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Abstract

A class of stochastic dynamical systems with strong damped stochastic higher order Kirchhoff equation solutions with
white noise is studied. Firstly, the equation is transformed into a stochastic equation with random variables as parameters
and without noise by using Ornstein-Uhlenbeck process. Secondly, the bounded stochastic absorption set is obtained by
estimating the solution of the equation. Finally, the stochastic dynamical system is obtained by using the isomorphic
mapping method and the compact embedding theorem. It is progressively compact, thus proving the existence of random
attractors.
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1. Introduction

In this paper, the stochastic higher-order Kirchhoff equation with strong damping and additive noise is studied.

Ug + M ([D™u[*)(~A)"u + B(=A)"u, +Ag(u) = G(XW, (1.1)

u(x,t)=0, % =0, i=12,--,m-1 xeD, te[0,+w), (1.2)
Vv

u(x,0)=up(x), u;(x,0) = Uy (X). (1.3)

Where m>1, Ag(u) is a second-order non-linear source term, M is a real-valued function, S>0. u=u(xt)is a
real-valued function on Dx[0,+), D is a bounded open set with smooth boundary on R"(ne N).qdW describes an
additive white noise. W(t) is a one-dimensional bilateral Wiener process on probability space (©,F,P) ,
Q={weC(R,R):w(0) =0}, Fis a Borel algebra generated by compact expansion on Q and P is a probability measure.

Chuangliang Qin, Jinji Du (2016) have studied the stochastic low-order Kirchhoff equation with strong damping and
additive noise.

du; + (—aAu, + Su; — (1+ (jQ|Du|2dx) P)AU + g(u))dt = f(x)dt+q(x)dW (t), x € D,t €[0,4+x) (1.4)

u(x,0)

xedD = O,U(X,O) = uO (X)7ut (X,O) = ul(X)' (15)
By using Ornstein-Uhlenbeck process and isomorphic mapping method, the existence and uniqueness of solutions and the
existence of random attractors for stochastic Kirchhoff equation with strong damping are obtained.

Guigui Xu, Libo Wang and Guoguang Lin (2017) discussed the nonautonomous stochastic wave equation with dispersion
term and dissipation term.

Uy — AU — AU, — Buy +h(u)u, + Au+ f(x,u) = g(x,t)u+eu CL—V:/ (1.6)
Uu(X,7) =Uo(X), U (X, 7) = U1 (X). 7
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The existence of random attractors for Nonautonomous stochastic wave equations with product white noise is obtained by
using the uniform estimation of solutions and the technique of decomposing solutions in a region.

Meng Wang (2017)analyzed autonomous and non-autonomous stochastic wave equation with strong damping

Uy — AU, + U + F(U)—Au = g(x)dd—vtv,t € [0,40), (1.8)
U(X, ) xeau=0,t >0, u(x,0) =uy(X),u;(x,0) =uy(x),x €U. (1.9)
and
dw
Uy — AU, + U + T (U)—Au = g(X)+cu -W,t €[0,+x), (1.10)
U(X, )| xeau=0,t >0, u(x,0) =uo(X),u;(X,7) =us(x),xU. (1.11)

The existence of random attractors and the upper bound of fractal dimension are discussed. First, they deal with random
terms by using Ornstein-Uhlenbeck process and weak solutions of the established equation. Then, the solutions of the
equation are estimated and bounded random absorption sets are obtained. Finally, the system is asymptotically compact
by using the tight embedding theorem, which proves the existence of random attractors.

Donghong Cai and Xiaoming Fan (2014) considered the dissipative KdV equation with multiplicative noise

du = (QUyyx + Uy + SUly, + ru)dt = f (x)dt +budW(t), x € D,t >0, (1.12)
u(x,0) =uy, X, X € D, (1.13)
u(0,t) =u(L,t) =0. (1.14)

The equation is transformed into a stochastic KdV-type equation without white noise by appropriate transformation. In the
new equation, the sample can be regarded as a common parameter. By using the methods and techniques of determining
the KdV-type equation and the slowly increasing property of Wiener process, the absorptivity and asymptotic
compactness of the dynamic system determined by the new equation are obtained, thus proving the existence of the
stochastic attractor of the new equation. The stochastic attractor of the dynamic system determined by the dissipative KdV
equation of multiplicative white noise also exists.

As a deterministic system, stochastic dynamical systems have been extensively studied. Specific cases can be referred to
in references(Qin, C. L., Du, J. J.,, &Lin, G. G.2017; Lin, G. G., Chen, L., &Wang, W.2017; Guo, B. L.2000; Guo, B. L., &
Pu, X. K.2009; Lin, G. G.2011; Massatt, P.1988; Guo, B. L., &Wang, B. X.1995; Zhao, C. D., &Zhou, S. F.2009;Yin, J. Y.,
Li, Y. R., &Zhao, H. J.2013; Wang, R., &L, Y. R.2012; Hao, H. J., &Zhou, S. F.2010; Cheng, Y. Y., &Li, Y. R.2012).

On the basis of the correlation of random attractors for some low-order Kirchhoff equation with additive noise stochastic
studied by previous scholars, the existence and uniqueness of solutions for high-order Kirchhoff equation with strong
damping stochastic with additive noise are discussed, and the existence of attractors for stochastic Kirchhoff equation
with strong damping is proved. This paper is organized as follows. Section 2, introduces the assumptionsbasic and basic
knowledge needed in this paper. Section 3, discuss the existence and uniqueness of solutions of stochastic high-order
Kirchhoff equation with strong damping and additive noise, and prove the existence of random attractors.

2. Preliminaries

In this section, we introduce some basic assumptions and knowledge of stochastic dynamical systems required in this
paper.

For the sake of narrative convenience, we introduce the following symbols:

V=D,H=L(Q), Hy(Q)= H"(Q)NHL(Q), Hr*(Q)= H™(Q)NH(Q) E, = HI*(Q)x H¥(22),(k =0,1,2,---m).

The following norms and inner products are defined:

(u,v) = [ouvdx lull = (u,u)%, Yu,ve HE(Q). 21)

(Y1, ¥2)e, = (D™*u;, D™*u,) +(Dkvy, D*v,). Wy =(ui,vi) e B 1=12. (k:L2,~--m) (2.2)
(H1) Assume that the Kirchhoff type stress term satisfies:
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NS
Jaromp -2 N T e

e+1< 1y <M(S)< gar. 2.3
Ho () ﬂ10<g<min{ , , 1. (2:3)
2 B B-1
Where 14, 14 are constants, 4, is the first eigenvalue of —A with homogeneous Dirichlet boundary conditions on Q) .
(H2) Assume that the non-linear source term satisfies:
g(s)eC*(R)and|g'(s)], =Co < gzl (41 >0). (2.4)

Let (2, F,P) be a probabilistic space and define a family of measures-preserving and ergodic transformations
{6,,teR}:

GW() =w(-+t) —w(t), (2.5)
(€2, F,P,(6)r) is an ergodic metric dynamical system.

Let (X ||||X) be a complete separable metric space and B(X)be a Borel o -algebra over X .

Definition 1[Chvangliang Qin. Jinji Du, &Guoguang Lin(2017)]) et (), F, P, (6, )icr ) be a metric dynamical system, if
(B(R*)xFxB(X),B(X)) measurable mapping

S:R*xQxX = X, (t,w,X)— S(t,w,X). (2.6)
satisfaction

(1) for all s,t = 0and w € Q ,mapping S(t,w) := S(t, w,") satisfies

S(O,w) =id, S(t+s,w)=S(t,6w)oS(s,w), 2.7)
(t. W) = S(EW. X) 5 continuous.
(QF,P,(6)wr)

(2) for each W € €2 mapping
S is a continuous stochastic dynamical system on

Definition 2[Chvandliang Qin. etal2017] 1t js sajd that random set B(w) < X is tempered.If forwe Q, >0 there is

lim inf e~7*d(B(6-w)) =0 (2.8)

‘S‘—)oo

Where d(B) = nglf"x"x for vxeX.
Definition 3[Chuangliang Qin. et al201NlRacord D(W) as the set of all random sets on X, a random set B(w)is called an
absorption set on D(w) .If for any B(w) € D(w) and P, ,, € ©2, there exists Tgw) > Osuch that

S(t, 0. ,W)(B(6.,W)) = B, (W) . (2.9)

glChuangliang Qin. et al20INIA  random set A(W) is called a random attractor on X for continuous stochastic

Definition
dynamical system S(t) .If random set A(w) satisfies

(1) A(w)is a random compact set;

(2) A(w)is invariant set D(w) that is, to arbitrary t > 0, S(t, w) A(w) = A(G,w);

(3) A(w) attracts every sets in D(w) ,that is, for any B(w) € D(w) and P, ., € Q, we have the limit formula

lim d(S(t,0.w)B(0-w), A(W))=0 (2.10)

Where d(A B) = ngf'yfl‘; Ix=¥ll; is the Hausdorff semi-distance.(Here ABc H ).

Theorem {[Chuangliang Qin. et al2017)]) ot random set B(w) € D(w) be the random absorption set of stochastic dynamical
system (S(t, w)) .o ,and random set B(w) satisfies

(1) random set B(w) is a closed set on Hilbert space;

(2) forP,.,, €Q |, random set B(w) satisfies the following asymptotic compactness conditions
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for arbitrary sequence X, € S(t,, 6., W)B, (6., W) ,t, — +o there is a convergent subsequence in space X , Then the

stochastic dynamical system (S(t,w))., has a unique global attractor.

AWwW)= N US(t,0.w)Bo(0W) (2.12)

2t(w) t>7

Ornstein-Uhlenbeck process [Chuanatiang Qin. et al(2017)]

In this section, space is introduced. Ornstein-Uhlenbeck process on H{** (©2) ,where O-U process is given by Wiener
process on measurement system (Q, F, P, (6, )ir) .

Set z(Gw) = —a[° e gw(r)dz,wheret € R. It can be seen that for arbitrary t > 0, the stochastic process z(6;w) satisfies the
It&equation.

dz + azdt = dW (t). (2.12)
According to the properties of O-U process, there exists a probability measure P, & —invariant setQQy — Q; and the

above stochastic process z(6,w) = —ajfwemﬁtw(r)d 7, satisfies the following properties
(1) for any givenwc g, the mapping s — z(6sW) is a continuous mapping;

(2) random variable |z(w)| is slowly increasing;

(3) there is a slowly increasing r(w) >0, so that ||Z(«9tW)||+||Z(6’tW)||2 <r(@w) < r(w)e%M;

1. 2 1
im=,[z(6:w)| d7 =—;
“) !ﬂltIOI @ )| ‘ 2c

1, 1
im=|;|z(Bw)dr = —.
©) lim  hleepte = 7
3. Existence of Random Attractor Family
In this section, we discuss the existence and uniqueness of solutions of stochastic high-order Kirchhoff equation with

strong damping and additive noise, and prove the existence of random attractors.
For convenience, equation (1.1)-(1.3) can be transformed into

du =u,dt

2

du, +[M ( Agu )A™u + SA™U, + Ag(u)]dt = q(x)dW (t), t €[0,+w) (3.1)
u(x,0) = up(x), Uy (x,0) = uy(x), x € Q.

where A=—A.
Leto=(u,v)T,v=u, +&u, then the problem (3.1) can be simplified to
{d(0+ Ledt = F (6,0, @),

@0 (@) = (Ug, Uy +&Uy)T. (3.2

&l |
u m 12 3 0
Wher”’:(vj’“ (M([A20] ) - o)A +22)1 (A =)l ’F‘M‘w)‘(—Ag(unq(x)dwa)}

If z=v—-q(x)o(6.w) , then equestion (3.1) can be written as

«+Ly =F(6o,w)
{V%o{w)z(uo,t(hfazz)—q(x)a(etw))t (3.3)
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&l —1
Wherey = u L= m | F(Go,p) = q(x)o(6.w)
YA ' ((M( AZU )—ﬁg)Am +52)| (ﬂAm —g)l ! t= _Ag(U)+(8+l—ﬂAm)q(X)5(9ta)) .

Lemma 1 Assuming that the Kirchhoff stress term and the non-linear term satisfy the conditions (H1), (H2),
respectively. f e H, (Uo, Vo) € Eo, Then the initial boundary value problem (1.1) - (1.3) has smooth solutions (u,v)eE
and satisfies the following inequalities

(w.v)

L e S Y

a

WhereV = U, +&u, o = min {al,—.Ze} , there exiet C(R;) andt=1t,(Q) > 0, such that
Y7

Jwvs, =[om +Mf<CR).  (t>t). (3.5)
Proof Letv=u;+e&u, vV and the two sides of equation (1.1) are used as inner products, we can get
(ue+ MDY (~A)"u+ B (-A)"uc+ Ag(U), V) = (@AW, V). (3.6)
From Holder's inequality, Young's inequality and Poincare’s inequality we can get
(U, V) = ——IIVII —eM+ IIUII +a|ul’ (37)
From hypothesis (H1), we can get

2 d
M (o) -a)"uv) = (o)

DUl +aM (pru)|pruf” (38)
The following two aspects are discussed
@When = ||Dmu|| >0, it can be obtained by hypothesis (H1).

M(Jo" u||2)11||Dmull +eM (oo > IID”“UII +rawomdf. - 3.9)

Let 1= o, thereare

M (D )(-4)mu,v) > %%"Dmu"z + g0 D™ (3.10)

1d . . .
@When Ea"Dmu”2 <0, it can be obtained by hypothesis (H1).

(o] S IDmf + M oruPorulf = 4 Spruff + auofomulf. 1)
Let x =4, thereare
M (Jpruf)-a)7um) = £ S ol + ool (3.12)
Comprehensive (3.9) - (3.12) , we have
M (Jpruf)-8)uv) = £ S orulf + ol (3.13)
(Beayu ) > 21 o+ 2L - L fomf 3.14)

From hypothesis (H2), we can get
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(Ag(u).v)] ='W, -[Dul-|ov] = - IIDVII mz — ol (3.15)
. : 1 .
(A0OW,v) < |aGow |- v < 2—82||q(x)W||2+%||v||2. (3.16)
From the above, we have
S ol {22 {2~ 25 Yool oy < 2L
(3.17)
From hypothesis (H1), (H2), we can get
m 2 2
o ﬁgq 2250, & =260~ fie” _,B/lfc(”?l) >0, (3.18)
Then take c; = min {al,af,%} , then (3.17) can be transformed into
d
5t M+ lomul =+ 22[ulf) + (M + ol + 2ul) < ©.. (3.19)

From Gronwall's inequality
C
(V| + 2Dy + 2|ul]") < (vo|* + 2| DU |*) + 2 uo et +;1(1—e-aﬂ). (3.20)
1
By hypothesis (H1), there are

(w.v)

There exiet C(R;) andt =1,(Q2) > 0, such that

2 < (vo|* + 4 Dmuo” + &7 Juo| et 2 (1—e-et). (3.21)

Jwvs, =[oru +MF<CR). (t>t). (3.22)

Therefore, Lemma 1 is proved.
Lemma 2 Let Ex = HP**(Q)x HE(Q) (k =12,--m), for VY =(yi,Y2)T € Ex, we have

(LY, Ve, Zkay[g +ke[Dm | . (3.23)

Where k; :min{ﬂg—hg_gzﬂ'lm ]ﬂl[”—ﬂzg?—z‘g} Kk, = P Pe +e) .

2 2
o —1

)~ fe)Am +£2)] (,BAmg)IJ’ Y=y €Be, (3:24)

2

Proof L(((M( A2y

From hypothesis (H1), Holder inequality, Young inequality and Poincare inequality

(Ly,Y)e, =(D™*(ey1 —y2), D™*y;) + (D* Azul ) - pe)A™ +£2)y, + (AT —£)Y,), D*Y,)

m 12
=g||Dm+k y1||_(Dm+k Yo, D™y )+ (M (HAZUH YDy, Dm+ky2)_ﬁg(Dm+kyl, Dmky,)

+22(D4ys, DAyz) + D™y |- D ol

28



http://jmr.ccsenet.org Journal of Mathematics Research \ol. 11, No. 3; 2019

2

= & D™ky || - (D™ y,, D™y ) + (M (JA2ull ) —g)(D™ky;, D™y, ) + (¢ — Be) (D™ yy, D™y,

+62(D¥yy, DFY,) + B[y - e DE Y|
> 5"Dm+kyl"_(Dm+ky2’ Dm+ky1)+(Dm+ky1, Dm-+k yz)—(ﬁs _g)(Dm+ky1, Dm+ky2)+52(Dky1, Dkyz)
2
+ B[P y2 |- £[[Drys|

— 2
T B L B s R R LA B

e R S R e e e s &7
g2 1- —fe2-2
_ ﬂ€+82ﬂ8 ﬂi "Derk y1||2 " ﬁ( /238+8) "D"”k y2||2 " ﬂﬂl ,285 & "Dky2"2

> k(D i+ [Drye ) + ke Dty

=ki[yl;, +ke D™y " (3.25)

Therefore, Lemma 2 is proved.

Lemma 3 Let  be a solution of the problem (3.2), then there exists a bounded random compact set B, (W) € D(Ey) , so
that for any temperedly random set By (W) € D(Ex) , there exists a random variable Tg,w >0, such that

o(t, W) B (0 W) © By (W), V12Tgw,We2, (3.26)
Proof Let ¥ be a solution of the problem (3.3). By taking the inner product of w = (u,z)" € E, and equation (3.3) on
Eyx , we can get.

5 dt ||l//|| +(Ly,w) = (Foww).v). (3.27)

From Lemma 2

i (3.28)

(Ly.w)e, > klllwlliﬁ ke|D™*z

(Few,y).w) = (D" q(x)5(6:W), D™ u) +(D* (~Ag (u) + (¢ +1~ £ AM)A(X)5(6, W), D 2). (3.29)

(D™*q005(, W), D™ ) < 2l + ”2 a0 |5 (3.30)
(D* ea()5(aw)), D*2) < 4 ‘”1 “o o+ 2 o avof oo (3.31)
(D" (L~ B AMA)S(0,w), Dkz)<”l > |+—(||D a0off + 2 A o] letomf. 3:32)

According to hypothesis (H2), lemma 1 can be obtained
(D*(~gA(u)), D* z)< t+ ||g W[ Jau|* += ||D2"z|| (3.33)

By interpolating inequalities, there are
N amon-a 1<r< ”2
[ul,, <C. Ao e rns_oo m (3.34)
1 (k)

(0% (-0(u), 0*2)< Csllo @), [ @), Jomul)+ S or <5+ 2 —omoff.  (335)
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From the above, we have

2 -m 2
%Hw 2kl + (2o 26 257 ) oo < o+ 2c, + £ AT — Am%q(x)H [5(w)*
1 K 2 2
+(e+ =)D a0 56w (3.36)
2 — 2
where77=2k;, M :ﬂ%}”m AT + (€+%) ||Dkq(><)||2 we have

Sl el <cormlsom @)
dt Ex Ex
According to Gronwall inequation, Paew € €2, we can get
v W, < e oW, +fse " (Cat M 50w )dr . (3:38)

Because d(g; W) is tempered, and 5(6:W) is continuous with respect to t, according to literature Massatt, P.(1988), a
temper random variable r,: Q — R* can be obtained, so that for Vte R,we Q| there is

5@W)|” < r1(a,w) < ey (W) (3.39)
Substituting W by 6_Win formula (3.38),we know
v .0, <ewo(6- W + s (Ca+ M |5(8,-w)[ ). (3.40)
Let r—-t=7¢

r . Cu 2
[oe(Cy+M |5(¢9Hw)|2)dr =[%e"(Cs+M |5(9,W)|2)dr < 7“ +; M ry (W). (3.41)
Because @, (0_:W) € B (6-+ W) is tempered, and |5(6Lt W)| is also tempered, hence we let
2
RZW) = &4+ S M 1y (w). (3.42)
non
Then Rj (w) is also tempered, B, ={y € Ek‘"l//”a < Ro(W)}is called a random absorption set, because

S (4,6 W (6-0W) = P(t, 0. W) o (6-W)+ (0,4005(0- W) - (0.4(XS@- W) (343)
S0 let
Bo (W) ={p € Ex lel, < Ro(W)+|D* (W) = Ro (Wi} (3.44)

Then B, (W) is the random absorption set of @(t, W), and B, (W) € D(Ex) .The proof is complete.
Lemma 4 Whenk=m, for VB,(W)eD(E,), let ¢(t) be the solution of equation (3.2) in initial value

@y = (Up,Us+&Uo)' € By - It can be decomposed into @ = @, +¢,, where ¢,,¢, satisfy respectively

do.+ Lo, dt =0,
LR 2] . (3.45)
¢01(W) = (Uo,U1+6Uo) .
do,+ Lo, dt = F(w, ),
{ P,+Lo, (W, 9) (3.46)
®o, (W) =0.
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Then
leto- W 0.t —>), Vo,(6.W) € Bn(0-W), (3.47)
and there exists a temper random radius R;(W) , which satisfies for we Q.
lo.t.o- W) <Ru(w), (3.48)

Proof Let w =y, +y, = (U, Uy +eu)" + (Uy, Uy +8u, —q(X)S(6,W))" be the solution of equation (3.3), then according to
equation (3.45) and (3.46), we know that v,y , satisfy respectively

+Ly,=0,
Yt ¥, . (3.49)
Vo =Wo= (Uo, U +8Uo—q(X)5(BW)) .
{l//zﬁ Ly, =F(y,.0w), (350)
Yo =0.
By taking the inner product of equation y/, = (up, Uy +eu;)" and equation (3.49) on Er, we can get
1d 2
Sl vy =o. (3.51)
According to lemma 2 and Gronwall inequality, we have
vt w);. < ey - (352)
Substituting W by @_Win formula (3.52) , and because 6(@_W) € By, is tempered, then
lito- W) <efwolo-w) >0t —>x), Vo0 W) eBy. (3.53)

Thus (3.47) is hold. The inner product of y, = (Up, Uy +&u; —q(X)5(6,W))" and equation (3.50) on E is obtained
according to Lemma 1, Lemma 2 and Lemma 3

<Ca+ M [5(0W)". (3.54)

2 2
e v

Enm

D,
dt

2 -m m 2 1
Where77 =2k, M, Ll AZq(X) +(€+;)"DmQ(X)”2,
&

Substituting 6-W for W in Formula (3.54) is obtained by Gronwall inequality, we have
C, 2
w2 Co- W, <e (- WL +ioe ™ (Ca+ M| W) )dr < 7“ = Miri(w). (3.55)
So there is a tempered random radius
2
Ri(w) = CiiZm, ri(w), (3.56)
non
So that for Yw e Q, there is
le.t.o- W <R:(w). (3.57)

Therefore, Lemma 4 is proved.

Lemma 5 The identified stochastic dynamic system {S(t,w),t >0} determined by equation (3.2) has a compact
absorption set K(W) cExCin t=0,P,e,€Q.

Proof Let K(w) be a closed sphere with radius R1(W) in space Ex . According to embedding relation Ex < Eo , K(W) is
a compact set in Ei. For arbitrary temper random set B« (W) in Ey, for Vo(t,6_W) € Bi, according to lemma 4,
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0, =p—@p e K(W),sofor Vt=Tgw >0 we have

0e, (S(.0-W) B (0 W) K(W) = _ inf. lot.6-W-3Q)[.

w)

<l W,

<& pe(0- W)}, > 0.t ). (358)

Therefore, Lemma 5 is proved.
According to Lemma 1-Lemma 5, there are the following theorems.

Theorem 1 The random dynamical system{S(t,w),t>0}has a family of random attractors A (W) < K(w) < E,
w e Qand there exists a tempered random set K(w) , so that Paew € Q

AcwW)= N US(t 0. w KO W), (3.59)

t>0,7>t
And S(t,w) A (W) = A (6:W) . The proof is complete.
4. Acknowledgements

We express our sincere thanks to the anonymous reviewer for his/her careful reading of the paper, we hope that we can get
valuable comments and suggestions. Making the paper better.

References

Cai, D. H., Fan, X. M., & Ye, J. J. (2014). Considering the stochastic attractor of dissipative KdV equation with
multiplicative noise. Journal of Southwest Nationalities University, (Natural Science Edition), 40(6), 900-904.
https://doi.org/10.3969/j.issn.1003-4271.2014.06.18

Cheng, Y. Y., & Li, Y. R. (2012). Random attractants for the generalized kuranoto-sivashinsky equation with white noise.
Journal of Southwest Normal University, 37(10), 26-30. https://doi.org/10.13718/j.cnki. xsxb.2012.10.027

Guo, B. L. (2000). Infinite dimensional dynamic system. National Defense Industry Press.

Guo, B. L., & Pu, X. K. (2009). Random infinite dimensional dynamics dystem . Beijing University of Aeronautics and
Astronautics Press.

Guo, B. L., & Wang, B. X. (1995) .Finite dimensional behavior for the derivative ginzburg-landau equation in two
spatial dimensions. Journal of Physics D, 89, 83-90. https://doi.org/10.1016/0167-2789(95)00216-2

Hao, H. J., & Zhou, S. F. (2010). Existence of stochastic attractors for stochastic sine-Gordon equation with strong
damping. Journal of Shanghai Normal University (Natural Science Edition), 39(2), 121-127.

Lin, G. G. (2011). Nonlinear evolution equation. Yunnan University Press.

Lin, G. G., Chen, L., & Wang, W. (2017). Random attractors of the stochastic strongly damped for the higher-order
nonlinear Kirchhoff-type equation. International Journal of Modern Nonlinear Theory and Application, 6, 59-69.
https://doi.org/10.4236/ijmnta.2017.62005

Massatt, P. (1988). Limiting behaviour for a strong damped nonlinear wave equation. Journal of Differential Equations,
(48), 334-349. https://doi.org/10.1016/0022-0396(83)90098-0

Qin, C. L., & Du, J. J. (2016). Stochastic attractor of stochastic Kirchhoff equation with strong damping. Journal of
Science of Normal University, 36(12), 6-11. https://doi.org/10.3969/j.issn.1007-9831.2016.12.002

Qin, C. L., Du, J. J., & Lin, G. G. (2017). Random attractors for the Kirchhoff-type suspension bridge equation with
strong damping and white noises. International Journal of Modern Nonlinear Theory and Application, 6, 134-147.
https://doi.org/10.4236/ijmnta.2017.64012

Wang, M. (2017). Stochastic attractor of strongly damped stochastic wave equation. Journal of Zhejiang Normal
University, 5, 17-27.

Wang, R., & Li, Y. R. (2012). Random attractor of generalized Ginzbury-Landau equation with multiplicative white
noise. Journal of Southwest University (Natural Science Edition), 34(2), 92-95. https://doi.org/10.13718/j.cnki.
xdzk.2012.02.07

Xu, G. G, Wang, L. B,, & Lin, G. G. (2017). Random attractors for nonautonomous stochastic wave equations with

32


https://doi.org/10.1016/0167-2789(95)00216-2
https://doi.org/10.1016/0022-0396(83)90098-0
https://doi.org/10.4236/ijmnta.2017.64012

http://jmr.ccsenet.org Journal of Mathematics Research \ol. 11, No. 3; 2019

dispersion and dissipation terms. Journal of Applied Functional Analysis, 19(3), 231-249.
https://doi.org/10.12012/1009-1327(2017)03-0231-19

Yin, J. Y., Li, Y. R., & Zhao, H. J. (2013). Dissipative hamilitonian amplitude modulation wave instability with white
noise. Journal of Southwest Normal University (Natural Science Edition), 38(4), 44-48.
https://doi.org/10.13718/j.cnki. xsxb.2013.04.036

Zhao, C. D., & Zhou, S. F. (2009). Sufficient conditions for the existence of global random attractors for stochatic
lattice dunamical systems and applications. Journal of Mathematical Analysis and Applications, 54, 78-95.
https://doi.org/10.1016/j.jmaa.2008.12.036

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

33


https://doi.org/10.1016/j.jmaa.2008.12.036

