
Journal of Mathematics Research; Vol. 11, No. 5; October 2019 

ISSN 1916-9795   E-ISSN 1916-9809 

Published by Canadian Center of Science and Education 

82 

Parametric Equations for Space Curves Whose Spherical Images Are Slant 

Helices 

Abderrazzak EL HAIMI1, Malika IZID1 & Amina OUAZZANI CHAHDI1  

1Faculty of Sciences Ben M’Sik, University of HASSAN II Casablanca, Morrocco 

Correspondence: Malika IZID, Faculty of Sciences Ben M’Sik, University of HASSAN II Casablanca, Morrocco.  

E-mail: izid.malika@gmail.com 

 

Received: July 10, 2019   Accepted: September 12, 2019   Online Published: September 22, 2019 

doi:10.5539/jmr.v11n5p82          URL: https://doi.org/10.5539/jmr.v11n5p82 

 

Abstract 

The curve whose tangent and binormal indicatrices are slant helices is called a slant-slant helix. 

In this paper, we give a new characterization of a slant-slant helix and determine a vector differential equation of the third 

order satisfied by the derivative of principal normal vector fields of a regular curve. In terms of solution, we determine the 

parametric representation of the slant-slant helix from the intrinsic equations. 

Finally, we present some examples of slant-slant helices by means of intrinsic equations. 

Keywords: alternative moving frame, intrinsic equations, slant-slant helix 

1. Introduction 

Helical structures are an important framework in differential geometry and it was heavily studied for a long time and is 

still studied. We can see them in nature, architecture, simulation of kinematic motion or design of highways and mechanic 

tools. A general helix is defined by the property that its tangent vector field makes a constant angle with a fixed straight 

line which is the axis of the general helix in Euclidean 3-space. The well-known result was stated by M.A. Lancret in 1806 

and first proved by B. Saint Venant in 1845 (see D. J. Struik, 1961 & M. A. Lancret, 1806, p. 416-454 for details). A 

necessary and sufficient condition for a curve to be a general helix is the fact that the ratio 

𝜏

𝜅
 

is constant along the curve, where 𝜅 and 𝜏 denote the curvature and the torsion of the curve, respectively. If both 𝜅 and 

𝜏 are non-zero constants, then the curve is called a circular helix. 

S. Izumiya & N. Takeuchi (2004) have defined a new special curve called slant helix for which the principal normal lines 

make a constant angle with a fixed straight line and they characterize a slant helix if and only if the geodesic curvature 

𝜎 =
𝜅2

(𝜅2 + 𝜏2)
3
2

.
𝜏

𝜅
/
′

 

of principal image of the principal normal indicatrice is a constant function. The spherical images of the Frenet vectors of 

a slant helix have been studied by L. Kula & Y. Yayli (2005), and they have proved that the spherical images of a slant 

helix are spherical helices. Later, L. Kula, N. Ekmekci, Y. Yayli & K. ILarslan (2010), characterize slant helices by certain 

differential equations verified for each one of spherical indicatrix in Euclidean 3-space. 

Beyhan uzunoğlu, Ismail GÖk & Yusuf Yayli (2013), investigated a curve whose spherical images (the tangent indicatrice 

and binormal indicatrix) are slant helices and called it a slant-slant helix and have given some characterizations. We obtain 

that the spherical images are spherical slant helices. 

The problem of determination of the parametric representation of an arbitrary space curve according to the intrinsic 

equations is still open in the Euclidean space 𝐸3( L.P. Eisenhart(1909) & M. M. Lipschutz (1969)). In one sense it was 

solved by Hoppe, who reduces it to solving Riccati equations back in 1862, see P. D. Scofied(1995). However, this 

problem was also solved in three special cases. Firstly, in the case of a plane curve (𝜏 = 0). Secondly, in the case of 

helix (𝜅  and 𝜏  are both non-vanishing constant). In A.T. Ali(2011)  & A.T Ali(2012) , the author adapted 
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fundamental existence and uniqueness theorem for space curves in Euclidean space 𝐸3 and constructed a vector 

differential equation to solve this problem in the case of a general helix  .
𝜏

𝜅
 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/  and a slant helix 

(
𝜅2

(𝜅2+𝜏2)
3
2

.
𝜏

𝜅
/
′

 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡).   

In this work, we use vector differential equations established by means of alternative moving frame in Euclidean space 𝐸3 
to determine position vectors of the arbitrary curves according to the standard frame in 𝐸3. We also obtain position 

vectors of a slant-slant helix from intrinsic equations in 𝐸3. Besides, we present some new characterizations of a 

slant-slant helix and we give some illustrative examples. 

2. Preliminaries 

In the Euclidean space 𝐸3, it is well known that to each unit speed curve with at least four continuous derivatives, one 

can associate three mutually orthogonal unit vector fields 𝑇, 𝑁 and 𝐵 which are called respectively, the tangent, the 

principal normal and the binormal vector fields (H. H. Hacisalihoglu (2000)). 

Let 𝜓: 𝐼 ⊂ ℝ ⟶ 𝐸3, 𝜓 = 𝜓(𝑠), be an arbitrary curve in 𝐸3. The curve 𝜓 is said to be unit speed or parametrized by 

the arc-length if 〈𝜓′(𝑠), 𝜓′(𝑠)〉 = 1 for any 𝑠 ∈ 𝐼. In particular, if 𝜓′(𝑠) ≠ 0 for any 𝑠, then it is possible to 

re-parameterize 𝜓 , that is, 𝛼 = 𝜓(𝜙(𝑠))  so that 𝛼  is parametrized by the arc-length. Thus, we will assume 

throughout this work that 𝜓 is a unit speed curve, where 〈, 〉 is on Euclidean inner product. 

Let *𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)+ be the Frenet moving frame along 𝜓. The Frenet equations for 𝜓 are given by D. J. Struik 

(1961): 

 

[

𝑇′(𝑠)

𝑁′(𝑠)

𝐵′(𝑠)
] = [

0 𝜅(𝑠) 0
 𝜅(𝑠) 0 𝜏(𝑠)

0  𝜏(𝑠) 0
] [
𝑇(𝑠)

𝑁(𝑠)

𝐵(𝑠)
], (1) 

where 𝜅 and 𝜏 are the curvature and the torsion of 𝜓, respectively. 

3. Slant-Slant Helices and Their Characterizations 

In this section, we investigate a curve whose spherical images, (the tangent indicatrix and binormal indicatrix) are slant 

helices (for details see Beyhan uzunoğlu, Ismail GÖk & Yusuf Yayli (2013)). Then we call it a slant-slant helix and we 

give some characterizations of it using the alternative moving frame. 

Denote by {N,C,W} the alternative moving frame along the curve 𝜓 in Euclidean space 𝐸3. Note that 𝑁, 𝐶 =
𝑁′

‖𝑁′‖
 

and 𝑊 =
𝜏𝑇+𝜅𝐵

√𝜏𝑇+𝜅𝐵
 are the principal normal vector, the derivative of principal normal vector and the unit Darboux vector, 

respectively. For the derivatives of the alternative moving frame, we have 

[

𝑁′(𝑠)

𝐶′(𝑠)

𝑊′(𝑠)
] = [

0 𝑓(𝑠) 0

 𝑓(𝑠) 0 𝑔(𝑠)

0  𝑔(𝑠) 0

] [
𝑁(𝑠)

𝐶(𝑠)

𝑊(𝑠)
]                          (2) 

where 𝑓 = √𝜅2 + 𝜏2 and 𝜎 = 𝜎𝑓 (𝜅 and 𝜏 the curvature and the torsion of the curve 𝜓, respectively). If we write this 

curve in another parametric representation 𝜓 = 𝜓(𝜃), where 𝜃 = ∫𝑓(𝑠) 𝑑𝑠, we have the new alternative moving frame 

equations as follows:  

[

𝑁′(𝜃)

𝐶′(𝜃)

𝑊′(𝜃)
] = [

0 1 0
 1 0 𝜎(𝜃)

0  𝜎(𝜃) 0
] [
𝑁(𝜃)

𝐶(𝜃)

𝑊(𝜃)
]                          (3) 

where 𝜎(𝜃) =
𝑔(𝜃)

𝑓(𝜃)
.  

Definition 3.1 Let 𝜓: 𝐼 ⊂ ℝ⟶ 𝐸3 be a unit speed curve in Euclidean 3-space with Frenet frame (𝑇, 𝑁, 𝐵). A curve 

𝜓 is called a slant-slant helix if the vector field 𝐶 =
𝑁′

‖𝑁′‖
 makes a constant angle 𝜙 with a fixed direction 𝑢, that is, 
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〈𝐶, 𝑢〉 = cos𝜙 , 𝜙 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                  (4) 

along the curve 𝜓. 

Lemma 3.2 Let 𝜓: 𝐼 ⊂ ℝ⟶ 𝐸3 be a unit speed curve in the Euclidean 3-space.  Then the curve 𝜓 is a slant-slant helix 

if and only if the geodesic curvature  

Γ =
𝑓2

(𝑓2 + 𝑔2)
3
2

(
𝑔

𝑓
)
′

 

of the principal image of the vector field 𝐶 indicatrix is a constant function. 

The following lemma give a new characterization for slant-slant helices in 𝐸3. 

Lemma 3.3 Let 𝜓: 𝐼 ⟶ 𝐸3 be a curve that is parametrized by arc-length with intrinsic equations 𝜅 = 𝜅(𝑠) and 

𝜏 = 𝜏(𝑠). The curve 𝜓 is a slant-slant helix (its vectors 𝐶 make a constant angle, 𝜙 = ±arccos(𝑛), with a fixed 

straight line in the space) if and only if 

𝑔(𝑠) = ±
𝑚𝑓(𝑠)∫𝑓(𝑠)𝑑𝑠

√1−𝑚2(∫𝑓(𝑠)𝑑𝑠)2
, 

where 𝑓(𝑠) = √𝜅2(𝑠) + 𝜏2(𝑠), 𝑔(𝑠) = 𝑓(𝑠)𝜎(𝑠) and 𝑚 =
𝑛

√1−𝑛2
.. 

Proof. (⇒) Let 𝑈 be a unit fixed vector makes a constant angle, 𝜙 = ±arccos(𝑛), with the vector 𝐶. Therefore 

 〈𝐶, 𝑈〉 = 𝑛                                         (5) 

Differentiating the Eq. (5) with respect to the variable 𝜃 = ∫𝑓(𝑠) 𝑑𝑠 and using the new alternative moving frame 

equations (3) we get 

 〈 𝑁(𝜃) + 𝜎(𝜃)𝑊(𝜃), 𝑈〉 = 0.                                  (6) 

Therefore,  

〈𝑁, 𝑈〉 = 𝜎〈𝑊,𝑈〉. 

If we put 〈𝑊,𝑈〉 = 𝑏, we can write 

𝑈 = 𝑏𝜎𝑁 + 𝑛𝐶 + 𝑏𝑊. 

From the unitary of the vector 𝑈, we get 𝑏 = ±√
1−𝑛2

1+𝜎2
. Therefore, the vector 𝑈 can be written as 

  

    𝑈 = ±𝜎√
1  𝑛2

1 + 𝜎2
𝑁 + 𝑛𝐶 ± √

1  𝑛2

1 + 𝜎2
𝑊. (7) 

If we differentiate Eq.(6) again, we obtain 

 〈𝜎′𝑊  (1 + 𝜎2)𝐶, 𝑈〉 = 0.  (8) 

Eqs.(7) and (8) lead to the following differential equation 

𝑚 = ±
𝜎′

(1 + 𝜎2)
3
2

, 

where 𝑚 =
𝑛

√1−𝑛2
. Integrating the above equation, we get 

 𝜎

√1 + 𝜎2
= ±𝑚(𝜃 + 𝑐1), (9) 

where 𝑐1  is an integration constant. The integration constant can disappear with a parameter change 𝜃 ⟶ 𝜃  𝑐1 . 

Solving the Eq.(9) with 𝜎 as unknown we have 

                     𝜎 = ±
𝑚𝜃

√1−𝑚2𝜃2
. (10) 
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Finally, 𝑔(𝑠) = 𝑓(𝑠)𝜎(𝑠), And that’s the desired result. 

(⟸) Suppose that 

𝑔(𝑠) = ±
𝑚𝑓(𝑠) ∫ 𝑓(𝑠) 𝑑𝑠

√1  𝑚2(∫ 𝑓(𝑠) 𝑑𝑠)2
. 

The function 𝜎 can be written as 𝜎(𝜃) = ±
𝑚𝜃

√1−𝑚2𝜃2
 and let us consider the vector  

𝑈 = 𝑛 (𝜃𝑁 + 𝐶 ±
1

𝑚
√1  𝑚2𝜃2𝑊). 

We will prove that the vector 𝑈 is a constant vector. Indeed, applying the alternative moving frame formula (3) 

𝑑𝑈

𝑑𝜃
= 𝑛(𝑁 + 𝜃𝐶  𝑁 + 𝜎𝑊∓

𝑚𝜃

√1  𝑚2𝜃2
𝑊∓

1

𝑚
√1  𝑚2𝜃2𝜎𝐶) = 0. 

Therefore, the vector 𝑈 is constant and 〈𝐶, 𝑈〉 = 𝑛. This concludes the proof of Lemma 3.3. ■ 

4. Position Vectors of Slant-Slant Helices 

In this section, we give a vector differential equation satisfied by the derivative of principal normal vector fields to 

determine a position vector of an arbitrary curve according to standard frame in 𝐸3. We obtain, by using the new 

characterization, a position vector of a slant- slant helix from intrinsic equations. 

Theorem 4.1 Let 𝜓 = 𝜓(𝑠)  be a unit speed curve in the Euclidean 3-space. Suppose 𝜓 = 𝜓(𝜃)  is another 

parametric representation of this curve by the parameter 𝜃 = ∫𝑓(𝑠) 𝑑𝑠. Then, the vector 𝐶  satisfies a vector 

differential equation of third order as follows: 

 
         

1

 ( )
[
1

 ′
( ′′( ) + (1 +  2) ( ))]

′

+  ( ) = 0, (11) 

ere 𝜎(𝜃) =
𝑔(𝜃)

𝑓(𝜃)
. 

Proof. Let 𝜓 = 𝜓(𝑠) be a unit speed curve in Euclidean 3-space. If we differentiate the second equation of the new 

alternative moving frame (3) and use the first and third equations, we have 

 
𝑊 =

1

𝜎′
,𝐶′′ + (1 + 𝜎2)𝐶-.  (12) 

Differentiating the above equation and using the last equation from (3), we obtain a vector differential equation of third 

order (11) as desired. ■ 

The equation (11) is not easy to solve in the general case. If one solves this equation, the natural representation of the 

position vector of an arbitrary space curve can be determined as follows: 

 
𝜓(𝑠) = ∫(∫𝜅(𝑠) (∫𝑓(𝑠)𝐶(𝑠) 𝑑𝑠) 𝑑𝑠) 𝑑𝑠, (13) 

or in parametric representation 

 
𝜓(𝜃) = ∫

1

𝑓(𝜃)
(∫

𝜅(𝜃)

𝑓(𝜃)
(∫𝐶(𝜃) 𝑑𝜃)𝑑𝜃)𝑑𝜃, (14) 

where 𝜃 = ∫𝑓(𝑠) 𝑑𝑠. 

We can solve the Eq.(11) in the case of a slant-slant helix. 

Theorem 4.2 The position vector 𝜓 = (𝜓1, 𝜓2, 𝜓3) of a slant-slant helix is computed in the natural representation form: 
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{
 
 

 
 𝜓1(𝑠) =

𝑛

𝑚
∫[∫𝜅(𝑠) [∫𝑓(𝑠) cos [

1

𝑛
arcs  (𝑚∫𝑓(𝑠) 𝑑𝑠)] 𝑑𝑠] 𝑑𝑠] 𝑑𝑠,

𝜓2(𝑠) =
𝑛

𝑚
∫[∫𝜅(𝑠) [∫𝑓(𝑠) s  [

1

𝑛
arcs  (𝑚∫𝑓(𝑠) 𝑑𝑠)] 𝑑𝑠] 𝑑𝑠] 𝑑𝑠,

𝜓3(𝑠) = 𝑛∫ [∫𝜅(𝑠) [∫𝑓(𝑠)𝑑𝑠] 𝑑𝑠] 𝑑𝑠,                                                         

 (15)  

or in the parametric form 

 

{
  
 

  
 𝜓1(𝜃) =

𝑛

𝑚
∫

1

𝑓(𝜃)
*∫
𝜅(𝜃)

𝑓(𝜃)
[∫ cos [

1

𝑛
arcs  (𝑚𝜃)] 𝑑𝜃] 𝑑𝜃+ 𝑑𝜃 ,

𝜓2(𝜃) =
𝑛

𝑚
∫

1

𝑓(𝜃)
*∫
𝜅(𝜃)

𝑓(𝜃)
[∫ s  [

1

𝑛
arcs  (𝑚𝜃)] 𝑑𝜃] 𝑑𝜃+ 𝑑𝜃 ,

𝜓3(𝜃) = 𝑛∫
1

𝑓(𝜃)
*∫
𝜅(𝜃)

𝑓(𝜃)
𝜃𝑑𝜃+ 𝑑𝜃 ,

 (16)  

or in the useful parametric form 

 

{
 
 
 

 
 
 𝜓1(𝑡) =

𝑛4

𝑚4
∫
cos(𝑛𝑡)

𝑓(𝑡)
*∫
𝜅(𝑡)

𝑓(𝑡)
cos(𝑛𝑡) [∫ cos(𝑡) cos(𝑛𝑡) 𝑑𝑡] 𝑑𝑡+ 𝑑𝑡,

𝜓2(𝑡) =
𝑛4

𝑚4
∫
cos(𝑛𝑡)

𝑓(𝑡)
*∫
𝜅(𝑡)

𝑓(𝑡)
cos(𝑛𝑡) [∫ s  (𝑡) cos(𝑛𝑡) 𝑑𝑡] 𝑑𝑡+ 𝑑𝑡,

𝜓3(𝑡) =
𝑛3

𝑚3
∫
cos(𝑛𝑡)

𝑓(𝑡)
(∫

𝜅(𝑡)

𝑓(𝑡)
cos(𝑛𝑡) s  (𝑛𝑡) 𝑑𝑡)𝑑𝑡,

  (17) 

where 𝜃 = ∫𝑓(𝑠) 𝑑𝑠, 𝑡 =
1

𝑛
arcs  (𝑚𝜃), 𝑚 =

𝑛

√1−𝑛2
, 𝑛 = cos(𝜙) and 𝜙 is the angle between the fixed straight line 

(axis of a slant-slant helix) and the vector 𝐶 of the curve.  

Proof. If 𝜓 is a slant-slant helix whose vector 𝐶 makes an angle 𝜙 = arccos(𝑛) with a straight line 𝑈, then we can 

write 𝜎(𝜃) = ±
𝑚𝜃

√1−𝑚2𝜃2
, where 𝜎 =

𝑔

𝑓
, 𝜃 = ∫𝑓(𝑠) 𝑑𝑠 and 𝑚 =

𝑛

√1−𝑛2
. Therefore the Eq.(11) becomes  

 (1  𝑚2𝜃2)𝐶′′′(𝜃)  3𝑚2𝜃𝐶′′(𝜃) + 𝐶′(𝜃) = 0.  (18) 

If we write the vector 𝐶 as the following: 

 𝐶 = 𝐶1(𝜃)𝑒1 + 𝐶2(𝜃)𝑒2 + 𝐶3(𝜃)𝑒3, (19) 

the curve 𝜓 is a slant-slant helix, i.e. the vector 𝐶 makes a constant angle 𝜙, with the constant vector called the axis 

of the slant-slant helix, so without loss of generality, we can take the axis of a slant-slant helix parallel to 𝑒3, then  

 𝐶3 = 〈𝐶, 𝑒3〉 = 𝑛. (20) 

On the other hand the vector 𝐶 is a unit vector, so the following condition is satisfied 

 
𝐶1
2 + 𝐶2

2 = 1  𝑛2 =
𝑛2

𝑚2
. (21) 

The general solution of Eq.(21) can be written in the following form: 

 

{
𝐶1(𝜃) =

𝑛

𝑚
cos( (𝜃)) ,

𝐶2(𝜃) =
𝑛

𝑚
s  ( (𝜃)) ,

  (22) 

where   is an arbitrary function of 𝜃. Every component of the vector 𝐶 satisfies Eq.(18). So, substituting the 

components 𝐶1(𝜃) and 𝐶2(𝜃) in the Eq.(18), we have the following differential equations of the function  (𝜃)  

 3 ′(𝜃),𝑚2𝜃 ′(𝜃)  (1  𝑚2𝜃2)- cos( (𝜃))
 [ ′(𝜃)  3𝑚2𝜃 ′′(𝜃)  (1  𝑚2𝜃2)( ′3(𝜃)   ′′′(𝜃))] s  ( (𝜃)) = 0, 

(23) 

 3 ′(𝜃),𝑚2𝜃 ′(𝜃)  (1  𝑚2𝜃2)- s  ( (𝜃))
+ [ ′(𝜃)  3𝑚2𝜃 ′′(𝜃)  (1  𝑚2𝜃2)( ′3(𝜃)   ′′′(𝜃))] cos( (𝜃)) = 0. 

(24) 
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It is easy to prove that the above two equations lead to the following two equations; 

 𝑚2𝜃 ′(𝜃)  (1  𝑚2𝜃2) ′′(𝜃) = 0, (25) 

  ′(𝜃)  3𝑚2𝜃 ′′𝜃  (1  𝑚2𝜃2)( ′3   ′′′(𝜃)) = 0.         (26) 

The general solution of Eq. (25) is 

  (𝜃) = 𝑐1 arcs  (𝑚𝜃) + 𝑐2, (27) 

where 𝑐1 and 𝑐2 are the constants of integration. The constant 𝑐2 can disappear if we change the parameter  ⟶  + 𝑐2. 
Substituting the solution (27) in the Eq. (26), we obtain the following condition: 

𝑐1𝑚(1 +𝑚
2(1  𝑐1)) = 0, 

which leads to 𝑐1 =
√1+𝑚2

𝑚
=
1

𝑛
, where 𝑚 ≠ 0 and 𝑐1 ≠ 0. 

Now, the vector 𝐶 takes the following form: 

                

{
 
 

 
 𝐶1(𝜃) =

𝑛

𝑚
cos (

1

𝑛
arcs  (𝑚𝜃)) ,

𝐶2(𝜃) =
𝑛

𝑚
s  (

1

𝑛
arcs  (𝑚𝜃)) ,

𝐶3(𝜃) = 𝑛.

       (28) 

If we substitute the Eq. (28) in the Eq. (14), we have the two Eq. (15) and (16). It is easy to arrive the Eq.(17), if we take 

the new parameter 𝑡 =
1

𝑛
arcs  (𝑚𝜃), which completes the proof. ■ 

5. Examples 

Example 5.1 The case of a slant-slant helix with 𝜅 =
𝜇

𝑚
cos(𝜇𝑠) cos .

1

𝑚
cos(𝜇𝑠)/  and 

𝜏 =  
𝜇

𝑚
cos(𝜇𝑠) s  .

1

𝑚
cos(𝜇𝑠)/. 

Therefore 

𝑓 =
𝜇

𝑚
cos(𝜇𝑠)        𝑎𝑛𝑑          𝑔 =

𝜇

𝑚
s  (𝜇𝑠), 

we have 

Γ = 𝑚. 

Substituting 𝑘 =
𝜇

𝑚
cos(𝜇𝑠) cos .

1

𝑚
cos(𝜇𝑠)/ and 𝑓 =

𝜇

𝑚
cos(𝜇𝑠) in the Eq.(15), we have the explicit parametric 

representation of such curve as follows: 

{
  
 

  
 𝜓

1
(𝑠) =

𝑛2𝜇

2𝑚3
∫[∫ cos(𝜇𝑠) cos (

1

𝑚
cos(𝜇𝑠)) [

𝑛

𝑛 + 1
s  (

𝑛 + 1

𝑛
𝜇𝑠) +

𝑛

𝑛  1
s  (

𝑛  1

𝑛
𝜇𝑠)] 𝑑𝑠] 𝑑𝑠,

𝜓
2
(𝑠) =  

𝑛2𝜇

2𝑚3
∫(∫ cos(𝜇𝑠) cos (

1

𝑚
cos(𝜇𝑠)) (

𝑛

𝑛 + 1
cos (

𝑛 + 1

𝑛
𝜇𝑠) +

𝑛

1  𝑛
cos (

1  𝑛

𝑛
𝜇𝑠)) 𝑑𝑠) 𝑑𝑠,

𝜓
3
(𝑠) =  

𝑛

𝑚
∫ cos(𝜇𝑠) s  (

1

𝑚
cos(𝜇𝑠)) + 𝑚 cos (

1

𝑚
cos(𝜇𝑠)) 𝑑𝑠.

 

Example 5.2 The case of a slant-slant helix with 𝜅 = cos .
1

𝑚
√1  𝑚2𝑠2/ and 𝜏 =  s  .

1

𝑚
√1  𝑚2𝑠2/. 

Therefore 

𝑓 = 1             𝑎𝑛𝑑           𝑔 =
𝑚𝑠

√1  𝑚2𝑠2
, 

we have 

Γ = 𝑚. 

Substituting 𝜅 = 𝑐𝑜𝑠 .
1

𝑚
√1  𝑚2𝑠2/ = 𝑐𝑜𝑠 .

1

𝑚
𝑐𝑜𝑠(𝑛𝑡)/ and 𝑓 = 1 in the Eq.(17), we have the explicit parametric 
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representation of such curve as follows: 

{
 
 
 

 
 
 𝜓1(𝑡) =

𝑛4

2𝑚4
∫𝑐𝑜𝑠(𝑛𝑡) *∫ 𝑐𝑜𝑠(𝑛𝑡) 𝑐𝑜𝑠 (

1

𝑚
𝑐𝑜𝑠(𝑛𝑡)) *

𝑠𝑖𝑛((𝑛 + 1)𝑡)

𝑛 + 1
+
𝑠𝑖𝑛((𝑛  1)𝑡)

𝑛  1
+ 𝑑𝑡+ 𝑑𝑡 ,

𝜓2(𝑡) =  
𝑛4

2𝑚4
∫𝑐𝑜𝑠(𝑛𝑡) *∫ 𝑐𝑜𝑠(𝑛𝑡) 𝑐𝑜𝑠 (

1

𝑚
𝑐𝑜𝑠(𝑛𝑡)) *

𝑐𝑜𝑠((𝑛 + 1)𝑡)

𝑛 + 1
+
𝑐𝑜𝑠((1  𝑛)𝑡)

1  𝑛
+ 𝑑𝑡+ 𝑑𝑡,

𝜓3(𝑡) =  
𝑛2

𝑚2
∫𝑐𝑜𝑠2(𝑛𝑡) 𝑠𝑖𝑛 (

1

𝑚
𝑐𝑜𝑠(𝑛𝑡)) + 𝑚 𝑐𝑜𝑠(𝑛𝑡) 𝑐𝑜𝑠 (

1

𝑚
𝑐𝑜𝑠(𝑛𝑡)) 𝑑𝑡,

 

where 𝜃 = 𝑠 and 𝑡 =
1

𝑛
𝑎𝑟𝑐𝑠𝑖𝑛(𝑚𝜃). 
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