_{h} \in C^{1}\left(\left[0, T_{b}^{h}\right], \mathbb{R}^{l+1}\right)$. Let $t(h) \leq \min \left\{T, T_{b}^{h}\right\}$ the greatest value of $t>0$ such that

$$
\begin{equation*}
\left\|V_{h}(t)-v_{h}(t)\right\|_{\infty}<1, \text { for } t \in(0, t(h)) . \tag{11}
\end{equation*}
$$

The relation (9) implied that $t(h)>0$ for h sufficiently small. By the triangle inequality, we obtain

$$
\left\|V_{h}(t)\right\|_{\infty} \leq\left\|v_{h}(t)\right\|_{\infty}+\left\|V_{h}(t)-v_{h}(t)\right\|_{\infty} \text { for } t \in(0, t(h))
$$

which implies that

$$
\begin{equation*}
\left\|V_{h}(t)\right\|_{\infty} \leq 1+K, \quad t \in(0, t(h)) \tag{12}
\end{equation*}
$$

Since $v \in C^{4,1}$, taking the derivative in x on both sides of (1) and due to the fact that v_{x} and $v_{x t}$ vanish at $x=1$, we observe that $v_{x x x}$ vanishes at $x=1$. Applying Taylor's expansion, we discover that, for $1 \leq i \leq I-1, t \in(0, t(h))$,

$$
\begin{gathered}
v_{x x}\left(x_{i}, t\right)=\delta^{2} v\left(x_{i}, t\right)-\frac{h^{2}}{12} v_{x x x x}\left(x_{i}, t\right) \\
v_{t}\left(x_{i}, t\right)-\delta^{2} v\left(x_{i}, t\right)=v^{q}\left(x_{i}, t\right) \int_{0}^{t} v^{p}\left(x_{i}, s\right) d s-\frac{h^{2}}{12} v_{x x x x}\left(\tilde{x}_{i}, t\right), 1 \leq i \leq I
\end{gathered}
$$

$$
\text { for } t \in(0, t(h)) \text {. }
$$

Let $e_{h}(t)=V_{h}(t)-v_{h}(t)$ be the error of discretization. For the mean value theorem, we have for $1 \leq i \leq I, t \in(0, t(h))$,

$$
\frac{d e_{i}(t)}{d t}-\delta^{2} e_{i}(t)=q\left(\xi_{i}(t)\right)^{q-1} e_{i}(t) \int_{0}^{t} v^{p}\left(x_{i}, s\right) d s-V_{i}^{q}(t) \int_{0}^{t} p\left(\theta_{i}(s)\right)^{p-1} e_{i}(s) d s+K h^{2}
$$

where ξ_{i} and θ_{i} are intermediate values between $V_{i}(t)$ and $v\left(x_{i}, t\right)$. Using (10) and (12), we deduce that, there exists a positive constant L such that

$$
\frac{d e_{i}(t)}{d t}-\delta^{2} e_{i}(t) \leq L\left|e_{i}(t)\right|+L \int_{0}^{t}\left|e_{i}(s)\right| d s+K h^{2}, 1 \leq i \leq I, t \in(0, t(h))
$$

Introduce the vector $Y_{h}(t)$ defined as follows

$$
Y_{i}(t)=e^{L(1+T) t}\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+K h^{2}\right), 1 \leq i \leq I, t \in(0, t(h))
$$

A straightforward calculation reveals that

$$
\begin{gathered}
\frac{Y_{i}(t)}{d t}-\delta^{2} Y_{i}(t)>L\left|Y_{i}(t)\right|+L \int_{0}^{t}\left|Y_{i}(s)\right| d s+K h^{2}, 1 \leq i \leq I, t \in(0, t(h)) \\
Y_{0}(t)>e_{0}(t), t \in(0, t(h)) \\
Y_{i}(0)>e_{i}(0), 1 \leq i \leq I
\end{gathered}
$$

It follows from comparison Lemma 2 that

$$
Y_{i}(t)>e_{i}(t) \text { for } 0 \leq i \leq I, t \in(0, t(h))
$$

By the same way, we also prove that

$$
Y_{i}(t)>-e_{i}(t) \text { for } 0 \leq i \leq I, t \in(0, t(h))
$$

which implied that

$$
\left\|V_{h}(t)-v_{h}(t)\right\|_{\infty} \leq e^{L(1+T)}\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+K h^{2}\right) \text { for } t \in(0, t(h))
$$

Let us suppose that $t(h)<\min \left\{T, T_{b}^{h}\right\}$. From (11), we obtain

$$
1=\left\|V_{h}(t(h))-v_{h}(t(h))\right\|_{\infty} \leq e^{L(1+T)}\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+K h^{2}\right) .
$$

Since the third term of the above inequality goes to zero as h goes to zero, we conclude that $1 \leq 0$, which is impossible. Consequently $t(h)=\min \left\{T, T_{b}^{h}\right\}$. Now let us show that $t(h)=T$. Suppose that $t(h)=T_{b}^{h}<T$.
Reasoning as above, we prove that we have a contradiction and the proof is complete. Now, we are in position to state the main theorem of this section.
Theorem 3 Suppose that the problem (1)-(3) has a solution v which blows up in a finite time T_{b} such that $v \in C^{4,1}([0,1] \times$ $\left[0, T_{b}\right)$) and the initial datum at (6) satisfies

$$
\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}=o(1) \text { as } h \rightarrow 0
$$

Under the hypothesis of Theorem 2, the problem (4)-(6) has a solution V_{h} which blows up in a finite time T_{b}^{h} and we have

$$
\lim _{h \rightarrow 0} T_{b}^{h}=T_{b}
$$

Proof. Let $\epsilon>0$. There exists a positive constant R such that

$$
\begin{equation*}
\frac{2}{\pi^{2}} \ln \left(1-\frac{\pi^{2}}{2 A} e^{\frac{-\pi^{2}}{2} T} \frac{x^{1-q}}{1-q}\right) \leq \frac{\epsilon}{2} \text { for } x \in[R, \infty) \tag{13}
\end{equation*}
$$

Since v blows up in the time T_{b}, there exists a time $T_{0} \in\left(T_{b}-\frac{\epsilon}{2}, T_{b}\right)$ such that $\|v(., t)\|_{\infty} \geq 2 R$ for $t \in\left[T_{0}, T_{b}\right]$. Set $\frac{T_{0}+T_{b}}{2}$. From Theorem 2, the problem (4)-(6) has a solution $V_{h}(t)$ and we get

$$
\left\|V_{h}(t)-v_{h}(t)\right\|_{\infty} \leq R \text { for } x \in\left[0, T_{1}\right]
$$

Applying the triangle inequality, we find that

$$
\left\|V_{h}\left(T_{1}\right)\right\|_{\infty} \geq\left\|v_{h}\left(T_{1}\right)\right\|_{\infty}-\left\|V_{h}\left(T_{1}\right)-v_{h}\left(T_{1}\right)\right\|_{\infty} \geq R
$$

From Theorem 2, $V_{h}(t)$ blows up at the time T_{b}^{h}. We deduce from Remark 1 that

$$
\left|T_{b}^{h}-T_{1}\right| \leq \frac{2}{\pi^{2}} \ln \left(1-\frac{\pi^{2}}{2 A} e^{\frac{-\pi^{2}}{2} T_{1}} \frac{\left\|V_{h}\left(T_{1}\right)\right\|_{\infty}^{1-q}}{1-q}\right) \leq \frac{\epsilon}{2}
$$

We deduce from (13) that

$$
\left|T_{b}^{h}-T_{b}\right| \leq\left|T_{b}^{h}-T_{1}\right|+\left|T_{1}-T_{b}\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2} \leq \epsilon,
$$

which leads us to the desired result.

5. Discretizations

In this section, we study the phenomenon of blow-up using a discrete explicit scheme of (1)-(3). At first setting $f(x, t)=$ $\int_{0}^{t} v^{p}(x, s) d s$ we see that $f_{t}(x, t)=v^{p}(x, t)$. Therefore the problem (1)-(3) becomes

$$
\begin{gather*}
v_{t}=v_{x x}+(v(x, t))^{q} f(x, t), \quad x \in(0,1), \quad t \in(0, T), \tag{14}\\
f_{t}(x, t)=v^{p}(x, t), \quad x \in(0,1) \quad t \in(0, T), \tag{15}\\
v(0, t)=0, \quad v_{x}(1, t)=0, \quad t \in(0, T), \tag{16}\\
v(x, 0)=v_{0}(x)>0, \quad f(x, 0)=f_{0}(x), \quad x \in(0,1) . \tag{17}
\end{gather*}
$$

Approximate the solution $v(x, t)$ of (14)-(17) by the solution
$V_{h}^{(n)}=\left(V_{0}^{(n)}, V_{1}^{(n)}, \ldots, V_{I}^{(n)}\right)^{T}$ of the following explicit scheme

$$
\begin{gather*}
\delta_{t} V_{i}^{(n)}=\delta^{2} V_{i}^{(n)}+\left(V_{i}^{(n)}\right)^{q} f\left(V_{i}^{(n)}, t_{n}\right), \quad 1 \leq i \leq I, \tag{18}\\
\delta_{t} f\left(V_{i}^{(n)}, t_{n}\right)=\left(V_{i}^{(n)}\right)^{p}, \quad 1 \leq i \leq I, \tag{19}\\
V_{0}^{(n)}=0, \tag{20}\\
V_{i}^{(0)}=\varphi_{i}, \tag{21}
\end{gather*}
$$

where $n \geq 0, f\left(V_{i}^{(n)}, t_{n}\right)$ is the approximation of $\int_{0}^{t_{n}} v^{p}\left(x_{i}, s\right) d s$,

$$
\delta_{t} V_{i}^{(n)}=\frac{V_{i}^{(n+1)}-V_{i}^{(n)}}{\Delta t_{n}} \quad \text { and } \quad \delta_{t} f\left(V_{i}^{(n)}, t_{n}\right)=\frac{f\left(V_{i}^{(n+1)}, t_{n+1}\right)-f\left(V_{i}^{(n)}, t_{n}\right)}{\Delta t_{n}}
$$

with

$$
\Delta t_{n}=\min \left\{\frac{h^{2}}{3}, \tau\left\|V_{h}^{(n)}\right\|_{\infty}^{1-q}\right\}, \quad 0<\tau<1 .
$$

Let us notice that the restriction on the time step ensures the nonnegativity of the discrete solution. More precisely, one easily sees that $V_{i}^{(n)}>0, \quad 0 \leq i \leq I$. The following lemma is a discrete form of the maximum principle.

Lemma 7 Let $a_{h}^{(n)}$ be a bounded vector and let $W_{h}^{(n)}$ a sequence such that

$$
\begin{gathered}
\delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)}+a_{i}^{(n)} W_{i}^{(n)} \geq 0, \quad 1 \leq i \leq I, \quad n \geq 0 \\
W_{0}^{(n)} \geq 0, \quad n \geq 0 \\
W_{i}^{(0)} \geq 0, \quad 0 \leq i \leq I .
\end{gathered}
$$

Then $W_{i}^{(n)} \geq 0$ for $0 \leq i \leq I, \quad n \geq 0$, if $\Delta t_{n} \leq \frac{h^{2}}{2+\left\|a_{h}^{(n)}\right\|_{\infty} h^{2}}$.
Proof. See (N'gohisse and Boni, 2011).
Lemma 8 Let $V_{h}^{(n)}$ be the solution of (18)-(21).
Then

$$
V_{i+1}^{(n)}>V_{i}^{(n)}, \quad 0 \leq i \leq I-1 .
$$

Proof. See (N'gohisse and Boni, 2011).
Lemma 9 Suppose that $a_{h}^{(n)}$ and $b_{h}^{(n)}$ are two vectors such that $a_{h}^{(n)}$ is bounded. Let $W_{h}^{(n)}$ and $X_{h}^{(n)}$ be two sequences such that

$$
\begin{gathered}
\delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)}+a_{i}^{(n)} W_{i}^{(n)}+b_{i}^{(n)} \leq \delta_{t} X_{i}^{(n)}-\delta^{2} X_{i}^{(n)}+a_{i}^{(n)} X_{i}^{(n)}, \quad 1 \leq i \leq I, \quad n \geq 0 \\
W_{0}^{(n)} \leq X_{0}^{(n)}, \quad n \geq 0 \\
W_{i}^{(0)} \leq X_{i}^{(0)}, \quad 0 \leq i \leq I .
\end{gathered}
$$

Then $W_{i}^{(n)} \leq X_{i}^{(n)}$ for $0 \leq i \leq I, \quad n \geq 0$, if $\Delta t_{n} \leq \frac{h^{2}}{2+\left\|a_{h}^{(n)}\right\|_{\infty} h^{2}}$.
Now, let us give a property of the operators δ_{t}.
Lemma 10 Let $V^{(n)} \in \mathbb{R}$ be a sequence such that $V^{(n)} \geq 0$. Then we have

$$
\delta_{t}\left(V^{(n)}\right)^{q} \geq q\left(V^{(n)}\right)^{q-1} \delta_{t} V^{(n)}, \quad n \geq 0
$$

Proof. From Taylor's expansion, we find that

$$
\delta_{t}\left(V^{(n)}\right)^{q}=q\left(V^{(n)}\right)^{q-1} \delta_{t} V^{(n)}+\Delta t_{n} q(q-1)\left(\theta^{(n)}\right)^{q-2} \delta_{t}\left(V^{(n)}\right)^{2},
$$

where $\theta^{(n)}$ is an intermediate value between $V^{(n)}$ and $V^{(n+1)}$. Use the fact that $V^{(n)} \geq 0$ for $n \geq 0$ to complete the proof. In order to treat the phenomenon of blow-up for discrete equations, we need the following definition.
Definition 1 We say that the solution $V_{h}^{(n)}$ of (18)-(21) blows up in a finite time if $\lim _{n \rightarrow+\infty}\left\|V_{h}^{(n)}\right\|_{\infty}=+\infty$ and the series $\sum_{n=0}^{\infty} \Delta t_{n}$ converges. The quantity $\sum_{n=0}^{\infty} \Delta t_{n}$ is called the numerical blow-up time of $V_{h}^{(n)}$.
The following theorem is the discrete version of Theorem 2.
Theorem 3 Suppose that there exists a constant $A \in(0,1]$, such that the initial datum at (21) satisfies

$$
\begin{equation*}
\delta^{2} \varphi_{i} \geq A \sin \left(i h \frac{\pi}{2}\right) \varphi_{i}^{q}, \quad 0 \leq i \leq I \tag{22}
\end{equation*}
$$

Then the solution $V_{h}^{(n)}$ of (18)-(21) blows up in a finite time and its numerical blow-up time $T_{h}^{\Delta t}$ is estimated as follows

$$
T_{h}^{\Delta t} \leq \frac{\tau\left\|\varphi_{h}\right\|_{\infty}^{1-q}}{1-\left(1-\tau^{\prime}\right)^{1-q}} \quad \text { where } \quad \tau^{\prime}=A \min \left\{\frac{h^{2}}{3}\left\|\varphi_{h}\right\|_{\infty}^{q-1}, \tau\right\} .
$$

Proof. Introduce the vector J_{h} such that

$$
J_{i}^{(n)}=\delta_{t} V_{i}^{(n)}-C_{i}^{(n)}\left(V_{i}^{(n)}\right)^{q}, \quad 0 \leq i \leq I
$$

where $C_{i}^{(n)}=A e^{-\lambda_{h} \sum_{j=0}^{n-1} \Delta t_{j}} \sin \left(i h \frac{\pi}{2}\right)$, with $\lambda_{h}=\frac{2-2 \cos \left(i h \frac{\pi}{2}\right)}{h^{2}}$.

A straightforward computation yields

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}=\delta_{t}\left(\delta_{t} V_{i}^{(n)}-\delta^{2} V_{i}^{(n)}\right)-C_{i}^{(n)} \delta_{t}\left(V_{i}^{(n)}\right)^{q}+\delta^{2}\left(C_{i}^{(n)}\left(V_{i}^{(n)}\right)^{q}\right) \\
-\delta_{t} C_{i}^{(n)}\left(V_{i}^{(n)}\right)^{q}, \quad 1 \leq i \leq I
\end{gathered}
$$

Using (18), we arrive at

$$
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)}=\delta_{t}\left(V_{i}^{q} f\left(V_{i}^{(n)}, t\right)\right)-C_{i}^{(n)} \delta_{t}\left(V_{i}^{(n)}\right)^{q}+\delta^{2}\left(C_{i}^{(n)}\left(V_{i}^{(n)}\right)^{q}\right)-\delta_{t} C_{i}^{(n)}\left(V_{i}^{(n)}\right)^{q} .
$$

From Lemmas 5 and 6, we get

$$
\delta^{2}\left(C_{i}^{(n)}\left(V_{i}^{q}\right) \geq C_{i}^{(n)} q V_{i}^{q-1} \delta^{2} V_{i}^{(n)}+V_{i}^{q} \delta^{2} C_{i}^{(n)}, \quad 1 \leq i \leq I\right.
$$

Using the above estimates and Lemma 4, we discover that

$$
\begin{aligned}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq \delta_{t} & \left(V_{i}^{q} f\left(V_{i}^{(n)}, t\right)\right)-C_{i}^{(n)} q\left(V_{i}^{(n)}\right)^{q-1} \delta_{t} V_{i}^{(n)}+C_{i}^{(n)} q V_{i}^{q-1} \delta^{2} V_{i}^{(n)} \\
& -V_{i}^{q}\left(\delta_{t} C_{i}^{(n)}-\delta^{2} C_{i}^{(n)}\right), \quad 1 \leq i \leq I
\end{aligned}
$$

We observe that

$$
\delta_{t} C_{i}-\delta^{2} C_{i} \leq 0, \quad C_{i-1}<C_{i}, \quad 1 \leq i \leq I .
$$

Taking into account (18), we deduce that

$$
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq \delta_{t}\left(V_{i}^{q} f\left(V_{i}^{(n)}, t_{n}\right)\right)-q V_{i}^{q-1} C_{i}^{(n)}\left(V_{i}^{q} f\left(V_{i}^{(n)}, t_{n}\right)\right)
$$

Using the fact that $\delta_{t}\left(f^{(n)}\left(V_{i}^{(n)}\right)^{q}\right)=f^{(n)} \delta_{t}\left(V_{i}^{(n)}\right)^{q}+\left(V_{i}^{(n)}\right)^{q} \delta_{t} f_{i}^{(n)}$ we arrive at

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq f^{(n)} \delta_{t}\left(V_{i}^{(n)}\right)^{q}+\left(V_{i}^{(n)}\right)^{p+q} \\
-C_{i}^{(n)} q\left(V_{i}^{(n)}\right)^{q-1}\left(V_{i}^{q} f\left(V_{i}^{(n)}, t_{n}\right)\right),
\end{gathered}
$$

which lead us

$$
\begin{gathered}
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq q\left(V_{i}^{(n)}\right)^{q-1} f\left(V_{i}^{(n)}, t_{n}\right) \delta_{t} V_{i}^{(n)}+\left(V_{i}^{(n)}\right)^{p+q} \\
-C_{i}^{(n)} q\left(V_{i}^{(n)}\right)^{q-1}\left(V_{i}^{q} f\left(V_{i}^{(n)}, t_{n}\right)\right), \quad 1 \leq i \leq I
\end{gathered}
$$

Due to the fact that $\delta_{t} V_{i}^{(n)}=J_{i}^{(n)}+A\left(V_{i}^{(n)}\right)^{q}$, we arrive at

$$
\delta_{t} J_{i}^{(n)}-\delta^{2} J_{i}^{(n)} \geq\left(q\left(V_{i}^{(n)}\right)^{q-1} f\left(V_{i}^{(n)}, t_{n}\right)\right) J_{i}^{(n)}, \quad 1 \leq i \leq I
$$

Obviously, we have $J_{0}^{(n)}=0$ and from (22), we obtain $J_{h}^{(0)} \geq 0$. It follows from Lemma 7 that $J_{h} \geq 0$. Hence, we have

$$
\frac{V_{i}^{(n+1)}-V_{i}^{(n)}}{\Delta t_{n}} \geq C_{i}^{(n)}\left(V_{i}^{(n)}\right)^{q}, \quad 0 \leq i \leq I
$$

Consequently, we get

$$
V_{I}^{(n+1)} \geq V_{I}^{(n)}+C_{I}^{(n)} \Delta t_{n}\left(V_{I}^{(n)}\right)^{q}
$$

Since from Lemma 8, $V_{I}^{(n)}=\left\|V_{h}^{(n)}\right\|_{\infty}$.
We arrive at

$$
\begin{equation*}
\left\|V_{h}^{(n+1)}\right\|_{\infty} \geq\left\|V_{h}^{(n)}\right\|_{\infty}+C_{I}^{(n)} \Delta t_{n}\left\|V_{h}^{(n)}\right\|_{\infty}^{q} . \tag{23}
\end{equation*}
$$

We observe that

$$
\Delta t_{n}\left\|V_{h}^{(n)}\right\|_{\infty}^{q}=\min \left\{\frac{h^{3}}{3}\left\|V_{h}^{(n)}\right\|^{q}, \tau\right\} .
$$

The inequality (23) shows that the sequence $\left\|V_{h}^{(n)}\right\|_{\infty}$ is increasing. By induction we obtain $\left\|V_{h}^{(n)}\right\|_{\infty} \geq\left\|V_{h}^{(0)}\right\|_{\infty}=\left\|\varphi_{h}\right\|_{\infty}$. It follows that

$$
C_{I}^{(n)} \Delta t_{n}\left(\left\|V_{h}^{(n)}\right\|_{\infty}\right)^{q-1} \geq A \min \left\{\frac{h^{2}}{3}\left(\left\|\varphi_{h}\right\|_{\infty}\right)^{q-1}, \tau\right\}=\tau^{\prime}
$$

Consequently, we have

$$
\begin{equation*}
\left\|V_{h}^{(n+1)}\right\|_{\infty} \geq\left\|V_{h}^{(n)}\right\|_{\infty}\left(1+\tau^{\prime}\right) \quad n>0 \tag{24}
\end{equation*}
$$

Using a recursion argument, we discover that

$$
\begin{equation*}
\left\|V_{h}^{(n)}\right\|_{\infty} \geq\left\|V_{h}^{(0)}\right\|_{\infty}\left(1+\tau^{\prime}\right)^{n}=\left\|\varphi_{h}\right\|_{\infty}\left(1+\tau^{\prime}\right)^{n} . \tag{25}
\end{equation*}
$$

Hence, we see that $\left\|V_{h}^{(n)}\right\|_{\infty}$ goes to infinity as n approaches infinity. Now let us estimate the numerical blow-up time. From the restriction on the time step, we get

$$
T_{h}^{\Delta t}=\sum_{n=0}^{\infty} \Delta t_{n} \leq \sum_{n=0}^{+\infty} \tau\left(\left\|V_{h}^{(n)}\right\|_{\infty}\right)^{1-q}
$$

Due to (25), we arrive at

$$
\sum_{n=0}^{\infty} \Delta t_{n} \leq \sum_{n=0}^{+\infty} \tau\left\|\varphi_{h}\right\|_{\infty}^{1-q}\left[\left(1+\tau^{\prime}\right)^{1-q}\right]^{n}
$$

Use the fact that the quantity on the right hand side of the above inequality converges toward $\frac{\tau\left\|\varphi_{n}\right\|_{\infty}^{1-q}}{\left[1-\left(1+\tau^{\prime}\right)^{1-q}\right]}$ to complete the rest of the proof.

Remark 2 From (24), we get by induction that

$$
\left\|V_{h}^{(n)}\right\|_{\infty} \geq\left\|V_{h}^{(k)}\right\|_{\infty}\left(1+\tau^{\prime}\right)^{n-k} \quad \text { for } \quad n \geq k
$$

Hence

$$
T_{h}^{\Delta t}-t_{k}=\sum_{n=q}^{+\infty} \Delta t_{n} \leq \sum_{n=0}^{+\infty} \tau\left\|V_{h}^{(k)}\right\|_{\infty}^{1-q}\left[\left(1+\tau^{\prime}\right)^{1-q}\right]^{n-k} .
$$

We observe that

$$
T_{h}^{\Delta t}-t_{k} \leq \frac{\tau\left\|V_{h}^{(k)}\right\|_{\infty}^{1-q}}{1-\left(1+\tau^{\prime}\right)^{1-q}},
$$

when h tends to zero. Since $\tau^{\prime}=\min \left\{\frac{h^{2}}{3}\left(\left\|\varphi_{h}\right\|_{\infty}\right)^{q-1}, \tau\right\}$, if we take $\tau=h^{2}$, we get $\frac{\tau}{\tau^{\prime}}=\min \left\{\frac{1}{3}\left(\left\|\varphi_{h}\right\|_{\infty}\right)^{q-1}, 1\right\}$ which implies that there exists a positive constant K such that $\frac{\tau}{\tau^{\prime}} \leq K$.
The following theorem is the discrete form of Theorem 2.
Theorem 4 Suppose that the problem (14)-(17) has a solution $v \in C^{4,2}([0,1] \times[0, T])$. Assume that the initial datum at (21) verifies

$$
\begin{equation*}
\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}=o(1) \quad \text { as } \quad h \rightarrow 0 \tag{26}
\end{equation*}
$$

Then the problem (18)-(21) has a solution $V_{h}^{(n)}$ for h sufficiently small,
$0 \leq n \leq J$ and we have the following estimate

$$
\max _{0 \leq n \leq J}\left\|V_{h}^{(n)}-v_{h}\left(t_{n}\right)\right\|_{\infty}=O\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+h^{2}+\Delta t_{n}\right) \quad \text { as } \quad h \rightarrow 0
$$

where J is such that $\sum_{n=0}^{J-1} \Delta t_{n} \leq T$ and $t_{n}=\sum_{j=0}^{n-1} \Delta t_{j}$.
Proof. For each h, the problem (18)-(21) has a solution $V_{h}^{(n)}$. Let $N \leq J$ be the greatest value of n such that

$$
\begin{equation*}
\left\|V_{h}^{(n)}-v_{h}\left(t_{n}\right)\right\|_{\infty}<1 \quad \text { for } \quad n<N . \tag{27}
\end{equation*}
$$

We know that $N \geq 1$ because of (26). The fact that $v \in C^{4,2}$, there exists a positive constant α such that $\|v\|_{\infty} \leq \alpha$. Applying the triangle inequality, we obtain

$$
\begin{equation*}
\left\|V_{h}^{(n)}\right\|_{\infty} \leq\left\|v_{h}\left(t_{n}\right)\right\|_{\infty}+\left\|V_{h}^{(n)}-v_{h}\left(t_{n}\right)\right\|_{\infty} \leq 1+\alpha \quad \text { for } \quad n<N . \tag{28}
\end{equation*}
$$

As in the proof of Theorem 2, using Taylor's expansion, we find that

$$
\begin{aligned}
& \delta_{t} v\left(x_{i}, t_{n}\right)-\delta^{2} v\left(x_{i}, t_{n}\right)-\left(v\left(x_{i}, t_{n}\right)\right)^{q} f\left(x_{i}, t_{n}\right) \\
= & -\frac{h^{2}}{12} v_{x x x x}\left(\widetilde{x_{i}}, t_{n}\right)+\frac{\Delta t_{n}}{2} v_{t t}\left(x_{i}, \widetilde{t_{n}}\right), \quad 1 \leq i \leq I .
\end{aligned}
$$

Let $e_{h}^{(n)}=V_{h}^{(n)}-v_{h}\left(t_{n}\right)$ be the error of discretization. From the mean value theorem, we get for $n<N$,

$$
\begin{gathered}
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)}=q\left(\varsigma_{i}^{(n)}\right)^{q-1} e_{i}^{(n)} f\left(e_{i}^{(n)}, t_{n}\right)+v\left(x_{i}, t_{n}\right)^{q} \int_{0}^{t_{n}} \theta_{i}^{p-1}(s) e_{i}^{(n)} d s \\
+\frac{h^{2}}{12} v_{x x x x}\left(\widetilde{x}_{i}, t_{n}\right)-\frac{\Delta t_{n}}{2} v_{t t}\left(x_{i}, \widetilde{t}_{n}\right), \quad 1 \leq i \leq I,
\end{gathered}
$$

where $\varsigma_{i}^{(n)}$ and θ_{i} are intermediate values between $V_{i}^{(n)}$ and $v\left(x_{i}, t_{n}\right)$. Since $v_{x x x x}(x, t), v_{t t}(x, t)$ are bounded, and use (28) we deduce that, there exist some positives constants M and K such that

$$
\delta_{t} e_{i}^{(n)}-\delta^{2} e_{i}^{(n)} \leq K\left|e_{i}^{(n)}\right|+M \Delta t_{n}+M h^{2}, \quad 1 \leq i \leq I,
$$

where $K=1+\alpha$. Introduce the vector $W_{h}^{(n)}$ defined as follows

$$
W_{i}^{(n)}=e^{(K+1) t_{n}}\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+M \Delta t_{n}+M h^{2}\right), \quad 1 \leq i \leq I .
$$

A straightforward computation gives

$$
\begin{gathered}
\delta_{t} W_{i}^{(n)}-\delta^{2} W_{i}^{(n)} \geq K W_{i}^{(n)}+M \Delta t_{n}+M h^{2} \quad 1 \leq i \leq I, \\
W_{0}^{(n)} \geq e_{0}^{(n)} \\
W_{i}^{(0)} \geq e_{i}^{(0)}, \quad 1 \leq i \leq I .
\end{gathered}
$$

It follows from Comparison Lemma 9 that $W_{h}^{(n)} \geq e_{h}^{(n)}$. By the same way, we also prove that $W_{h}^{(n)} \geq-e_{h}^{(n)}$, which implies that

$$
\left\|W_{h}^{(n)}-v_{h}\left(t_{n}\right)\right\|_{\infty} \leq e^{(K+1) t_{n}}\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+M \Delta t_{n}+M h^{2}\right)
$$

Let us show that $N=J$. Suppose that $N<J$. If we replace n by N in the above inequality and use (27), we find that

$$
1 \leq\left\|V_{h}^{(N)}-v_{h}\left(t_{N}\right)\right\|_{\infty} \leq e^{(K+1) t_{N}}\left(\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}+M \Delta t_{n}+M h^{2}\right) .
$$

Since the term on the right hand side of the second inequality goes to zero as h tends to zero, we deduce that $1 \leq 0$, which is a contradiction and the proof is complete.
Now, we are in position to prove the main theorem of this section.
Theorem 5 Suppose that the problem (14)-(17) has a solution v which blows up in a finite time T_{0} and $v \in C^{4,2}([0,1] \times$ $\left.\left[0, T_{0}\right)\right)$. Assume that the initial datum at (21) satisfies

$$
\left\|\varphi_{h}-v_{h}(0)\right\|_{\infty}=o(1) \quad \text { as } \quad h \rightarrow 0
$$

Under the assumption of Theorem 3, the problem (18)-(21) has a solution $V_{h}^{(n)}$ which blows up in a finite time $T_{h}^{\Delta t}$ and the following relation holds

$$
\lim _{h \rightarrow 0} T_{h}^{\Delta t}=T_{0}
$$

Proof. Letting $\varepsilon>0$, there exists a constant $R>0$ such that

$$
\begin{equation*}
\frac{\tau x^{1-q}}{1-\left(1+\tau^{\prime}\right)^{1-q}}<\frac{\varepsilon}{2} \quad \text { for } \quad x \in[R, \infty) . \tag{29}
\end{equation*}
$$

Since v blows up at the time T_{0}, there exists $T_{1} \in\left(T_{0}-\frac{\varepsilon}{2}, T_{0}\right)$ such that

$$
\|v(\cdot, t)\|_{\infty} \geq 2 R \quad \text { for } \quad t \in\left[T_{1}, T_{0}\right)
$$

Let $T_{2}=\frac{T_{1}+T_{0}}{2}$ and k be a positive integer such that $t_{k}=\sum_{n=0}^{k-1} \Delta t_{n} \in\left[T_{1}, T_{2}\right]$ for h small enough. We have sup $t_{t \in\left[0, T_{2}\right]}\|v(\cdot, t)\|_{\infty}<$ ∞. It follows from Theorem 4 that the problem (18)-(21) has a solution $V_{h}^{(n)}$ which obeys to

$$
\left\|V_{h}^{(n)}-v_{h}\left(t_{n}\right)\right\|_{\infty}<R \quad \text { for } \quad n \leq k,
$$

which implies that

$$
\left\|V_{h}^{(k)}\right\|_{\infty} \geq\left\|v_{h}\left(t_{k}\right)\right\|_{\infty}-\left\|V_{h}^{(k)}-v_{h}\left(t_{k}\right)\right\|_{\infty} \geq R
$$

From Theorem 3, $V_{h}^{(n)}$ blows up at the time $T_{h}^{\Delta t}$. It follows from Remark 2 and (29) that

$$
\left|T_{h}^{\Delta t}-t_{k}\right| \leq \frac{\tau\left\|V_{h}^{(k)}\right\|_{\infty}^{1-q}}{1-\left(1+\tau^{\prime}\right)^{1-q}}<\frac{\varepsilon}{2},
$$

because $\left\|V_{h}^{(k)}\right\|_{\infty} \geq R$. We deduce that

$$
\left|T_{0}-T_{h}^{\Delta t}\right| \leq\left|T_{0}-t_{k}\right|+\left|t_{k}-T_{h}^{\Delta t}\right| \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \leq \varepsilon
$$

and the proof is complete.

6. Numerical Results

In this section, we present some numerical approximations of the blow-up time for the solution of the problem (1)-(3) in the case where $v_{0}(x)=10 \sin (\pi x)$. Firstly, we consider the explicit scheme in (18)-(21). Secondly, we use the following implicit scheme

$$
\begin{gathered}
\frac{V_{i}^{(n+1)}-V_{i}^{(n)}}{\Delta t_{n}}=\delta^{2} V_{i}^{(n+1)}+\left(V_{i}^{(n)}\right)^{q} f_{i}^{(n+1)}, \quad 1 \leq i \leq I, \\
\frac{f_{i}^{(n+1)}-f_{i}^{(n)}}{\Delta t_{n}}=\left(V_{i}^{(n)}\right)^{p}, \quad 1 \leq i \leq I, \\
V_{0}^{(n)}=0, \\
V_{i}^{(0)}=\varphi_{i} \geq 0, \quad f_{i}^{(0)}=\psi_{i}, \quad 0 \leq i \leq I,
\end{gathered}
$$

where $n \geq 0$,

$$
\Delta t_{n}=\min \left\{\frac{h^{2}}{2}, \tau\left\|V_{h}^{(n)}\right\|_{\infty}^{1-q}\right\}, \quad 0<\tau<1 .
$$

In both cases, we take $\varphi_{i}=10 \sin \left(\frac{i \pi h}{2}\right), 0 \leq i \leq I$. For the above implicit scheme, the nonnegativity of the solution $V_{h}^{(n)}$ is guaranteed using standard methods see (Boni, 2001). In the tables $1,2,3$ and 4 , in rows, we present the numerical blow-up times, the numbers of iterations, the CPU times and the orders of the approximations corresponding to meshes of $16,32,64,128,256,512$. We take for the numerical blow-up time $t_{n}=\sum_{j=0}^{n-1} \Delta t_{j}$ which is computed at the first time when $\Delta t_{n}=\left|t_{n+1}-t_{n}\right| \leq 10^{-16}$. The order(s) of the method is computed from

$$
s=\frac{\log \left(\left(T_{4 h}-T_{2 h}\right) /\left(T_{2 h}-T_{h}\right)\right)}{\log (2)}
$$

Table 1. Explicit Euler method for $p=1, q=2$

I	t_{n}	n	$C P U t$	s
16	0.16258655	1962	-	-
32	0.16231478	7669	1	-
64	0.16224740	29937	2	2.0120
128	0.16223066	116714	18	2.0090
256	0.16222649	454334	1241	2.0052
512	0.16222545	1765598	20027	2.0035

Table 2. Implicit Euler method for $p=1, q=2$

I	t_{n}	n	$C P U t$	s
16	0.16249945	1962	-	-
32	0.16229298	7669	-	-
64	0.16224195	29937	5	2.0165
128	0.16222929	116714	129	2.0111
256	0.16222615	454334	3442	2.0114
512	0.16222537	1765598	71152	2.0092

Table 3. Explicit Euler method for $p=0.5, q=1.5$

I	t_{n}	n	$C P U t$	s
16	1.10140601	2918	-	-
32	1.09866219	11390	1	-
64	1.09797752	44520	5	2.0027
128	1.09780647	173911	53	2.0010
256	1.09776373	678617	986	2.0008
512	1.09775266	2000001	59453	1.9489

Table 4. Implicit Euler method for $p=0.5, q=1.5$

I	t_{n}	n	$C P U t$	s
16	1.09643911	2918	-	-
32	1.09741620	11390	1	-
64	1.09766575	44519	15	1.9692
128	1.09772851	173911	193	1.9914
256	1.09774424	678617	3547	1.9963
512	1.09774817	2644528	122749	2.0009

Figure 1. Evolution of discrete solution for $p=1, q=2$

Remark 3 From the above tables, we illustrate the convergence of the blow-up time of the solution of the problem (1)-(3) to the numerical one because the order of approximations of the method goes to 2 , which is the accuracy of the difference approximation in space.
If we compare tables 1,2 and tables 3,4 we notice that the blow-up time depends strongly on the reaction term. In tables 1 and 2 when $p=1$ and $q=2$, we observe that the blow-up time is approximately equal to 0.1622 . In tables 3 and 4 when $p=0.5$ and $q=1.5$, the blow-up time is approximately equal to 1.0977 .
We can deduce that when the parameter p tend to 0 and q tend to 1 , it is difficult to obtain the phenomenom of blow-up, and the blow-up time is big enough.

References

Abia, L. M., Lopes-Marcos, J. C., \& Martinez, J. (1998). On the Blow-up time convergence of semidicretizations of reaction-diffusion equations. Appl. Numer. Math., 26, 399-414. https://doi.org/10.1016/S0168-9274(97)00105-0
Boni, T. K. (2001). Extinction for discretizations of some semilinear parabolic equations. C. R. Acad. Sci. Paris, Srie I, Math., 333, 795-800.

Brandle, C., Groisman, P., \& Rossi, J. D. (2004). Fully discrete adaptative methods for a blow-up problem. Math. Models Methods. Appl. Sci., 14, 1425-1450. https://doi.org/10.1142/S0218202504003751
Brandle, C., Quiros, F., \& Rossi, J. D. (2005). An adaptative numerical method to handle blow-up in a parabolic system. Numer. Maths., 102, 39-59. https://doi.org/10.1007/s00211-005-0638-x

Ferreira, R., Groisman, P., \& Rossi, J. D. (2004). Numerical blow-up for the porous medium equation with a source. Numer. Methods PDE, 20, 552-575. https://doi.org/10.1002/num. 10103

Galaktionov, V. A., \& Vazquez, J. L. (2002). The problem of blow-up in nonlinear parabolic equation. Current developments in PDE(Temusco, 1999) Dis. Conti. Syst. A., 8, 399-433. https://doi.org/10.3934/dcds.2002.8.399

Groisman, P. (2006). Totaly discrete explicit and semi-explicit Euler method for a blow-up problem in several space dimension. Computing, 76, 325-352. https://doi.org/10.1007/s00607-005-0136-0

Groisman, P., \& Rossi, J. D. (2004). Dependance of the blow-up time with respect to parameters and numerical approximations for a parabolic problem. Asymptot. Anal, 37, 79-91.
Hirata, D. (1999). Blow-up for a class of semilinear integro-differential equations of parabolic type. Math. Methods Appl. Sci., 22, 1087-1100.

Koffi, N., \& Nabongo, D. (2016). Numerical blow-up for solutions of semilinear heat equations with small diffusion. Ann. Univ. Orader Fasc. Math, Tome XXIII, 21-36.
Kozhanov, A. (1994). Parabolic equations with nonlocal nonlinear source. Siberian Math., 35, 545-556. https://doi.org/10.1002/(SICI)/1099-1476
Li, F. S. (2009). Global existence and uniqueness of weak solution to non linear viscoelastic full Marguerre-von Karman shallows equations. Acta Math. Sin., 25, 2133-2156. https://doi.org/10.1007/s00033-003-1128-6.
Li, Y. X., \& Xie, C. H. (2004). Blow-up for semilinear parabolic equation with nonlinear memory. Z. Angew. Math. Phys, 55, 15-27. https://doi.org/10.1007\%2FBF02104572
Mai, I., \& Mochizuki, K. (1991). On blow-up of solutions for quasilinear degenerate parabolic equations. Publ. Res. Inst. Math. Sci., 27, 695-709.https://doi.org/10.2977/prims/1195169267

N'gohisse, F. K., \& Boni, T. K. (2008). Numerical Blow-up solution for some semilinear heat equation. Elect. Trans. of Numer. Analysis, 30, 247-258.
N'gohisse, F. K., \& Boni. T. K. (2011). Numerical blow-up for a nonlinear heat equation. Acta Math. Sin. English Serie, 27, 845-862. https://doi.org/10.1007/s10114-009-7048-4.
Pablo, A. D., Llanos, M., \& Ferreira, R. (2005). Numerical blow-up for p-Laplacien equation with a nonlinear source. Proceeding of equatdiff., 11, 363-367. https://doi.org/10.12478/cnam-2005-0007
Quittner, P., \& Souplet, P. (2007). Superlinear parabolic problems, Blow-up, Global existence and Steady States Series. Birkhuser Advanced Tests/ Basler Lehrbcher. https://doi.org/10.1007/978-37643-8442-5
Sobo, L. B. B., Yoro, G., \& Nachid, H. (2016). On asymptotic of the blow-up for differential equation in a large domain. Int. J. of Rec. S. Reas., 7, 12158-12168.

Souplet, P. (2004). Monotonicity of solution and blow-up for semilinear parabolic equation with nonlinear memory. Z. Angew. Math. Phys., 55, 28-31. https://doi.org/10.1007/s00033-003-1158-0
Zhang, L., Ziang, Y. S., \& Zhou, Z. (2010). Parabolic equation with VMO coefficients in generalized Merrey Morrey. Acta. Sin., 26, 117-130.

Zhou, J. (2007). Non-similitaneous blow-up for a semilinear parabolic system with nonlinear memory. Survey in Math. and Appl., 2, 21-27.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

