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Abstract

In this paper, we study the numerical approximation for the following initial-boundary value problem


vt = vxx + vq

∫ t

0
vp(x, s)ds, x ∈ (0, 1), t ∈ (0,T ),

v(0, t) = 0, vx(1, t) = 0, t ∈ (0,T ),
v(x, 0) = v0(x) > 0, x ∈ (0, 1),

where q > 1, p > 0. Under some assumptions, it is shown that the solution of a semi-discrete form of this problem blows
up in the finite time and estimate its semi-discrete blow-up time. We also prove that the semi-discrete blows-up time
converges to the real one when the mesh size goes to zero. A similar study has been also undertaken for a discrete form
of the above problem. Finally, we give some numerical results to illustrate our analysis.

Keywords: semi-discretization, nonlinear parabolic equation, blow-up, numerical blow-up time, nonlinear memory, finite
difference, discretization

1. Introduction

Consider the following problem

vt = vxx + vq
∫ t

0
vp(x, s)ds, x ∈ (0, 1), t ∈ (0,T ), (1)

v(0, t) = 0, vx(1, t) = 0, t ∈ (0, T ), (2)

v(x, 0) = v0(x) > 0, x ∈ (0, 1), (3)

which models the temperature distribution of a large number of physical phenomenon from physics, chemistry and biolo-
gy. In particular, the above problem has a lot of applications in the theory of nuclear reactor kinetics see (Kozhanov, 1994
for more physical motivations). The initial datum v0(x) is a continuous function in (0, 1), v0(0) = 0, vx(1) = 0, q > 1,
p > 0. The conditions v0(0, t) = 0 means that the temperature is maintained nil on the boundary x = 0. Here (0,T ) is the
maximal time interval on which the solution v of (1)-(3) exists. The time T may be finite or infinite. When T is infinite,
we say that the solution u exists globally. When T is finite, the solution u develops a singularity in a finite time, namely

lim
t→T

∥∥∥v(·, t)
∥∥∥∞ = ∞,

where
∥∥∥v(·, t)

∥∥∥∞ = max0≤x≤1
∣∣∣v(x, t)

∣∣∣. In this case, we say that the solution v blows up in a finite time and the time T is
called the blow-up time of solution v. Solutions of nonlinear parabolic equations which blow up in finite time have been
the subject of investigations of many authors see (Brandle et al., 2005; Galaktionov et al., 2002; Groisman, 2006; Hirata,
1999; N’gohisse and Boni, 2008 and the references cited therein). In particular, in (Galaktionov et al., 2002; Groisman
et al., 2004; Hirata, 1999; Koffi and Nabongo, 2016; Li, 2009; Quittner and Souplet, 2007; Sobo et al., 2016; Souplet,
2004; Zhang et al., 2010; Zhou, 2007), the above problem has been considered and existence and uniqueness of a classical
solution have been proved. Under some assumptions, the authors have also shown that the classical solution blows up in
a finite time and its blow-up time has been estimated.
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The aim of this paper is the numerical study of the above problem.

Let I be a positive integer and define the grid xi = ih, 0 ≤ i ≤ I, where h = 1
I . Approximate the solution v of the problem

(1)-(3) by the solution Vh(t) =
(
V0(t),V1(t), ...,VI(t)

)T of the following semi-discrete equations

dVi(t)
dt
= δ2Vi(t) + Vq

i (t)
∫ t

0
V p

i (s)ds, 1 ≤ i ≤ I, t ∈ (0,T h
b ), (4)

V0(t) = 0, (5)

Vi(0) = φi > 0, 0 ≤ i ≤ I, (6)

φi+1 > φi, 0 ≤ i ≤ I − 1,

where

δ2Vi(t) =
Vi+1(t) − 2Vi(t) + Vi−1(t)

h2 , 1 ≤ i ≤ I − 1,

δ2VI(t) =
2VI−1(t) − 2VI(t)

h2 .

Here, (0,T h
b ) is the maximal time interval on which

∥∥∥v(., t)
∥∥∥∞ is finite, where

∥∥∥v(., t)
∥∥∥∞ = max0≤x≤1

∣∣∣v(x, t)
∣∣∣. When T h

b
is finite, we say that the solution Vh(t) of (4)-(6) blows up in the finite time and the time T h

b is called the semi-discrete
blow-up time of the solution Vh(t).

Abia et al., (1998) have considered the equation (1)-(3) in the case where the source vq
∫ t

0 vp(x, s)ds is replaced by vp.
They have considered a scheme as the one given in (4)-(6). They have shown that the semi-discrete solution blows up in
the finite time and its blow-up time goes to the real one when the mesh size tends to zero.

In this paper, firstly, we show that under some assumptions, the solution of the semi-discrete problem defined in (4)-(6)
blows up in a finite time and estimate its semi-discrete blow-up time. We also show that the semi-discrete blow-up time
converges to the real one when the mesh size goes to zero. In addition we give the blow-up rate of the solution of the
semi-discrete problem. A similar study has been also undertaken for a full discrete form of (1)-(3). Let us notice that in
(Abia et al.,1998), only the semi-discrete scheme has been analyzed. One may find in (Mai et al., 1991; Brandle et al.,
2004; Ferreira et al., 2004; Li and Xie, 2004; Kozhanov, 1994; N’gohisse and Boni, 2011; Pablo and al, 2005), similar
studies concerning other parabolic problems. Let us notice that many authors have used numerical methods to study the
phenomenon of blow-up but they are only a few studies on the convergence of the numerical blows-up time for solutions
which blow-up in L∞ norm. For instance in (Groisman, 2006), the authors have proved the convergence of numerical
blow-up time for solutions which blow up in Lp norm with 1 < p < ∞.

The rest of the paper is organized as follows. In the next section, we give some results which will be used later. In
the section 3, under some conditions, we prove that the solution of the semi-discrete problem blows up in a finite time
and estimate its semi-discrete blow-up time. In the fourth section, we show that, under some additional hypothesis, the
semi-discrete blow-up time goes to the real one when the mesh size goes to zero. In the fifth section, we obtain similar
results as in sections 3 and 4 using a discrete scheme. Finally, in the last section we report on some numerical experiments
to illustrate our analysis.

2. Properties of the Semi-discrete Problem

In this section, we give some results which will be used later. The following lemma is a semi-discrete form of the
maximum principle.

Lemma 1 Let ah ∈ C0([0,T ],RI+1) and let Wh ∈ C1([0,T ],RI+1) be such that

dWi(t)
dt

− δ2Wi(t) + ai(t)Wi(t) ≥ 0, 1 ≤ i ≤ I, t ∈ (0,T ),

W0(t) ≥ 0, t ∈ (0,T ),

Wi(0) ≥ 0, 0 ≤ i ≤ I.

Then we have Wi(t) ≥ 0, 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. For the proof, see (N’gohisse and Boni, 2011).

The semi-discrete form of the comparison lemma is staded as follow.
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Lemma 2 Let f ∈ C0(R × R,R) and let Wh, Xh ∈ C1([0,T ],RI+1) be such that for t ∈ (0,T )

dWi(t)
dt

− δ2Wi(t) + f (Wi(t), t) >
dXi(t)

dt
− δ2Xi(t) + f (Xi(t), t), 1 ≤ i ≤ I,

W0(t) > X0(t),

Wi(0) > Xi(0), 0 ≤ i ≤ I.

Then we have Wi(t) > Xi(t), 0 ≤ i ≤ I, t ∈ (0,T ).

Proof. See (N’gohisse and Boni, 2011) for the proof.

The lemma below shows the positivity of the solution.

Lemma 3 Let Vh be the solution of (4)-(6). Then we have

Vi(t) > 0, 0 ≤ i ≤ I, t ∈ (0,T h
b ).

Proof. From Lemma 1, Vh(t) ≥ 0 for t ∈ (0,T h
b ). Suppose that there exist i0 ∈ {1, ..., I} and t0 ∈ (0,T h

b ) such that Vi0 (t0) = 0.

We observe that
dVi0 (t0)

dt ≤ 0 and δ2Vi0 (t0) ≥ 0. We deduce that

dVi0 (t0)
dt

− δ2Vi0 (t0) + Vq
i (t0)
∫ t

0
V p

i (s)ds < 0.

But this contradicts (4) and we have the desidered result.

Lemma 4 Let Vh be the solution of (4)-(6). Then we have

Vi+1(t) > Vi(t), 1 ≤ i ≤ I − 1, t ∈ (0,T h
b ).

Proof. Let Yi(t) = Vi+1(t) − Vi(t), for 0 ≤ i ≤ I − 1. Since from Lemma 3 V1 > 0 for t ∈ (0,T h
b ), we get Y0(t) > 0

for t ∈ (0,T h
b ). Let t0 be the first t ∈ (0,T h

b ) such that Yi(t0) > 0 for t ∈ (0, t0), 1 ≤ i ≤ I − 1, but Y0(t) = 0 for a certain
i0 ∈ {1, ..., I − 1}. Without less of generality, we may suppose that i0 is the smallest i which satisfies the equality. We
observe that

dYi0 (t0)
dt

= lim
k→0

Yi0 (t0) − Yi0 (t0 − k)
k

≤ 0,

.
δ2Yi0 (t0) =

Yi0+1(t0) − 2Yi0 (t0) + Yi0−1(t0)
h2 > 0, if 1 ≤ i0 ≤ I − 2,

δ2Yi0 (t0) =
−3YI−1(t0) + 2YI−2(t0)

h2 > 0 if i0 = I − 1.

We deduce that
dYi0 (t0)

dt
− δ2Yi0 (t0) + Yq

i0
(t0)
∫ t

0
Y p

i (s)ds < 0, if 1 ≤ i0 ≤ I.

But this contradicts (4) and the proof is complete.

The following result reveals the property of the operator δ2.

Lemma 5 Let Vh ∈ RI+1 such that Vh ≥ 0. Then we have

δ2V p
i ≥ pV p−1

i δ2Vi, 1 ≤ i ≤ I.

Proof. See (N’gohisse and Boni, 2011).

Lemma 6 Let Wh and Vh ∈ RI+1. If δ−(VI)δ−(WI) ≥ 0 and

δ+(Vi)δ+(Wi) ≥ 0, δ−(Vi)δ−(Wi) ≥ 0, 1 ≤ i ≤ I − 1,

then
δ2(V iWi) ≥ V iδ

2Wi +W iδ
2Vi, 1 ≤ i ≤ I,

where δ+(Vi) = Vi+1−Vi
h and δ−(Vi) = Vi−1−Vi

h .
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Proof. See (N’gohisse and Boni, 2011).

3. Blow-up in the Semi-discrete Problem

In this section under some conditions, we prove that the solution Vh of (4)-(6) blows up in a finite time and estimate its
semi-discrete blow-up time. Our first result on the blow-up is the following.

Theorem 1 Let Vh be the solution of (4)-(6) and suppose that there exists a positive constant A ∈ (0, 1] such that the initial
datum at (6) satisfies

δ2φi + φ
q
i ≥ A sin(ih

π

2
)φq

i , 1 ≤ i ≤ I. (7)

Then the solution Vh blows-up in a finite time T h
b which is estimated as follows

T h
b ≤

2
π2 ln
(
1 − π2

2A

∥∥∥φI

∥∥∥1−q
∞

(1 − q)

)
.

Proof. Let T h
b be the time up to which ∥Vh(t)∥∞ is finite. Our aim is to show that T h

b is finite and obeys the above inequality.
Introduce the vector Jh defined as follows

Ji(t) =
dVi(t)

dt
−Ci(t)V

q
i (t), 0 ≤ i ≤ I, t ∈ (0,T h

b ),

where Ci(t) = A e−λht sin(ih π
2 ), 0 ≤ i ≤ I, t ∈ (0,T h

b ), with λh =
2−2 cos(ih π

2 )
h2 .

A routine computation reveals that

dJi

dt
− δ2Ji =

d
dt

(dVi

dt
− δ2Vi

)
−Ci(t)qVq−1

i
dVi

dt
+ δ2
(
CiV

q
i

)
, 1 ≤ i ≤ I.

We observe that
dCi

dt
− δ2Ci = 0, Ci−1 < Ci, 1 ≤ i ≤ I,

and due to Lemma 4 we find that

δ−(Vq
I )δ−(CI) ≥ 0, δ+(Vq

i )δ+(Ci) ≥ 0

and
δ−(Vq

i )δ−(Ci) ≥ 0, 1 ≤ i ≤ I − 1.

From Lemma 5 and Lemma 6, we get

δ2
(
Ci(t)V

q
i (t)
)
≥ Ci(t)qVq−1

i (t)δ2Vi(t) + Vq
i (t)δ2Ci(t), 1 ≤ i ≤ I.

Using the above estimates, we discover that

dJi

dt
− δ2Ji ≥

d
dt

(dVi

dt
− δ2Vi

)
−CiqVq−1

i

(dVi

dt
− δ2Vq

i

)
+ Vq

i

(dCi

dt
− δ2Ci

)
, 1 ≤ i ≤ I.

With the help of (4), we obtain for 1 ≤ i ≤ I that

dJi

dt
− δ2Ji ≥ qVq−1

i
dVi

dt
−CiqVq−1

i

(
Vq

i

∫ t

0
V p

i (s)ds
)
.

Due the fact that
dVi

dt
= Ji(t) +CiV

q
i , we arrive at

dJi

dt
− δ2Ji ≥

(
qVq−1

i
dVi

dt

∫ t

0
V p

i (s)ds
)
Ji, 1 ≤ i ≤ I, t ∈ (0,T h

b ).

Obviously, we have J0(t) = 0, and Jh(0) ≥ 0 because of (7). We deduce from Lemma 1 that

Jh(t) ≥ 0 for t ∈ (0,T h
b ).
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Which implies that
dVI

dt
−CIV

q
I ≥ 0, t ∈ (0,T h

b ).

This estimation may be rewritten in the following form

dVI

Vq
I

≥ Ae−λhtdt. (8)

Applying Taylor’s expansion to obtain

cos(
πh
2

) = 1 − π
2h2

4
+
π3h3

48
sin(

πh
2
θ) where θ ∈ [0, 1], this implies that λh ≤

π2

2
.

Therefore using (8), we discover that
dVI

Vq
I

≥ Ae−
π2 t
2 dt, t ∈ (0,T h

b ).

Integrating this inequality over (0,T h
b ), we obtain

T h
b ≤

2
π2 ln

(
1 − π2

2A

∥∥∥VI(0)
∥∥∥1−q
∞

(1 − q)

)
, t ∈ (0,T h

b ).

From Lemma 4,
∥∥∥Vh(t)

∥∥∥∞ = VI(t). Use the fact that VI(0) =
∥∥∥φh

∥∥∥∞ to complete the rest of the proof.

Remark 1 Integrate the inequality (8) over (t0, T h
b ) to obtain

T h
b − t ≤ 2

π2 ln
(
1 − π2

2A
e−λI

∥∥∥Vh(t)
∥∥∥1−q
∞

1 − q

)
for t ∈ (0,T h

b ).

Since
∥∥∥Vh(t)

∥∥∥∞ = VI(t) and λI = 0 we get,

T h
b − t0 ≤

2
π2 ln
(
1 − π2

2A
V1−q

I (t0)
1 − q

)
for t0 ∈ (0,T h

b ).

4. Convergence of the Semi-discrete Blow-up Time

Here, we show that the solution of the semi-discrete problem blows up in a finite time and its blows-up time goes to the
continious one when the mesh size goes to zero. We denote

vh(t) =
(
v(x0, t), ..., v(xI , t)

)T
,
∥∥∥Vh(t)

∥∥∥∞ = max
0≤i≤I
|Vi(t)|

and C4,1([0, 1] × [0, T ]
)

the space of function k-times continuously differentiable by report has x in [0, 1] l-times contin-
uously differentiable by report has t in [0,T ]. In order to obtain the convergence of the semi-discrete blow-up time, we
firstly prove the following theorem about the convergence of the semi-discrete scheme.

Theorem 2 Assume that the problem (1)-(3) has a solution v ∈ C4,1([0, 1] × [0,T ]
)

and the initial datum at (6) satisfies∥∥∥φh − vh(0)
∥∥∥∞ = o(1) h→ 0. (9)

Then for h sufficiently small, the problem (4)-(6) has a unique solution Vh ∈ C1([0, 1],Rl+1) such that

max
0≤i≤I
∥Vh(t) − vh(t)∥∞ = O

(∥∥∥φh − vh(0)
∥∥∥∞ + h2) as h→ 0.

Proof. Since v ∈ C4,1, there exists a positive constant K such that

∥vxxxx∥∞
12

≤ K, ∥v∥∞ ≤ K. (10)

The problem (4)-(6) has for each h, a unique solution Vh ∈ C1([0,T h
b ],Rl+1). Let t(h) ≤ min{T,T h

b } the greatest value of
t > 0 such that

∥Vh(t) − vh(t)∥∞ < 1, for t ∈ (0, t(h)). (11)

33



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 6; 2019

The relation (9) implied that t(h) > 0 for h sufficiently small. By the triangle inequality, we obtain

∥Vh(t)∥∞ ≤ ∥vh(t)∥∞ + ∥Vh(t) − vh(t)∥∞ for t ∈ (0, t(h)),

which implies that
∥Vh(t)∥∞ ≤ 1 + K, t ∈ (0, t(h)). (12)

Since v ∈ C4,1, taking the derivative in x on both sides of (1) and due to the fact that vx and vxt vanish at x = 1, we observe
that vxxx vanishes at x = 1. Applying Taylor’s expansion, we discover that, for 1 ≤ i ≤ I − 1, t ∈ (0, t(h)),

vxx(xi, t) = δ2v(xi, t) −
h2

12
vxxxx(xi, t).

vt(xi, t) − δ2v(xi, t) = vq(xi, t)
∫ t

0
vp(xi, s)ds − h2

12
vxxxx(x̃i, t), 1 ≤ i ≤ I,

for t ∈ (0, t(h)).

Let eh(t) = Vh(t) − vh(t) be the error of discretization. For the mean value theorem, we have for 1 ≤ i ≤ I, t ∈ (0, t(h)),

dei(t)
dt
− δ2ei(t) = q(ξi(t))q−1ei(t)

∫ t

0
vp(xi, s)ds − Vq

i (t)
∫ t

0
p(θi(s))p−1ei(s)ds + Kh2,

where ξi and θi are intermediate values between Vi(t) and v(xi, t). Using (10) and (12), we deduce that, there exists a
positive constant L such that

dei(t)
dt
− δ2ei(t) ≤ L|ei(t)| + L

∫ t

0
|ei(s)|ds + Kh2, 1 ≤ i ≤ I, t ∈ (0, t(h)).

Introduce the vector Yh(t) defined as follows

Yi(t) = eL(1+T )t(∥∥∥φh − vh(0)
∥∥∥∞ + Kh2), 1 ≤ i ≤ I, t ∈ (0, t(h)).

A straightforward calculation reveals that

Yi(t)
dt
− δ2Yi(t) > L|Yi(t)| + L

∫ t

0
|Yi(s)|ds + Kh2, 1 ≤ i ≤ I, t ∈ (0, t(h)),

Y0(t) > e0(t), t ∈ (0, t(h)),

Yi(0) > ei(0), 1 ≤ i ≤ I.

It follows from comparison Lemma 2 that

Yi(t) > ei(t) for 0 ≤ i ≤ I, t ∈ (0, t(h)).

By the same way, we also prove that

Yi(t) > −ei(t) for 0 ≤ i ≤ I, t ∈ (0, t(h)),

which implied that ∥∥∥Vh(t) − vh(t)
∥∥∥∞ ≤ eL(1+T )(∥∥∥φh − vh(0)

∥∥∥∞ + Kh2) for t ∈ (0, t(h)).

Let us suppose that t(h) < min{T,T h
b }. From (11), we obtain

1 =
∥∥∥Vh(t(h)) − vh(t(h))

∥∥∥∞ ≤ eL(1+T )(∥∥∥φh − vh(0)
∥∥∥∞ + Kh2).

Since the third term of the above inequality goes to zero as h goes to zero, we conclude that 1 ≤ 0, which is impossible.
Consequently t(h) = min{T,T h

b }. Now let us show that t(h) = T . Suppose that t(h) = T h
b < T .

Reasoning as above, we prove that we have a contradiction and the proof is complete. Now, we are in position to state the
main theorem of this section.

Theorem 3 Suppose that the problem (1)-(3) has a solution v which blows up in a finite time Tb such that v ∈ C4,1([0, 1]×
[0,Tb)

)
and the initial datum at (6) satisfies ∥∥∥φh − vh(0)

∥∥∥∞ = o(1) as h→ 0.
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Under the hypothesis of Theorem 2, the problem (4)-(6) has a solution Vh which blows up in a finite time T h
b and we have

lim
h→0

T h
b = Tb.

Proof. Let ϵ > 0. There exists a positive constant R such that

2
π2 ln

(
1 − π2

2A
e
−π2

2 T x1−q

1 − q

)
≤ ϵ

2
for x ∈ [R,∞). (13)

Since v blows up in the time Tb, there exists a time T0 ∈ (Tb − ϵ
2 , Tb) such that ∥v(., t)∥∞ ≥ 2R for t ∈ [T0,Tb]. Set T0+Tb

2 .
From Theorem 2, the problem (4)-(6) has a solution Vh(t) and we get∥∥∥Vh(t) − vh(t)

∥∥∥∞ ≤ R for x ∈ [0,T1].

Applying the triangle inequality, we find that∥∥∥Vh(T1)
∥∥∥∞ ≥ ∥∥∥vh(T1)

∥∥∥∞ − ∥∥∥Vh(T1) − vh(T1)
∥∥∥∞ ≥ R.

From Theorem 2, Vh(t) blows up at the time T h
b . We deduce from Remark 1 that

∣∣∣T h
b − T1

∣∣∣ ≤ 2
π2 ln

(
1 − π2

2A
e
−π2

2 T1

∥∥∥Vh(T1)
∥∥∥1−q
∞

1 − q

)
≤ ϵ

2
.

We deduce from (13) that ∣∣∣T h
b − Tb

∣∣∣ ≤ ∣∣∣T h
b − T1

∣∣∣ + ∣∣∣T1 − Tb

∣∣∣ ≤ ϵ

2
+
ϵ

2
≤ ϵ,

which leads us to the desired result.

5. Discretizations

In this section, we study the phenomenon of blow-up using a discrete explicit scheme of (1)-(3). At first setting f (x, t) =∫ t
0 vp(x, s)ds we see that ft(x, t) = vp(x, t). Therefore the problem (1)-(3) becomes

vt = vxx + (v(x, t))q f (x, t), x ∈ (0, 1), t ∈ (0,T ), (14)

ft(x, t) = vp(x, t), x ∈ (0, 1) t ∈ (0,T ), (15)

v(0, t) = 0, vx(1, t) = 0, t ∈ (0,T ), (16)

v(x, 0) = v0(x) > 0, f (x, 0) = f0(x), x ∈ (0, 1). (17)

Approximate the solution v(x, t) of (14)-(17) by the solution

V (n)
h = (V (n)

0 ,V (n)
1 , . . . ,V (n)

I )T of the following explicit scheme

δtV
(n)
i = δ

2V (n)
i + (V (n)

i )q f (V (n)
i , tn), 1 ≤ i ≤ I, (18)

δt f (V (n)
i , tn) = (V (n)

i )p, 1 ≤ i ≤ I, (19)

V (n)
0 = 0, (20)

V (0)
i = φi, (21)

where n ≥ 0, f (V (n)
i , tn) is the approximation of

∫ tn
0 vp(xi, s)ds,

δtV
(n)
i =

V (n+1)
i − V (n)

i

∆tn
and δt f (V (n)

i , tn) =
f (V (n+1)

i , tn+1) − f (V (n)
i , tn)

∆tn

with

∆tn = min{h
2

3
, τ∥V (n)

h ∥
1−q
∞ }, 0 < τ < 1.

Let us notice that the restriction on the time step ensures the nonnegativity of the discrete solution. More precisely, one
easily sees that V (n)

i > 0, 0 ≤ i ≤ I. The following lemma is a discrete form of the maximum principle.
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Lemma 7 Let a(n)
h be a bounded vector and let W (n)

h a sequence such that

δtW
(n)
i − δ

2W (n)
i + a(n)

i W (n)
i ≥ 0, 1 ≤ i ≤ I, n ≥ 0,

W (n)
0 ≥ 0, n ≥ 0,

W (0)
i ≥ 0, 0 ≤ i ≤ I.

Then W (n)
i ≥ 0 for 0 ≤ i ≤ I, n ≥ 0, if ∆tn ≤ h2

2+∥a(n)
h ∥∞h2 .

Proof. See (N’gohisse and Boni, 2011).

Lemma 8 Let V (n)
h be the solution of (18)-(21).

Then
V (n)

i+1 > V (n)
i , 0 ≤ i ≤ I − 1.

Proof. See (N’gohisse and Boni, 2011).

Lemma 9 Suppose that a(n)
h and b(n)

h are two vectors such that a(n)
h is bounded. Let W (n)

h and X(n)
h be two sequences such

that
δtW

(n)
i − δ

2W (n)
i + a(n)

i W (n)
i + b(n)

i ≤ δtX
(n)
i − δ

2X(n)
i + a(n)

i X(n)
i , 1 ≤ i ≤ I, n ≥ 0,

W (n)
0 ≤ X(n)

0 , n ≥ 0,

W (0)
i ≤ X(0)

i , 0 ≤ i ≤ I.

Then W (n)
i ≤ X(n)

i for 0 ≤ i ≤ I, n ≥ 0, if ∆tn ≤ h2

2+∥a(n)
h ∥∞h2 .

Now, let us give a property of the operators δt.

Lemma 10 Let V (n) ∈ R be a sequence such that V (n) ≥ 0. Then we have

δt(V (n))q ≥ q(V (n))q−1δtV (n), n ≥ 0.

Proof. From Taylor’s expansion, we find that

δt(V (n))q = q(V (n))q−1δtV (n) + ∆tnq(q − 1)(θ(n))q−2δt(V (n))2,

where θ(n) is an intermediate value between V (n) and V (n+1). Use the fact that V (n) ≥ 0 for n ≥ 0 to complete the proof.

In order to treat the phenomenon of blow-up for discrete equations, we need the following definition.

Definition 1 We say that the solution V (n)
h of (18)-(21) blows up in a finite time if limn→+∞ ∥V (n)

h ∥∞ = +∞ and the series∑∞
n=0 ∆tn converges. The quantity

∑∞
n=0 ∆tn is called the numerical blow-up time of V (n)

h .

The following theorem is the discrete version of Theorem 2.

Theorem 3 Suppose that there exists a constant A ∈ (0, 1], such that the initial datum at (21) satisfies

δ2φi ≥ A sin(ih
π

2
)φq

i , 0 ≤ i ≤ I. (22)

Then the solution V (n)
h of (18)-(21) blows up in a finite time and its numerical blow-up time T∆t

h is estimated as follows

T∆t
h ≤

τ∥φh∥1−q
∞

1 − (1 − τ′)1−q where τ′ = A min{h
2

3
∥φh∥q−1

∞ , τ}.

Proof. Introduce the vector Jh such that

J(n)
i = δtV

(n)
i −C(n)

i (V (n)
i )q, 0 ≤ i ≤ I,

where C(n)
i = Ae−λh

∑n−1
j=0 ∆t j sin(ih

π

2
), with λh =

2 − 2 cos(ih π
2 )

h2 .
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A straightforward computation yields

δt J
(n)
i − δ

2J(n)
i = δt

(
δtV

(n)
i − δ

2V (n)
i

)
−C(n)

i δt(V
(n)
i )q + δ2(C(n)

i (V (n)
i )q)

−δtC
(n)
i (V (n)

i )q, 1 ≤ i ≤ I.

Using (18), we arrive at

δt J
(n)
i − δ

2J(n)
i = δt

(
Vq

i f (V (n)
i , t)
)
−C(n)

i δt

(
V (n)

i

)q
+ δ2
(
C(n)

i (V (n)
i )q
)
− δtC

(n)
i (V (n)

i )q.

From Lemmas 5 and 6, we get

δ2
(
C(n)

i (Vq
i

)
≥ C(n)

i qVq−1
i δ2V (n)

i + Vq
i δ

2C(n)
i , 1 ≤ i ≤ I.

Using the above estimates and Lemma 4, we discover that

δt J
(n)
i − δ

2J(n)
i ≥ δt

(
Vq

i f (V (n)
i , t)
)
−C(n)

i q
(
V (n)

i

)q−1
δtV

(n)
i +C(n)

i qVq−1
i δ2V (n)

i

−Vq
i

(
δtC

(n)
i − δ

2C(n)
i

)
, 1 ≤ i ≤ I.

We observe that
δtCi − δ2Ci ≤ 0, Ci−1 < Ci, 1 ≤ i ≤ I.

Taking into account (18), we deduce that

δt J
(n)
i − δ

2J(n)
i ≥ δt

(
Vq

i f (V (n)
i , tn)

)
− qVq−1

i C(n)
i

(
Vq

i f (V (n)
i , tn)

)
.

Using the fact that δt( f (n)(V (n)
i )q) = f (n)δt(V

(n)
i )q + (V (n)

i )qδt f (n)
i we arrive at

δt J
(n)
i − δ

2J(n)
i ≥ f (n)δt(V

(n)
i )q + (V (n)

i )p+q

−C(n)
i q(V (n)

i )q−1
(
Vq

i f (V (n)
i , tn)

)
,

which lead us
δt J

(n)
i − δ

2J(n)
i ≥ q(V (n)

i )q−1 f
(
V (n)

i , tn
)
δtV

(n)
i + (V (n)

i )p+q

−C(n)
i q(V (n)

i )q−1
(
Vq

i f (V (n)
i , tn)

)
, 1 ≤ i ≤ I.

Due to the fact that δtV
(n)
i = J(n)

i + A(V (n)
i )q, we arrive at

δt J
(n)
i − δ

2J(n)
i ≥

(
q(V (n)

i )q−1 f
(
V (n)

i , tn
))

J(n)
i , 1 ≤ i ≤ I.

Obviously, we have J(n)
0 = 0 and from (22), we obtain J(0)

h ≥ 0. It follows from Lemma 7 that Jh ≥ 0. Hence, we have

V (n+1)
i − V (n)

i

∆tn
≥ C(n)

i (V (n)
i )q, 0 ≤ i ≤ I.

Consequently, we get
V (n+1)

I ≥ V (n)
I +C(n)

I ∆tn(V (n)
I )q.

Since from Lemma 8, V (n)
I = ∥V

(n)
h ∥∞.

We arrive at
∥V (n+1)

h ∥∞ ≥ ∥V (n)
h ∥∞ +C(n)

I ∆tn∥V (n)
h ∥

q
∞. (23)

We observe that

∆tn∥V (n)
h ∥

q
∞ = min{h

3

3
∥V (n)

h ∥
q, τ}.

The inequality (23) shows that the sequence ∥V (n)
h ∥∞ is increasing. By induction we obtain ∥V (n)

h ∥∞ ≥ ∥V
(0)
h ∥∞ = ∥φh∥∞. It

follows that

C(n)
I ∆tn(∥V (n)

h ∥∞)q−1 ≥ A min{h
2

3
(∥φh∥∞)q−1, τ} = τ′.
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Consequently, we have
∥V (n+1)

h ∥∞ ≥ ∥V (n)
h ∥∞(1 + τ′) n > 0. (24)

Using a recursion argument, we discover that

∥V (n)
h ∥∞ ≥ ∥V

(0)
h ∥∞(1 + τ′)n = ∥φh∥∞(1 + τ′)n. (25)

Hence, we see that ∥V (n)
h ∥∞ goes to infinity as n approaches infinity. Now let us estimate the numerical blow-up time.

From the restriction on the time step, we get

T∆t
h =

∞∑
n=0

∆tn ≤
+∞∑
n=0

τ(∥V (n)
h ∥∞)1−q.

Due to (25), we arrive at
∞∑

n=0

∆tn ≤
+∞∑
n=0

τ∥φh∥1−q
∞ [(1 + τ′)1−q]n.

Use the fact that the quantity on the right hand side of the above inequality converges toward τ∥φh∥1−q
∞

[1−(1+τ′)1−q] to complete the
rest of the proof.

Remark 2 From (24), we get by induction that

∥V (n)
h ∥∞ ≥ ∥V

(k)
h ∥∞(1 + τ′)n−k for n ≥ k.

Hence

T∆t
h − tk =

+∞∑
n=q

∆tn ≤
+∞∑
n=0

τ∥V (k)
h ∥

1−q
∞ [(1 + τ′)1−q]n−k.

We observe that

T∆t
h − tk ≤

τ∥V (k)
h ∥

1−q
∞

1 − (1 + τ′)1−q ,

when h tends to zero. Since τ′ = min{ h2

3 (∥φh∥∞)q−1, τ}, if we take τ = h2, we get τ
τ′ = min{ 13 (∥φh∥∞)q−1, 1} which implies

that there exists a positive constant K such that τ
τ′ ≤ K.

The following theorem is the discrete form of Theorem 2.

Theorem 4 Suppose that the problem (14)-(17) has a solution v ∈ C4,2([0, 1] × [0,T ]). Assume that the initial datum at
(21) verifies

∥φh − vh(0)∥∞ = o(1) as h→ 0. (26)

Then the problem (18)-(21) has a solution V (n)
h for h sufficiently small,

0 ≤ n ≤ J and we have the following estimate

max
0≤n≤J

∥V (n)
h − vh(tn)∥∞ = O(∥φh − vh(0)∥∞ + h2 + ∆tn) as h→ 0,

where J is such that
∑J−1

n=0 ∆tn ≤ T and tn =
∑n−1

j=0 ∆t j.

Proof. For each h, the problem (18)-(21) has a solution V (n)
h . Let N ≤ J be the greatest value of n such that

∥V (n)
h − vh(tn)∥∞ < 1 for n < N. (27)

We know that N ≥ 1 because of (26). The fact that v ∈ C4,2, there exists a positive constant α such that ∥v∥∞ ≤ α.
Applying the triangle inequality, we obtain

∥V (n)
h ∥∞ ≤ ∥vh(tn)∥∞ + ∥V (n)

h − vh(tn)∥∞ ≤ 1 + α for n < N. (28)

As in the proof of Theorem 2, using Taylor’s expansion, we find that

δtv(xi, tn) − δ2v(xi, tn) − (v(xi, tn))q f (xi, tn)

= − h2

12
vxxxx(x̃i, tn) +

∆tn
2

vtt(xi, t̃n), 1 ≤ i ≤ I.
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Let e(n)
h = V (n)

h − vh(tn) be the error of discretization. From the mean value theorem, we get for n < N,

δte
(n)
i − δ

2e(n)
i = q(ς(n)

i )q−1e(n)
i f
(
e(n)

i , tn
)
+ v(xi, tn)q

∫ tn

0
θ

p−1
i (s)e(n)

i ds

+
h2

12
vxxxx(x̃i, tn) − ∆tn

2
vtt(xi, t̃n), 1 ≤ i ≤ I,

where ς(n)
i and θi are intermediate values between V (n)

i and v(xi, tn). Since vxxxx(x, t), vtt(x, t) are bounded, and use (28) we
deduce that, there exist some positives constants M and K such that

δte
(n)
i − δ

2e(n)
i ≤ K|e(n)

i | + M∆tn + Mh2, 1 ≤ i ≤ I,

where K = 1 + α. Introduce the vector W (n)
h defined as follows

W (n)
i = e(K+1)tn (∥φh − vh(0)∥∞ + M∆tn + Mh2), 1 ≤ i ≤ I.

A straightforward computation gives

δtW
(n)
i − δ

2W (n)
i ≥ KW (n)

i + M∆tn + Mh2 1 ≤ i ≤ I,

W (n)
0 ≥ e(n)

0 ,

W (0)
i ≥ e(0)

i , 1 ≤ i ≤ I.

It follows from Comparison Lemma 9 that W (n)
h ≥ e(n)

h . By the same way, we also prove that W (n)
h ≥ −e(n)

h , which implies
that

∥W (n)
h − vh(tn)∥∞ ≤ e(K+1)tn (∥φh − vh(0)∥∞ + M∆tn + Mh2).

Let us show that N = J. Suppose that N < J. If we replace n by N in the above inequality and use (27), we find that

1 ≤ ∥V (N)
h − vh(tN)∥∞ ≤ e(K+1)tN (∥φh − vh(0)∥∞ + M∆tn + Mh2).

Since the term on the right hand side of the second inequality goes to zero as h tends to zero, we deduce that 1 ≤ 0, which
is a contradiction and the proof is complete.

Now, we are in position to prove the main theorem of this section.

Theorem 5 Suppose that the problem (14)-(17) has a solution v which blows up in a finite time T0 and v ∈ C4,2([0, 1] ×
[0,T0)). Assume that the initial datum at (21) satisfies

∥φh − vh(0)∥∞ = o(1) as h→ 0.

Under the assumption of Theorem 3, the problem (18)-(21) has a solution V (n)
h which blows up in a finite time T∆t

h and the
following relation holds

lim
h→0

T∆t
h = T0.

Proof. Letting ε > 0, there exists a constant R > 0 such that

τx1−q

1 − (1 + τ′)1−q <
ε

2
for x ∈ [R,∞). (29)

Since v blows up at the time T0, there exists T1 ∈ (T0 − ε
2 ,T0) such that

∥v(·, t)∥∞ ≥ 2R for t ∈ [T1,T0).

Let T2 =
T1+T0

2 and k be a positive integer such that tk =
∑k−1

n=0 ∆tn ∈ [T1,T2] for h small enough. We have supt∈[0,T2] ∥v(·, t)∥∞ <
∞. It follows from Theorem 4 that the problem (18)-(21) has a solution V (n)

h which obeys to

∥V (n)
h − vh(tn)∥∞ < R for n ≤ k,

which implies that
∥V (k)

h ∥∞ ≥ ∥vh(tk)∥∞ − ∥V (k)
h − vh(tk)∥∞ ≥ R.
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From Theorem 3, V (n)
h blows up at the time T∆t

h . It follows from Remark 2 and (29) that

|T∆t
h − tk | ≤

τ∥V (k)
h ∥

1−q
∞

1 − (1 + τ′)1−q <
ε

2
,

because ∥V (k)
h ∥∞ ≥ R. We deduce that

|T0 − T∆t
h | ≤ |T0 − tk | + |tk − T∆t

h | ≤
ε

2
+
ε

2
≤ ε,

and the proof is complete.

6. Numerical Results

In this section, we present some numerical approximations of the blow-up time for the solution of the problem (1)-(3) in
the case where v0(x) = 10 sin(πx). Firstly, we consider the explicit scheme in (18)-(21). Secondly, we use the following
implicit scheme

V (n+1)
i − V (n)

i

∆tn
= δ2V (n+1)

i + (V (n)
i )q f (n+1)

i , 1 ≤ i ≤ I,

f (n+1)
i − f (n)

i

∆tn
= (V (n)

i )p, 1 ≤ i ≤ I,

V (n)
0 = 0,

V (0)
i = φi ≥ 0, f (0)

i = ψi, 0 ≤ i ≤ I,

where n ≥ 0,

∆tn = min{h
2

2
, τ∥V (n)

h ∥
1−q
∞ }, 0 < τ < 1.

In both cases, we take φi = 10 sin( iπh
2 ), 0 ≤ i ≤ I. For the above implicit scheme, the nonnegativity of the solution V (n)

h
is guaranteed using standard methods see (Boni, 2001). In the tables 1, 2, 3 and 4, in rows, we present the numerical
blow-up times, the numbers of iterations, the CPU times and the orders of the approximations corresponding to meshes
of 16, 32, 64, 128, 256, 512. We take for the numerical blow-up time tn =

∑n−1
j=0 ∆t j which is computed at the first time

when ∆tn = |tn+1 − tn| ≤ 10−16. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Table 1. Explicit Euler method for p = 1, q = 2

I tn n CPUt s
16 0.16258655 1962 - -
32 0.16231478 7669 1 -
64 0.16224740 29937 2 2.0120
128 0.16223066 116714 18 2.0090
256 0.16222649 454334 1241 2.0052
512 0.16222545 1765598 20027 2.0035

Table 2. Implicit Euler method for p = 1, q = 2

I tn n CPUt s
16 0.16249945 1962 - -
32 0.16229298 7669 - -
64 0.16224195 29937 5 2.0165
128 0.16222929 116714 129 2.0111
256 0.16222615 454334 3442 2.0114
512 0.16222537 1765598 71152 2.0092
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Table 3. Explicit Euler method for p = 0.5, q = 1.5

I tn n CPUt s
16 1.10140601 2918 - -
32 1.09866219 11390 1 -
64 1.09797752 44520 5 2.0027
128 1.09780647 173911 53 2.0010
256 1.09776373 678617 986 2.0008
512 1.09775266 2000001 59453 1.9489

Table 4. Implicit Euler method for p = 0.5, q = 1.5
I tn n CPUt s
16 1.09643911 2918 - -
32 1.09741620 11390 1 -
64 1.09766575 44519 15 1.9692
128 1.09772851 173911 193 1.9914
256 1.09774424 678617 3547 1.9963
512 1.09774817 2644528 122749 2.0009
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Figure 1. Evolution of discrete solution for p = 1, q = 2

Remark 3 From the above tables, we illustrate the convergence of the blow-up time of the solution of the problem (1)-(3)
to the numerical one because the order of approximations of the method goes to 2, which is the accuracy of the difference
approximation in space.

If we compare tables 1, 2 and tables 3, 4 we notice that the blow-up time depends strongly on the reaction term. In tables
1 and 2 when p = 1 and q = 2, we observe that the blow-up time is approximately equal to 0.1622. In tables 3 and 4 when
p = 0.5 and q = 1.5, the blow-up time is approximately equal to 1.0977.

We can deduce that when the parameter p tend to 0 and q tend to 1, it is difficult to obtain the phenomenom of blow-up,
and the blow-up time is big enough.

References

Abia, L. M., Lopes-Marcos, J. C., & Martinez, J. (1998). On the Blow-up time convergence of semidicretizations of
reaction-diffusion equations. Appl. Numer. Math., 26, 399-414. https://doi.org/10.1016/S0168-9274(97)00105-0

Boni, T. K. (2001). Extinction for discretizations of some semilinear parabolic equations. C. R. Acad. Sci. Paris, Srie I,
Math., 333, 795-800.

Brandle, C., Groisman, P., & Rossi, J. D. (2004). Fully discrete adaptative methods for a blow-up problem. Math. Models
Methods. Appl. Sci., 14, 1425-1450. https://doi.org/10.1142/S0218202504003751

Brandle, C., Quiros, F., & Rossi, J. D. (2005). An adaptative numerical method to handle blow-up in a parabolic system.
Numer. Maths., 102, 39-59. https://doi.org/10.1007/s00211-005-0638-x

Ferreira, R., Groisman, P., & Rossi, J. D. (2004). Numerical blow-up for the porous medium equation with a source.
Numer. Methods PDE, 20, 552-575. https://doi.org/10.1002/num.10103

Galaktionov, V. A., & Vazquez, J. L. (2002). The problem of blow-up in nonlinear parabolic equation. Current develop-
ments in PDE(Temusco,1999) Dis. Conti. Syst. A., 8, 399-433. https://doi.org/10.3934/dcds.2002.8.399

41



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 6; 2019

Groisman, P. (2006). Totaly discrete explicit and semi-explicit Euler method for a blow-up problem in several space
dimension. Computing, 76, 325-352. https://doi.org/10.1007/s00607-005-0136-0

Groisman, P., & Rossi, J. D. (2004). Dependance of the blow-up time with respect to parameters and numerical approxi-
mations for a parabolic problem. Asymptot. Anal, 37, 79-91.

Hirata, D. (1999). Blow-up for a class of semilinear integro-differential equations of parabolic type. Math. Methods Appl.
Sci., 22, 1087-1100.

Koffi, N., & Nabongo, D. (2016). Numerical blow-up for solutions of semilinear heat equations with small diffusion. Ann.
Univ. Orader Fasc. Math, Tome XXIII, 21-36.

Kozhanov, A. (1994). Parabolic equations with nonlocal nonlinear source. Siberian Math., 35, 545-556.
https://doi.org/10.1002/(SICI)/1099-1476

Li, F. S. (2009). Global existence and uniqueness of weak solution to non linear viscoelastic full Marguerre-von Karman
shallows equations. Acta Math. Sin., 25, 2133-2156. https://doi.org/10.1007/s00033-003-1128-6.

Li, Y. X., & Xie, C. H. (2004). Blow-up for semilinear parabolic equation with nonlinear memory. Z. Angew. Math. Phys,
55, 15-27. https://doi.org/10.1007%2FBF02104572

Mai, I., & Mochizuki, K. (1991). On blow-up of solutions for quasilinear degenerate parabolic equations. Publ. Res. Inst.
Math. Sci., 27, 695-709.https://doi.org/10.2977/prims/1195169267

N’gohisse, F. K., & Boni, T. K. (2008). Numerical Blow-up solution for some semilinear heat equation. Elect. Trans. of
Numer. Analysis, 30, 247-258.

N’gohisse, F. K., & Boni. T. K. (2011). Numerical blow-up for a nonlinear heat equation. Acta Math. Sin. English Serie,
27, 845-862. https://doi.org/10.1007/s10114-009-7048-4.

Pablo, A. D., Llanos, M., & Ferreira, R. (2005). Numerical blow-up for p-Laplacien equation with a nonlinear source.
Proceeding of equatdiff., 11, 363-367. https://doi.org/10.12478/cnam-2005-0007

Quittner, P., & Souplet, P. (2007). Superlinear parabolic problems, Blow-up, Global existence and Steady States Series.
Birkhuser Advanced Tests/ Basler Lehrbcher. https://doi.org/10.1007/978-37643-8442-5

Sobo, L. B. B., Yoro, G., & Nachid, H. (2016). On asymptotic of the blow-up for differential equation in a large domain.
Int. J. of Rec. S. Reas., 7, 12158-12168.

Souplet, P. (2004). Monotonicity of solution and blow-up for semilinear parabolic equation with nonlinear memory. Z.
Angew. Math. Phys., 55, 28-31. https://doi.org/10.1007/s00033-003-1158-0

Zhang, L., Ziang, Y. S., & Zhou, Z. (2010). Parabolic equation with VMO coefficients in generalized Merrey Morrey.
Acta. Sin., 26, 117-130.

Zhou, J. (2007). Non-similitaneous blow-up for a semilinear parabolic system with nonlinear memory. Survey in Math.
and Appl., 2, 21-27.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

42


