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Abstract

In this paper, we applied Laplace Homotopy Pertubation method (LHPM) for solving Korteveg de Vries equation. It was
found that this method yields a very rapid convergence of the solution series which leads the solution in a closed form.
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1. Introduction

It is well known that the linear and nonlinear partial differential equation are widely used to describe in variety fields os
science such as physics, biology, chemistry, etc. There are several transform to solve partial differential equation such
as Laplace transform, Fourier transform, Wavelet transform etc.Homotopy Pertubation method (HPM) first introduced by
Ji-Huen He (1990 & 2016) for solving differential and integral equations, linear and nonlinear partial differential equation.
The HPM yields a very rapid convergence of the solution series in most cases. This He’s HPM is a method which can
be solve various kinds of linear and nonlinear partial differential equation. In 2007, Monami and Odibat (2007 & 2005)
applied homotopy pertubation method (HPM) to fractional differential equation and showed that HPM is an alternative an-
alytical method for fractional differential equation.Furthermore,J. Singh, D.Kumar[3]have studied Homotopy Pertubation
Transform Method for solving Fractional Heat and Wave-Like Equations.

The purpose of this work, Korteweg de Vries as follows

ut + auux + uxxx = 0, a ∈ R (1.1)

with the initial condition

u(x, 0) = f (x). (1.2)

By homotopy pertubation method combined Laplace transform, we obtain the solution in the infinite series form. Severals
examples are given to verify the reliability and efficiency of this method. Before going to that point, the following
definition and some important concepts are needed.

2. Preliminaries

In this section, we are giving some basic definition and proportion which shall be in used in this paper:
Definition 1 The Laplace transform of a functional f (t), t > 0 is defined as

L[ f (t)] = F(s) =
∫ ∞

0
e−st f (t)dt, (2.1)

where f (t) is piecewise continuous and of the exponential order (i.e. |e−at f (t)| < M) for some constants a, M and complex
parameter s.
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Definition 2 The Laplace transform of the derivative is given by the following form

L[D f (t)] = snL[ f (t)] −
n−1∑
r=0

sn−r−1 f (r)(0+) (2.2)

Homotopy Perturbation Method
Consider the following general nonlinear differential equation:

Lu + Nu = g(x, t), (2.3)

with initial conditions

u(x, 0) = k1 , ut(x, 0) = k1 (2.4)

where u is a function of x and t and c1, c2 are constants or functions of x, and L and N are the linear and nonlinear operators
respectively.
According to HPM, we construct a homotopy which satisfies the following relation

H(u, p) = (1 − p)
[
Lu − Lu0

]
+ p
[
Lu + Nu − g(x, t)

]
= 0 (2.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an arbitrary initial approximation satisfing the given initial condi-
tions. When we put p = 0 and p = 1 in Eq. (2.5), we obtain

H(u, 0) = Lu − Lu0 = 0 (2.6)

and

H(u, 1) = Lu + Nu − g(x, t) = 0 (2.7)

In HPM, the solution of Eq. (2.5) is expressed as

u(x, t) = u0(x, t) + pu1(x, t) + p2u2(x, t) + . . . (2.8)

Hence, the approximate solution of Eq. (2.3) can be expressed as a series of the powers of p, i.e.

u(x, t) = lim
p→1

(
u0(x, t) + pu1(x, t) + p2u2(x, t) + . . .

)
(2.9)

= u0(x, t) + u1(x, t) + u2(x, t) + . . . (2.10)

Laplace Homotopy Perturbation Method (LHPM)
To illustrate the basic idea of this method, we consider a general nonlinear nonhomogeneous partial differential equation
with the initial conditions of the form:

Dtu(x, t) + Ru(x, t) + Nu(x, t) = gu(x, t), (2.11)

u(x, 0) = h(x), ut(x, 0) = f (x), (2.12)

where Dtu(x, t) is the second order linear differential equation,R is the linear differential operator of less order than D, N
represents the general nonlinear differential operator and g(x, t) is the source term. Taking the Laplace transform (denoted
in this paper by L) on both sides of (2.11), we get

L[Dtu(x, t)] +L[Ru(x, t)] +L[Nu(x, t)] = L[gu(x, t)] (2.13)

Using the property of the Laplace transform, we have

L[u(x, t)] =
h(x)

s
+

f (x)
s2 +

1
snL[gu(x, t)] − 1

snL[Ru(x, t)] − 1
snL[Nu(x, t)] (2.14)
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Operating with the Laplace inverse on both sides of (2.11), we get

u(x, t) = G(x, t) − L−1
[ 1

snL[Ru(x, t) + Nu(x, t)]
]
, (2.15)

where G(x, t) represents the term arising form source term and the prescribed initial condition. Now we apply the LHPM

u(x, t) =
∞∑

n=0

pnun(x, t) (2.16)

and the nonlinear term can be decomposed as

N(u) =
∞∑

n=0

pnHn(u) (2.17)

for some He’s polynomials Hn(u) that are given by

Hn(u0, u1, ..., un) =
1
n!

dn

dpn

[
N
( ∞∑

i=0

piui(x, t)
)]

p=0
; n = 0, 1, 2, ... (2.18)

The first few components He’s are given by

H0 = N(u0)

H1 = u1N′(u0)

H2 = u2N′(u0) +
1
2

u2
1N′′(u0)

H3 = u3N′(u0) + u1u2N′′(u0)
u3

1

3!
N(3)(u0)

...

We apply homotopy pertubation method in (2.15), we obtain

∞∑
n=0

pnun(x, t) = G(x, t) − p
(
L−1
[ 1

snL[R
∞∑

n=0

pnun(x, t) + N
∞∑

n=0

pnun(x, t)]
])
. (2.19)

We compare the coefficients of like powers of p, the following approximations are obtained.

p0 : u0(x, t) = G(x, t)

p1 : u1(x, t) = −L−1
[ 1

snL
[
Ru0(x, t) − H0(u)

]]
p2 : u2(x, t) = −L−1

[ 1
snL
[
Ru1(x, t) − H1(u)

]]
p3 : u3(x, t) = −L−1

[ 1
snL
[
Ru2(x, t) − H2(u)

]]
...

Finally, we approximate the analytical solution u(x, t) by truncated series

u(x, t) = lim
N→∞

N∑
n=0

un(x, t) (2.20)

3. Examples

To illustrate the basic idea of this method, we consider a general Korteweg De Vries(KDV) equation with the initial
conditions.
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Example 1 Consider the following one-dimension linear KDV equation.

ut + uxxx = 0, (3.1)

with the initial condition u(x, 0) = ex.

Taking the Laplace transform on both sides of Eq.(3.1), we get

L
[
ut

]
+L
[
uxxx

]
= L[0]

su(x, s) − u(x, 0) +L
[
uxxx

]
= 0

su(x, s) = ex − L
[
uxxx

]
u(x, s) =

ex

s
− 1

s
L
[
uxxx

]
u(x, t) = ex − L−1

[1
s
L[uxxx

]]

Now,we apply the homotopy perturbation method,we get
∞∑

n=0

pnun(x, t) = ex − p
(
L−1
[1

s
L[( ∞∑

n=0

pnun(x, t)
)

xxx

]])

p0u0(x, t) + p1u1(x, t) + p2u2(x, t) + . . .

= ex − p
(
L−1
[1

s
L[(p0u0(x, t) + p1u1(x, t) + . . .

)
xxx

]])
Comparing the coefficient of like power of p, the following approximations are obtained,

p0 : u0(x, t) = ex

p1 : u1(x, t) = −L−1
[1

s
L[(u0(x, t)

)
xxx

]]
= −L−1

[1
s
L[(ex)xxx

]]
= −exL−1

[ 1
s2

]
= −ext

p2 : u2(x, t) = −L−1
[1

s
L[(u1(x, t)

)
xxx

]]
= −L−1

[1
s
L[( − ext

)
xxx
]]

= ex t2

2!

p3 : u3(x, t) = −L−1
[1

s
L[(u2(x, t)

)
xxx

]]
= −L−1

[1
s
L[(ex t2

2!
)

xxx
]]

= −ex t3

3!

p4 : u4(x, t) = −L−1
[1

s
L[(u3(x, t)

)
xxx

]]
= −L−1

[1
s
L[( − ex t3

3!
)

xxx
]]

= ex t4

4!
...
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Therefore the solution u(x, t) is given by :

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + . . .

= ex − ext + ex t2

2!
− ex t3

3!
+ ex t4

4!
+ . . .

= ex
(
1 − t +

t2

2!
− t3

3!
+

t4

4!
+ . . .

)
= ex−t (3.2)

Example 2 Consider the following two-dimensions linear KDV equation.

ut + uxxx + uyyy = 0 (3.3)

with the initial condition u(x, y, 0) = ex+y

Taking the Laplace transform on both sides of Eq. (3.3),we get

L
[
ut

]
+L
[
uxxx

]
+L
[
uyyy

]
= L[0]

su(x, y, s) − u(x, y, 0) +L
[
uxxx

]
+L
[
uyyy

]
= 0

su(x, y, s) = ex+y − L
[
uxxx

]
− L
[
uyyy

]
= 0

u(x, y, s) =
ex+y

s
− 1

s
L
[
uxxx + uyyy

]
(3.4)

The inverse of Laplace transform implies that

u(x, y, t) = L−1
[ex+y

s

]
− L−1

[1
s
L
[
uxxx + uyyy

]]
= ex+yL−1

[1
s

]
− L−1

[1
s
L
[
uxxx + uyyy

]]
= ex+y − L−1

[1
s
L
[
uxxx + uyyy

]]
(3.5)

Now,we apply the homotopy perturbation method, we get

∞∑
n=0

pnun(x, y, t) = ex+y − p
(
L−1
[1

s
L
[( ∞∑

n=0

pnun(x, y, t)
)

xxx
+
( ∞∑

n=0

pnun(x, y, t)
)

yyy

]])
(3.6)

p0u0(x, y, t) + p1u1(x, y, t) + p2u2(x, y, t) + . . . =

ex+y − p
(
L−1
[1

s
L
[(

p0u0(x, y, t) + p1u1(x, y, t) + . . .
)

xxx

+
(
p0u0(x, y, t) + p1u1(x, y, t) + . . .

)
yyy

]])
(3.7)

Comparing the coefficient of like power of p , the following approximations are

81



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 4; 2019

obtained;

p0 : u0(x, y, t) = ex+y

p1 : u1(x, y, t) = −L−1
[1

s
L
[(

u0(x, y, t)
)

xxx
+
(
u0(x, y, t)

)
yyy

]]
= −L−1

[1
s
L
[(

ex+y
)

xxx
+
(
ex+y
)

yyy

]]
= −2ex+yt

p2 : u2(x, y, t) = −L−1
[1

s
L
[(

u1(x, y, t)
)

xxx
+
(
u1(x, y, t)

)
yyy

]]
= −L−1

[1
s
L
[(
− 2ex+yt

)
xxx
+
(
− 2ex+yt

)
yyy

]]
= 2ex+yt2

p3 : u3(x, y, t) = −L−1
[1

s
L
[(

u2(x, y, t)
)

xxx
+
(
u2(x, y, t)

)
yyy

]]
= −L−1

[1
s
L
[(

2ex+yt2
)

xxx
+
(
2ex+yt2

)
yyy

]]
= −4ex+y t3

3

Therefore the solution u(x, t) is given by :

u(x, y, t) = u0(x, y, t) + u1(x, y, t) + u2(x, y, t) + u3(x, y, t) + . . .

= ex+y − 2ex+yt + 2ex+yt2 − 4ex+y t3

3
+ . . .

= ex+y
(
1 − 2t +

4t2

2!
− 8t3

3!
+ . . .

)
= ex+y−2t (3.8)

Example 3 Consider the following three-dimensions inhomogeneous linear KDV-like equation.

∂u
∂t
+

1
72

(
x3uxxx + y3uyyy + z3uzzz

)
= x4y4z4 (3.9)

with the initial condition u(x, y, z, 0) = 0.
Taking the Laplace transform on both sides of Eq. (3.9),we get

L
[
ut

]
+

1
72
L
[
x3uxxx + y3uyyy + z3uzzz

]
= L
[
x4y4z4

]
su(x, y, z, s) − u(x, y, z, 0) +

1
72
L
[
x3uxxx + y3uyyy + z3uzzz

]
=

x4y4z4

s

u(x, y, z, s) = − 1
72s
L
[
x3uxxx + y3uyyy + z3uzzz

]
+

x4y4z4

s2

Taking inverse Laplace transform both sides of the above equation, we obtain

u(x, y, z, t) = −L−1
[ 1
72s
L[x3uxxx + y3uyyy + z3uzzz

]]
+L−1

[ x4y4z4

s2

]
= x4y4z4t − L−1

[ 1
72s
L[x3uxxx + y3uyyy + z3uzzz

]]
(3.10)

Now,we apply the homotopy perturbation method, we get

∞∑
n=0

pnun(x, y, z, t) = x4y4z4t − p
(
L−1
[ 1
72s
L[x3( ∞∑

n=0

pnun(x, y, z, t)
)

xxx

+ y3( ∞∑
n=0

pnun(x, y, z, t)
)
yyy + z3( ∞∑

n=0

pnun(x, y, z, t)
)
zzz
]])
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p0u0(x, y, z, t) + p1u1(x, y, z, t) + p2u2(x, y, z, t) + . . .

= x4y4z4t − p
(
L−1
[ 1
72s
L[x3(p0u0(x, y, z, t) + p1u1(x, y, z, t) + . . .

)
xxx

+ y3( ∞∑
n=0

p0u0(x, y, z, t) + p1u1(x, y, z, t) + . . .
)
yyy

+ z3(p0u0(x, y, z, t) + p1u1(x, y, z, t) + . . .
)
zzz
]])

(3.11)

Comparing the coefficient of like power of p, the following approximations are
obtained;

p0 : u0(x, y, z, t) = x4y4z4t

p1 : u1(x, y, z, t) = −L−1
[ 1
72s
L
[
x3u0xxx + y3u0yyy + z3u0zzz

]]
= −L−1

[ 1
72s
L
[
x3(x4y4z4t

)
xxx + y3(x4y4z4t

)
yyy + z3(x4y4z4t

)
zzz

]]
= −x4y4z4 t2

2!

p2 : u2(x, y, z, t) = −L−1
[ 1
72s
L
[
x3u1xxx + y3u1yyy + z3u1zzz

]]
= −L−1

[ 1
72s
L
[
x3( − x4y4z4 t2

2!
)

xxx + y3( − x4y4z4 t2

2!
)
yyy + z3( − x4y4z4 t2

2!
)
zzz

]]
= x4y4z4 t3

3!
...

Therefore the solution u(x, t) is given by :

u(x, y, z, t) = u0(x, y, z, t) + u1(x, y, z, t) + u2(x, y, z, t) + u3(x, y, z, t) + . . .

= x4y4z4t − x4y4z4 t2

2!
+ x4y4z4 t3

3!
− x4y4z4 t4

4!
+ . . .

= x4y4z4
(
t − t2

2!
+

t3

3!
− t4

4!
+ . . .

)
= x4y4z4(1 − e−t) (3.12)

Example 4 Consider the following nonlinear KDV equation.

vt − avvx + vxxx = 0, a ∈ R − {0} (3.13)

with the initial condition v(x, 0) = 1
a (x − 1).

Taking the Laplace transform on both sides of Eq. (3.13), we get

L[vt
] − aL[vvx] +L[vxxx

]
= L[0]

sv(x, s) − u(x, 0) − aL[vvx] +L[vxxx] = 0

sL[v(x, t)] − 1
a

(x − 1) − aL[vvx] +L[vxxx] = 0

L[v(x, t)] =
1
as

(x − 1) +
a
s
L[vvx] − 1

s
L[vxxx]

The inverse of Laplace transform implies that

v(x, t) = L−1
[ 1
as

(x − 1)
]
+L−1

[a
s
L[vvx]

]
− L
[1

s
L[vxxx]

]
=

1
a

(x − 1) + 6L−1
[1

s
L[vvx

]] − L−1
[1

s
L[vxxx]

]
(3.14)
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Now,we apply the homotopy perturbation method, we get

v(x, t) =
1
a

(x − 1) + pL−1
[a

s
L[vvx

] − 1
s
L[vxxx

]]
(3.15)

∞∑
n=0

pnvn(x, t) =
1
a

(x − 1) + pL−1
[a

s
L[ ∞∑

n=0

pnHn(u)
] − 1

s
L[( ∞∑

n=0

pnvn(x, t)
)

xxx

]]

p0v0(x, t) + p1v1(x, t) + p2v2(x, t) + . . . =
1
a

(x − 1) + pL−1
[a

s
L[p0H0(u) + p1H1(u) + . . .

]
− 1

s
L[(p0v0(x, t) + p1v1(x, t) + . . .

)
xxx

]]
(3.16)

Comparing the coefficient of like power of p , the following approximations are
obtained;

p0 : v0(x, t) =
1
a

(x − 1)

p1 : v1(x, t) = L−1
[a

s
L[H0(u)

] − 1
s
L[v0xxx]

]
= L−1

[a
s
L[v0v0x

] − 1
s
L[v0xxx]

]
= L−1

[a
s
L[(1

a
(x − 1)

)(1
a

(x − 1)
)

x
] − 1

s
L[
(1
a

(x − 1)
)

xxx]
]

=
1
a

(x − 1)t

p2 : v2(x, t) = L−1
[a

s
L[H1(u)

] − 1
s
L[v1xxx]

]
= L−1

[a
s
L[v0v1x + v1v0x

] − 1
s
L[v1xxx]

]
= L−1

[1
s
L[(1

a
(x − 1)

)(1
a

t
)
+
(1
a

(x − 1)(t)(
1
a

)
)] − 1

s
L[0]
]

=
1
a

(x − 1)t2

...

v(x, t) = v0(x, t) + v1(x, t) + v2(x, t) + . . .

=
1
a

(x − 1) +
1
a

(x − 1)t +
1
a

(x − 1)t2 +
1
36

(x − 1)t + . . .

=
x − 1

a(1 − t)
(3.17)
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