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Abstract

In this paper, we design the so called ”Strong Diffie-Hellman-Exponential-Schnnor Key Exchange (called SDH-XS-KE)”
over Elliptic curves. SDH-XS-KE is a key echange protocol proposed in 2014. The protocol SDH-XS-KE improves the
”Strong Diffie-Hellman-DSA Key Exchange (called SDH-DSA-KE)” proposed by Jeong and al. in 2007. First SDH-XS-
KE is designed in finite groups such that Z/pZ where p is a prime number. So, in this paper, we present the elliptic curves
version of the protocol SDH-XS-KE.
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1. Introduction

The Diffie-Hellman (DH) key exchange protocol is the best known protocol in this field (Diffie & Hellman, 1976). On the
other hand, the basic protocol is vulnerable to many attacks. This is why many proposals have been made to improve the
security of the DH protocol (Nyberg, 1994 & Krawczyk, 2005). But, most of the proposals have been attacked or suffered
weaknesses.

1.1 Related Work

In 2003, Law, Menezes, Qu, Solinas and Vanstone designed the MQV protocol in (Krawczyk, 2005). The MQV protocol
has been designed to achieve a remarkable list of security properties.

In 2005, Hugo Krawczyk show that MQV fails to a variety of attacks in Canetti-Krawczyk model (Canetti & Krawczyk,
2001) of key exchange that invalidate its basic security as well as many of its stated security goals. In (Krawczyk,
2005), Krawczyk present HMQV, a carefully designed variant of MQV, that provides the same superb performance and
functionality of the original protocol but for which all the MQV’s security goals can be formally proved to hold in the
random oracle model under the computational Diffie-Hellman assumption.

In 2007, Jeong and al. proposed in (Jeong, Kwon & Lee, 2007) the ”Strong Diffie-Hellman-DSA Key Exchange” (briefly:
SDH-DSA-KE) where DSA signatures is used for mutual authentication but it is vulnerable to some attacks.

In 2014, Demba Sow and al. presented a cryptanalysis of SDH-DSA-KE (Sow, Camara & Sow, 2014) showing that it is
not secure against KCI attacks and is vulnerable to disclosure to ephemeral and long-term CDH exponents. Next, they
proposed ”Strong Diffie-Hellman-Exponential-Schnorr Key Exchange” (briefly: SDH-XS-KE) which is an improvement
of SDH-DSA-KE for efficiency and security. Their protocol use 4 exponents and is secure against Session State Reveal
(SSR) attacks, Key independency attacks, Unknown-key share (UKS) attacks and Key-Compromise Impersonation (KCI)
attacks.

In addition, SDH-XS-KE has the Perfect Forward Secrecy (PFS) property. For mutual authentication, instead of DSA
signatures, they use a modified Schnorr Exponential protocol.

1.2 Our Contribution

First in (Sow, Camara & Sow, 2014), ”Strong Diffie-Hellman-Exponential-Schnorr Key Exchange” (SDH-XS-KE) is
designed in group G where G = Z/pZ and p a prime number. In this paper, we propose the SDH-XS-KE protocol in
elliptic curves.
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1.3 Organization of the Paper

This paper is organize as follow:

• In section 2: we recall some definitions and results about elliptic curves (), Discrete Logarithm Problem over
Elliptic curves (), Diffie-Hellman protocol over Elliptic curves (), Schnorr protocol over Elliptic curves () and
security notions about key exchange protocols ().

• In section 3: first, we design SDH-XS-KE protocol over Elliptic curves. In additional, we show its performance
and security.

2. Preliminaries

2.1 Elliptic Curves Over a Finite Field

Definition 1 Let F be a field.

• An elliptic curve E over F can be given by the so-called Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

where the coefficients a1, a2, a3, a4, a6 ∈ F and E has to be nonsingular.

• The set of F-rational points on E is defined by the set of points

E(F) = {(x, y) ∈ F × F : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6} ∪ {P∞}

where P∞ is the point at infinity.

• The set of F-rational points on E by means of the chord-and-tangent process turns E(F) into an abelian group with
P∞ as the neutral element.

Definition 2 (Elliptic curves over a finite field Fq).
Let Fq be a field not of characteristic 2 or 3. Suppose a, b ∈ Fq such that x3 + ax + b has no multiple roots. The equation
of the elliptic curve E can be transformed into the reduced Weierstrass form

y2 = x3 + ax + b, a, b ∈ Fq

where 4a3 + 27b2 , 0. When Fq for some prime q > 3, such a curve will be denoted Eq(a, b).

Theorem 1 (Hasse) Let E be an elliptic curve over Fq. Then

q + 1 − 2
√

p ≤ |E| ≤ q + 1 + 2
√

q.

2.2 Discret Logarithm Problem

Let E(K) an elliptic curve over a finite field K and a generator P of order q.

• The Elliptic Curve Discrete Logarithm Problem (ECDLP) is to determine the integer k, given rational points P and
Q on E(K), and given that k ∗ P = Q.

• The Elliptic Curve Computational Diffie-Hellman Problem (ECCDH) is the following: given rational points Q1 =

k1P and Q2 = k2P, compute Q = k1k2P.

2.3 Diffie-Hellman Key Exchange

Diffie-Hellman is a key exchange protocol invented in 1976 and presented in the article: New directions in cryptography
(Diffie & Hellman, 1976).

Diffie-Hellman protocol over elliptic curve

Let E(K) an elliptic curve over a finite field K and a generator P of order q.
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• A selects an integer a such that 1 < a < q − 1, keeps it secret and sends [a]P to B.

• B selects an integer b such that 1 < b < q − 1, keeps it secret and sends [b]P to A

• Both A and B compute k = [a][b]P = [b][a]P = [ab]P.

2.4 Schnorr Protocol

2.4.1 Schnorr Identification Protocol

Let E(K) be an elliptic curve over a finite field K and g ∈ E(K) be a point of order q.

In Schnorr identification protocol, sk is the secret key and a ∈ [1, q] is an integer. Take γ = [a]g and pk = (E(Fp), g, γ)
the public key.

Let P the prover andV the verifier.

1. P takes an element x
Rand← [1, q] and dispatchs X = [x]g toV.

2. V takes an element ”challenge” e
Rand← [1, q] and dispatchs e to P.

3. P computes s = x + ae mod q and dispatchs s toV.

P is identified byV if [s]g = X + [e]γ.

2.4.2 Exponential Schnorr Identification Protocol

Let P the prover andV the verifier.

In Exponential Schnorr identification protocol, sk is the secret key and α ∈ [1, q] is an integer. Take γ = [α]g and
pk = (E(Fp), g, γ) the public key.

1. V takes an element y
Rand← [1, q] and dispatchs Y = [y]g to P.

2. P takes an element x
Rand← [1, q] and dispatchs X = [x]g toV.

3. V takes an element ”challenge” e
Rand← [1, q] and dispatchs e to P.

4. P computes s = x + αe mod q and dispatchs S = sY toV.

P is identified byV if S = y(X + [e]γ).

We can prove that Exponential Schnorr identification is a proof of the ”ability” of the prover P to calculate CDH(γ, Y)
for all X ∈ G. The protocol is furthermore a zero knowledge for a verifier V that randomly takes e, (Krawczyk, 2005).

2.5 Security Notions About Key Exchange Protocols

In this section, we will define security terms that key sharing protocols should check.

1. Key Independency. Independence of keys: this term means that the keys of sessions are computationally indepen-
dent between them.

2. Session State Reveal Attack. this term means that the security of the session keys is ensured even if the attacker
has access to the random numbers which made it possible to generate them.

3. Perfect Forward Secrecy (PFS): this term means that the attacker’s knowledge of a long-term key must not com-
promise the progress of the protocol.

4. Resistance to Key-Compromise Impersonation (KCI) attacks This term means that even if the private key of
one of the parties is known by the attacker, this should not allow him to control a session.
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5. The case of Diffie-Hellman Key exchange protocol: (Krawczyk, 2005)
Let a session (idA, idB,VA = vA · g,VB = vB · g) for two parties A and B having the respective key pairs (xA, xA · g)
and (xB, xB · g); the computation of the session key involves the four secret values xA, xB, vA, vB. Obviously the
disclosure of {xA, vA}, or {xB, vB}, gives the attacker the advantage of reading the session key.

Securing the communication between A and B requires that the attacker’s knowledge of any other pair of values
(except {xA, vA}, and {xB, vB}) in the set {xA, xB, vA, vB} must not allow it to lead an attack. We can summarize this
as follows:

• {xA, xB} and try to get the session key from the keys of previous sessions: this is PFS attack;

• {vA, vB} : this stems from the security to State reveal attack;

• {xA, vB} or {xB, vA} : this stems from the security to KCI attacks;

• xAxB · g without learning (xA, xB): this stems from the security of the disclosure of long-term DH exponents;

• vAvB ·g, without learning {vA, vB}: this follows from the security of the disclosure of ephemeral DH exponents;

3. The Protocol SDH-XS-KE Over Elliptic Curves

In the SDH-XS-KE protocol, modified Schnorr Exponential protocol provides mutual authentication between parties.

3.1 Design SDH-XS-KE Over Elliptic Curves

Let E(K) an elliptic curve over a finite field K, g ∈ E(K) a generator of order q and O the point at infinity. Let H :
E(K) × E(K) × P → {0, 1}l be a hash function (where l ≥ 224 and P is the set of all parties authorized to take part in the
protocol). Let G : E(K) → {0, 1}l be a randomness extractor on E(K) and and H : {0, 1}l × P × P × {0, 1} → {0, 1}l be a
hash function and MACK : E(K) × E(K) × P → {0, 1}l be a keyed hash function for Mac authentication.

Suppose that (xA, yA = xA · g) the Alice key pair and (xB, yB = xB · g) the Bob key pair where xA, xB < q are random
integers.

Protocol

1. Alice chooses a secret session’s random vA < q, calculates VA = vA ·g, δAB = (vA+xA)·yB and hAB = H
(
δAB,VA, idA

)
,

destroy δAB and dispatchs (VA, hAB) to Bob;

2. • Bob verifies if VA , O, calculates λBA = xB · (VA + yA) and H(λBA,VA, idA) and destroy λBA; verifies if
H(λBA,VA, idA) , hAB;

• If any of the above checks do not match then Bob interrupts the flow of the protocol.

• Bob chooses a secret session’s random vB < q, calculates VB = vB · g and
Kmac = H(KB2, idA, idB, 1) where KB2 = G(gKBs, l) and gKBs = (vB + xB) · (VA + yA).

• Bob calculates δBA = (vB + xB) · yA, hMACB =MACKmac

(
δBA,VB, idB

)
, destroy δBA and dispatchs (VB, hMACB ) to

Alice;

3. • Alice verifies if VB , O, calculates Kmac = H(KA2, idA, idB, 1) where KA2 = G(gKAs, l) and gKAs = (vA + xA) ·
(VB + yB).

• calculates λAB = xA ·(VB+yB) and h′MACB
=MACKmac

(
λAB,VB, idB

)
, and destroy λAB; verifies if h′MACB

, hMACB ,

• If any of the above checks do not match then Alice interrupts the flow of the protocol, otherwise,

• Alice calculates hMACA =MACKmac

(
gKAs,VA, idA

)
, and dispatchs it to Bob.

• Alice calculates and saves KAs = H(KA2, idA, idB, 0) as her current session key.

4. • Bob calculates h′MACA
=MACKmac

(
gKBs,VA, idA

)
, and verifies if h′MACA

, hMACA .

• If any of the above checks do not match then Bob interrupts the flow of the protocol, otherwise, Bob calculates
and saves the key KBs = H(KB2, idA, idB, 0) as his current session key.

3.2 SDH-XS-KE Over Elliptic Curves: Security and Performance

The modified Schnorr Exponential protocol has ensured mutual authentication between parties where their public keys
are their challenges. The success of the protocol depends on the honesty of the participants who must select, use and save
the values of the protocol parameters correctly. That said for the future that we assume the participants are honest.
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Performance

In the SDH-XS-KE protocol, there is a key confirmation step and we used only 4 exponents and 4 passes. Thus, it is
efficient (because faster) than SDH-DSA-KE where 5 exponents 4 passes are used.

Security

In (Sow, Camara & Sow, 2014), the vulnerability to KCI attacks of the SDH-DSA-KE protocol is shown. In what follows,
we will prove the security of the SDH-XS-KE protocol if there is the impossibility of calculating CDH (VA,VB), CDH
(yA, yB), CDH (VA, yB), CDH (VB, yA) and if the hash function used is solid.

Theorem 2 The SDH-XS-KE protocol over elliptic curves has the Perfect Forward Secrecy property.

Proof There is a key confirmation step, plus the attacker can not participate in the session where the parties will create
the session key. The only possibility that the attacker is to compute the session key directly if we suppose that he holds
the keys in the long term in other words xA and xB. The session key is thus equal to KBs = H(KB2, idA, idB, 0) where
KB2 = G(gKBs, l) and gKB = (vA + xA)(vB + xB) · g = vAvB · g + xAxB · g + xB · VA + xA · VB and the attacker knows xA

and xB then he can compute xAxB · g + xB · VA + xA · VB. So the attacker can calculate gKBs if and only if he can calculate
(vAvB) · g = CDH(VA,VB), this is impossible if we assume that both parties are honest.

Theorem 3 The SDH-XS-KE protocol over elliptic curves is safe against KCI (Key-Compromise Impersonation) and
UKS (Unknown Key Attack) attacks.

Proof 1) Security against KCI attack (Key-Compromise Impersonation): In SDH-XS-KE the modified Schnorr Expo-
nential protocol is used to guarantee mutual authentication by hashing the output produced by this same protocol: Alice
calculates δAB = (vA+ xA) · yB, dispatchs hAB = H

(
δAB,VA, idA

)
to Bob and destroy δAB; Bob calculates δBA = (vB+ xB) · yA

and dispatchs hMACB = MACKmac

(
δBA,VB, idB

)
to Alice and destroy δBA. Thus, the protocol fails if the attacker is active

and does not know simultaneously vA and xA or vB and xB. So, the only possibility for the attacker is to directly calculate
the session key, assuming he has access to Alice’s long-term secret key (ie xA) and the random value of Bob’s session (ie
vB).

So the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKB, l) and gKB = (vA + xA)(vB + xB) · g = vB ·VA + xA · yB +

xA · VB + xB · VA and the attacker knows xA and vB then he can calculate vB · VA + xA · yB + xA · VB. Thus, the attacker can
calculate gKBs if and only if he can calculate xB · VA = CDH(VA, yB) = DLPVA (xB · VA), this is impossible if we assume
that both parties are honest.

2) Security against UKS (unknown-key share) attack: in the authentication process, Alice calculates δAB = (vA + xA) · yB

and dispatchs hAB = H
(
δAB,VA, idA

)
to Bob and destroy δAB; Bob calculates δBA = (vB + xB) · yA and dispatchs hMACB =

MACKmac

(
δBA,VB, idB

)
to Alice and destroy δBA. So the public keys and identities of the parts (idA, idB) are hashed. This

causes UKS attacks to fail.

Theorem 4 The SDH-XS-KE protocol over elliptic curves is safe against SSR (Session State Reveal) attacks.

Proof As the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKBs, l) and gKBs = (vA + xA)(vB + xB) · g =
vAvB · g+ xAxB · g+ vB · yA + vA · yB and the attacker knows vA and vB then he can calculate vAvB · g+ vB · yA + vA · yB. Thus,
the attacker can calculate gKBs if and only if he can calculate xAxB · g = CDH(yA, yB), this is impossible if we assume that
both parties are honest.

Theorem 5 The SDH-XS-KE protocol over elliptic curves has the key independence property.

Proof As the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKBs, l) and gKBs = (vA + xA)(vB + xB) · g =
vAvB · g + xAxB · g + xB · VA + xA · VB. Thus the properties of the hash function, the use of identities (idA and idB) and the
session’s random (vA and vB) guarantee the key independence property.

Theorem 6 The SDH-XS-KE protocol over elliptic curves is safe against attacks based on ”disclosure to ephemeral and
long-term CDH”.

Proof As the session key is KBs = H(KB2, idA, idB, 0) where KB2 = G(gKBs, l) and gKBs = (vA + xA)(vB + xB) · g =
vAvB · g+ xAxB · g+ vB · yA + vA · yB and the attacker knows gvAvB and gxA xB , so he can calculate vAvB · g+ xAxB · g. Thus the
attacker can calculate gKBs if and only if he can calculate vB · yA + vA · yB = CDH(yA,VB)CDH(VA, yB), this is impossible
if we assume that both parties are honest.

4. Conclusion

We have successfully introduced the elliptic curve version of the SDH-XS-KE key exchange protocol using Schnorr’s
modified identification protocol for mutual authentication.
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