
http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 2; 2019

Interval Tree and Its Application in Integer Factorization
Xingbo WANG

Correspondence: Department of Mechatronic Engineering, Foshan University, Foshan City, PRC; Guangdong Engineer-
ing Center of Information Security for Intelligent Manufacturing System, Foshan City, PRC; State Key Laboratory of
Mathematical Engineering and Advanced Computing, Wuxi City, PRC

Received: February 20, 2019 Accepted: March 12, 2019 Online Published: March 21, 2019

doi:10.5539/jmr.v11n2p103 URL: https://doi.org/10.5539/jmr.v11n2p103

Abstract

The paper first puts forward a way to study odd integers by placing the odd integers in a given interval on a perfect
full binary tree, then makes an investigation on the odd integers by means of combining the original properties of the
integers with the properties of the binary trees and obtains several new results on how an odd integer’s divisors distribute
on a level of a binary tree. The newly discovered law of divisors’ distribution that includes common divisors between
two symmetric nodes, genetic divisors between an ancestor node and its descendant node can provide a new and simple
approach to factorize odd composite integers. Based on the mathematical deductions, numerical experiments are designed
and demonstrated in the Maple software. All the results of the experiments are conformance to expectation and validate
the validity of the approach.
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1. Introduction

In 2016, WANG X in article (WANG X, 2016(IJSIMR)) put forward an approach that studies integer by putting odd
integers bigger than 1 on a full perfect binary tree from the top to the bottom and from the left to right. This approach then
derived out many previously-unknown properties of the odd integers, such as properties of symmetric nodes and symmet-
ric common divisors, properties of subtrees’ duplication and transition, and properties of sum by level, root division and
the genetic traits, as introduced in WANG’s articles (WANG X, 2017(JM), 2017(GJPAM),2019(IJAPM)). It has known
that, these new properties could be helpful in solving the problem of integer factorization, as probed in FU’s paper (FU
D,2017(JCE)),WANG’s paper(WABG X, 2017(JCE)) and LI’s paper (LI J., 2018(AJCM)), and they also would be helpful
for knowing of the RSA modulus, as investigated in papers (WANG X, 2018(JMR), WANG X. 2018(IJMSS)).

In applying the T3 tree to speed-up the computation of integers in a definite big interval, another tree-approach was found
to be usful in understanding more properties of odd integers. This paper introduces the new approach and its traits in
factoring odd composite integers.

2. Preliminaries

This section introduces symbols, definitions and lemmas that are necessary in later sections.

2.1 Symbols and Notations

Throughout this paper, an odd sequence is defined to be a sequence of odd numbers, e.g., 13,15,19,23,31. An odd interval
[a, b] is a set of consecutive odd numbers that take a as their lower bound and b as their upper bound. For example,
[3, 11] = {3, 5, 7, 9, 11}. Two odd intervals, I1 and I2, are said to have intersection and denoted by I1 ∩ I2 , ∅ if they
contain some common items. For example, [3, 11] ∩ [7, 19] , ∅. Symbol ⌊x⌋ is to express x’s floor function defined by
x − 1 < ⌊x⌋ ≤ x, where x is a real number. The terms binary tree and its root, nodes, father, left-son, right-son as well as
subtrees can be seen in school-books of data structure, for example, Dinesh’s handbook [?]. This paper mainly concerns
the perfect full binary tree that has 2n+1 − 1 nodes with depth n ≥ 0. Symbol N(k, j) is to denote the node at position j
on level k of a tree T , where k ≥ 0 and 0 ≤ j ≤ 2k − 1. On the same level k, two nodes N(k, j) and N(k,2k−1− j) are called
co-symmetric nodes because they station at the geometric symmetric positions. Symbol T(k, j) is to denote the subtree
whose root is N(k, j). Symbol

∑
T means the sum of all node of T . Symbol x ∈ T means number x is a node of T . Symbol

A ⊗ B means A holds and B simultaneously holds; symbol A ⊕ B means A or B holds. Symbol (a = b) > c means a takes
the value of b and a > c. Symbol A⇒ B means conclusion B can be derived from condition A, and symbol A⇔ B means
A is equivalent to B. Symbol Z+ means the set of positive integers.
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2.2 Lemmas

Lemma 1(See in WANG X, 2016(IJSIMR)) Let p be a positive odd integer; then among p consecutive positive odd
integers there exists one and only one that can be divisible by p. Let q be a positive odd number, S = {ai|i ∈ Z+} be a
set that is composed of consecutive odd numbers; then S needs at least (n − 1)q + 1 elements to have n multiples of q; if
aα ∈ S is a multiple of q, then so it is with aα+q.

Lemma 2(See in WANG X, 2014 & 2017(IOSR-JM)) Let x and y be real numbers and N be a positive integer with
N > 2; then

(1)
⌊
log2N

⌋ ≤ log2(1 + N) ≤ 1 +
⌊
log2N

⌋
;

(2) x ≤ y⇒ ⌊x⌋ ≤ ⌊y⌋.
3. Method and Main Results

3.1 Binary Tree Method

Let K ≥ 0 be an integer, u = 2K+1 − 1 and a1, a2, ..., au be 2K+1 − 1 consecutive positive odd integers; construct a full
perfect binary tree T[a1,au] with 2K+1 − 1 nodes by following way
1. The middle item a2K is set to the root N(0,0) of T[a1,au].
2. The item a2K−1 , the middle item of the 2K −1 items left to a2K , is set to the left son of N(0,0); the item a2K+2K−1 , the middle
item of the 2K − 1 items right to a2K , is set to the right son of N(0,0).
3. Recursively take each son’s left son and right son by the above middle item rule to finish constructing the whole tree
T[a1,au].

For example, with a1 = 13, a2 = 15, ..., a14 = 39 and a15 = 41, setting K = 3, T[13,41] is constructed as figure 1.

Figure 1. Interval tree constructed from odd interval [13, 41]

For convenience, the tree constructed above is called an odd interval tree or simply an interval tree. An interval tree can
be denoted with an abstract symbol TI , or an interval symbol T[x,y] for the case the interval [x, y] is given or a root symbol
TN(0,0) for the case that N(0,0) is the root of the tree. The nonnegative integer K is the depth of the tree. A tree of depth
K = 0 means it contains merely 1 node, the root. The left and the right subtrees of TI are respectively denoted by TIl and
TIr. On level l with l ≥ 0 there are 2l nodes each of which can be a root of a subtree. Subtree T(l,s) is said left to subtree
T(l,t) if s < t.

3.2 Main Results

Proposition 1 (Maximum Depth of Interval Tree) Let TI be an odd interval tree constructed from odd interval [a1, au]
with a1 > 0; if N(0,0) is the root of TI , then TI contains at most 2⌊log2N(0,0)⌋+1 − 1 nodes. In another word, the maximum
depth Kmax of TI is limited to Kmax =

⌊
log2N(0,0)

⌋
.

Proof. [Proof of Proposition 1] Among all the positive integers, there are N(0,0)+1
2 positive odd integers from 1 to N(0,0).

N(0,0) being the root of TI means N(0,0) = a2K provided that the odd interval [a1, au] contains 2K+1 − 1 consecutive positive
odd integers. Therefore 2Kmax ≤ N(0,0)+1

2 , which leads to

Kmax ≤ log2(N(0,0) + 1) − 1
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Then by Lemma 2, it yields
Kmax ≤

⌊
log2N(0,0)

⌋
�

Proposition 2 (In-order Traversal Restoration) Let K ≥ 0, u = 2K+1−1 be an integer, I = [a1, au] be an odd interval and
T[a1,au] be the interval tree constructed from I; then the odd interval I = [a1, au] can be restored by applying the in-order
traversal on T[a1,au].

Proof. [Proof of Proposition 2] Referring to the definition of the in-order traversal of a binary tree, as seen in [?], and
comparing it with the middle item rule to construct the tree T[a1,au], it immediately knows that the proposition holds. �

Proposition 3 Let K ≥ 0 , u = 2K+1 − 1 be an integer, I = [a1, au] be an odd interval and N(0,0) be the root of the odd
interval tree TI that is constructed from I; then the items that satisfy x ∈ I and x < N(0,0) lie in TIl whereas the items that
satisfy x ∈ I and x > N(0,0) lie in TIr . Among a father and its two sons, the left son is the smallest, the father is the average
of the two sons and the right son is the biggest. Consequently, for a node G and its two sons, S l and S r, if nll is a node in
the left subtree of S l and nlr is a node in the right subtree of S l, it holds nll < S l < G and S l < nlr < G; whereas, if nrl is a
node in the left subtree of S r and nrr is a node in the right subtree of S r, it holds G < nrl < S r and G < S r < nrr.

Proof. [Proof of Proposition 3] The stated relationships are actually from the construction of the interval tree. �

Figure 2. Relationships among a node and its descendants

Proposition 4 Let I1 = [a1, au] and I2 = [b1, bv] be two odd intervals, T1 and T2 be the odd interval trees corresponding
to the two intervals respectively; then I1 ∩ I2 , ∅ ⇔ T1 ∩ T2 , ∅.

Proof. [Proof of Proposition 4] By Proposition 2, an odd interval is equivalent to its odd interval tree. �

Theorem 1 (Calculation of Nodes) Let K ≥ 0 , u = 2K+1 − 1 be an integer and a1, a2, ..., au be 2K+1 − 1 consecutive
positive odd integers; assume N(0,0) = a2K is the root of T[a1,au] ; then

N(i,ω) = 2α − 1 + 2K−i+1(1 + 2ω)
i = 0, 1, ...,K;ω = 0, 1, ..., 2i − 1

or equivalently,
N(i,ω) = N(0,0) − 2K+1 + 2K+1−i(1 + 2ω) = N(0,0) − 2K+1−i(2i − 2ω − 1)
i = 0, 1, ...,K;ω = 0, 1, ..., 2i − 1

Proof. [Proof of Theorem 1] Without loss of generality, assume a1 = 2α + 1 with α ≥ 0 being an integer; then

an = 2α + 1 + 2(n − 1) (1)

where n = 1, 2, ..., u.

By the rule of the construction, first considering the leftmost node on each level of T[a1,au] , it holds

N(0,0) = a2K = 2α + 1 + 2(2K − 1) = 2α + 2K+1 − 1
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N(1,0) = a2K−1 = 2α + 1 + 2(2K−1 − 1) = 2α + 2K − 1

N(2,0) = a2K−2 = 2α + 1 + 2(2K−2 − 1) = 2α + 2K−1 − 1

· · · · · ·

N(i,0) = a2K−i = 2α + 1 + 2(2K−i − 1) = 2α + 2K+1−i − 1

· · · · · ·

N(K,0) = a2K−K = 2α + 1 + 2(2K−K − 1) = 2α + 1 = a1

Now consider the nodes on the same level and take level i as a general case. Note that, on level i there are 2i nodes
distributed uniformly in terms of their indices. Since N(i−1,0) = a2K−(i−1) , it knows N(i,0) = a2K−i and N(i,1) = a2K−(i−1)+2K−(i−1)−1 =

a2K−i(2+1), which means the difference of the indices between two adjacent nodes is d = 2K−i(2 + 1) − 2K−i = 2K+1−i.
Consequently,

N(i,ω) = a2K−i+2K+1−iω = a2K−i(1+2ω) = 2α + 2K−i+1(1 + 2ω) − 1

By N(0,0) = 2α + 2K+1 − 1, it yields

N(i,ω) = 2α − 1 + 2K+1 − 2K+1 + 2K−i+1(1 + 2ω)
= N(0,0) − 2K+1 + 2K+1−i(1 + 2ω)
= N(0,0) − 2K+1−i(2i − 2ω − 1)

�

Corollary 1 (Node in In-order Traversal Restoration) Let TI be an N(0,0)-rooted odd interval tree with depth K ≥ 0,
and [a1, au] be its in-order traversal restoration; then N(i,ω) = a2K−i(1+2ω) and there are |2K−i(2i − 2ω − 1)| + 1 odd integers
from N(0,0) to N(i,ω) in the interval [a1, au], where 0 ≤ i ≤ K and 0 ≤ ω ≤ 2i − 1.

Proof. [Proof of Corollary 1] By Theorem 1, it yields

N(i,ω) = 2α − 1 + 2K−i+1(1 + 2ω) = 2α + 1 + 2(2K−i(1 + 2ω) − 1)

Referring to (1), it knows
N(i,ω) = a2K−i(1+2ω)

Since N(0,0) = a2K , it is sure that there are |2K−i(1 + 2ω) − 2K | + 1 = |2K−i(2i − 2ω − 1)| + 1 odd integers from N(0,0) to
N(i,ω). �

Corollary 2 (Root Form vs Bottom Form). Let TI be an N(0,0)-rooted odd interval tree with depth K ≥ 1 . If N(0,0) is of
the form 4k + 1, then all the nodes from level 0 to level K − 1 are of the form 4k + 1, whereas every node on level K is
of the form 4k − 1. If N(0,0) is of the form 4k − 1, then all the nodes from level 0 to level K − 1 are of the form 4k − 1,
whereas every node on level K is of the form 4k + 1.

Proof. [Proof of Corollary 2]Consider the case N(0,0) = 4k + 1. By Theorem 1,

N(i,ω) = N(0,0) − 2K+1−i(2i − 2ω − 1) = 4k + 1 − 2K+1−i(2i − 2ω − 1)

it knows that 2K+1−i = 22 · 2α with integer α ≥ 0 when i ≤ K − 1. Hence it yields

N(i,ω) = 4k + 1 − 2K+1−i(2i − 2ω − 1) = 4(k − 2α(2i − 2ω − 1)) + 1

When i = K, N(i,ω) = 4k + 1 − 21(2K − 2ω − 1) = 4k − 2K+1 − 4ω − 1.

Similarly, the other conclusion holds.

�
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Corollary 3 (Subtraction of Two Nodes) Let N(i,ω) and N( j,ϑ) be two nodes of an odd interval tree with depth K ≥ 0; then

N(i,ω) − N( j,ϑ) = 2K+1−i(2ω + 1) − 2K+1− j(2ϑ + 1)

Particularly,

N(i,ω) − N(i,ϑ) = 2K+2−i(ω − ϑ)

N(i,ω) − N( j,ω) = (2K+1−i − 2K+1− j)(2ω + 1)

Proof. [Proof of Corollary 3] Direct calculations immediately lead to the results. �

Corollary 4 (Multiples on One Level) Let TI be an N(0,0)-rooted odd interval tree with depth K ≥ 0; if N(0,0) ≥ 2K+2 − 3
then on the same level of an interval tree there is not a node that is a multiple of another one.

Proof. [Proof of Corollary 4] Referring to Theorem 1, taking the smallest and the biggest nodes on level i yields

N(i,0) = N(0,0) − 2K+1 + 2K+1−i

N(i,2i−1) = N(0,0) + 2K+1 − 2K+1−i

and
N(i,2i−1) − N(i,0) = 2K+2 − 2K+2−i

N(i,2i−1) − 2N(i,0) = −(N(0,0) − 3 × 2K+1−i(2i − 1))
N(i,2i−1) − 3N(i,0) = −2(N(0,0) − 2K+2−i(2i − 1))

Obviously, when N(0,0) ≥ 2K+2 − 3 it holds N(0,0) > 2K+2 − 4 and N(i,2i−1) − 3N(i,0) < 0. That is to say, there is not a node
3 times bigger than the smallest node on the same level and thus it is natural that there is not a node that is a multiple of
another one because all the nodes are odd integers. �

Corollary 5 (Subtraction of Two Trees) Let TM and TN be two odd interval trees of the same depth; then yields

M(i,ω) ≥ N(i,ω)

where M(i,ω) and N(i,ω) are nodes at position ω on level i of TM and TN respectively.

Proof. [Proof of Corollary 5] Assume K ≥ 0 is the depth of the two trees; then by Theorem 1

M(i,ω) − N(i,ω) = M − N ≥ 0

�

Corollary 6 (Symmetric Common Divisors). Let N(0,0) be the root of an interval tree TI ; then its two symmetric
nodes,N(i,ω) and N(i,2i−1−ω), satisfy

N(i,ω) + N(i,2i−1−ω) = 2N(0,0)

and thus
(N(i,ω),N(i,2i−1−ω))|N(0,0), (N(0,0),N(i,ω))|N(i,2i−1−ω), (N(0,0),N(i,2i−1−ω))|N(i,ω)

Proof. [Proof of Corollary 6] By N(i,ω) = N(0,0) − 2K+1−i(2i − 1) + 2K+2−iω , direct calculation yields

N(i,2i−1−ω) = N(0,0) − 2K+1−i(2i − 1) + 2K+2−i(2i − 1 − ω)
= N(0,0) − 2K+1 + 2K+1−i + 2K+2 − 2K+2−i − 2K+2−iω
= N(0,0) + 2K+1 − 2K+1−i − 2K+2−iω
= N(0,0) + 2K+1−i(2i − 1) − 2K+2−iω

which shows N(i,ω) + N(i,2i−1−ω) = 2N(0,0), and thus validates the theorem By the Euclid division theorem. �
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Corollary 7 (Sum Property) Let N(0,0) be the root of an interval tree TI of depth K ≥ 0 ; then∑
TI = (2K+1 − 1)N(0,0)

Proof. [Proof of Corollary 7] (Omitted) �

Corollary 8 (Sum Subtraction of Subtrees). Let TIl and TIr be respectively the left and right subtrees of an interval tree
TI with depth K ≥ 0; then ∑

TIr −
∑

TIl = 2K+1(2K − 1)

Proof. [Proof of Corollary 8] By Corollary 7, it yields∑
TIl = (2K − 1)N(1,0),

∑
TIr = (2K − 1)N(1,1)

Hence ∑
TIr −

∑
TIl = (2K − 1)(N(1,1) − N(0,0))

By Theorem 1, N(1,0) = N(0,0) − 2K and N(1,1) = N(0,0) + 2K ; hence it holds∑
TIr −

∑
TIl = 2K+1(2K − 1)

�

Corollary 9 (Divisors of Root). Let N(0,0) be the root of an interval tree TI and N(0,0) = pα with p > 1 and α ≥ 1 being
positive odd integers; then for arbitrary node N(i,ω) of TI ,

p|N(i,ω) ⇔ p|(|2i − 2ω − 1|)

Proof. [Proof of Corollary 9] By Theorem 1,

N(i,ω) = N(0,0) − 2K+1−i(2i − 2ω − 1)

�

Theorem 2 (Multiples of Root) Let p be a positive odd integer, σ =
⌊
log2 p

⌋
+ 1 and N(0,0) = p be the root of an interval

tree TI with depth K ≥ σ; then

(1) On level upper than σ, there is not a multiple node of p except N(0,0) itself.

(2) On level σ there are exactly two multiples of p, and there are at least 2 p’s multiples on each level after level σ.

(3) The two p’s multiples on level σ are N(σ,s) and N(σ,t) with s = 2σ−1 − (p + 1)/2 and t = 2σ−1 + (p − 1)/2.

(4) On level χ that satisfies σ < χ ≤ K, p’s multiples of are calculated by

N(χ,l−αp),N(χ,r+αp)

where l = 2χ−1 − (p + 1)/2, r = 2χ−1 + (p − 1)/2 and α = 1, 2, ...,
⌊

l
p

⌋
.

Proof. [Proof of Theorem 2] Without loss of generality, assume N(0,0) = pα with p > 1 and α ≥ 1 being odd integers and
consider p’s multiples in TIr. By Lemma 1, TIr has at least p nodes if it contains a multiple of p. Since it totally contains
2i − 1 nodes from level 1 to level i, it yields

2i − 1 ≥ p

which is i ≥ log2(p + 1). Consequently, TIr does not contain a multiple of p if i < log2(p + 1) ≤ ⌊log2 p
⌋
+ 1 , by referring

to Lemma 2.

Now consider the case i =
⌊
log2 p

⌋
+ 1. Since 2⌊log2 p⌋+1 − 1 ≥ 2log2(p+1) − 1 = p by Lemma 2, TIr contains at least one

multiple of p by Lemma 1. Meanwhile, i =
⌊
log2 p

⌋
+ 1 ≤ log2 p + 1 yields 2⌊log2 p⌋+1 − 1 ≤ 2log2 p+1 − 1 = 2p − 1. This

says by Lemma 1 that it is impossible for TIr to have 2 multiples of p when i =
⌊
log2 p

⌋
+ 1. Now that, i <

⌊
log2 p

⌋
+ 1
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resulting in no p’s multiples in TIr and i =
⌊
log2 p

⌋
+ 1 leading to 1 p’s multiple certainly validate that there is 1 multiple

of p on level i =
⌊
log2 p

⌋
+ 1.

For the case i >
⌊
log2 p

⌋
+ 1, it knows 2i − 1 ≥ 2⌊log2 p⌋+2 − 1 = 2 × 2⌊log2 p⌋+1 − 1 > 2p − 1 ≥ 2p. Hence there are at least 2

multiples of p on the level in TIr, which says there are at least 1 multiple of p on level i >
⌊
log2 p

⌋
+ 1.

Now consider the two nodes on level
⌊
log2 p

⌋
+ 1. Direct calculation shows

N(σ,s) = N(0,0) − 2K+1 + 2K+1−σ(1 + 2s)
= N(0,0) − 2K+1 + 2K+1−⌊log2 p⌋−1(1 + 21+⌊log2 p⌋ − p − 1)
= N(0,0) − 2K+1 + 2K−⌊log2 p⌋(21+⌊log2 p⌋ − p)
= N(0,0) − 2K+1 + 2K+1 − 2K−⌊log2 p⌋p
= N(0,0) − 2K−⌊log2 p⌋p

Obviously, p|N(0,0) yields p|N(σ,s). Then by symmetric property it yields p|N(0,0) ⇒ p|N(σ,t).

Likewise, direct calculation yields

N(χ,l) = N(0,0) − 2K+1 + 2K+1−χ(1 + 2l)
= N(0,0) − 2K+1 + 2K+1−χ(1 + 2χ − p − 1)
= N(0,0) − 2K+1 + 2K+1−χ(2χ − p)
= N(0,0) − 2K+1 + 2K+1 − 2K+1−χp
= N(0,0) − 2K+1−χp

This and Lemma 1 as well as the symmetric property show N(χ,l−αp) and N(χ,r+αp) are p’s multiples. �

Corollary 10 (Genetic Property) Let N(0,0) be the root of an interval tree TI with depth K ≥ 0 and p be an odd number;
then p|N(0,0) yields p|N(χ,l−αp) ⊗ p|N(χ,r+αp), where

⌊
log2 p

⌋
+ 1 ≤ χ ≤ K, l = 2χ−1 − (p + 1)/2, r = 2χ−1 + (p − 1)/2 and

0 ≤ α ≤
⌊

l
p

⌋
.

Proof. [Proof of Corollary 10] (Omitted) �

Remark 2. Corollary 10 shows that, taking N(χ,l−αp) or N(χ,r+αp) as root of an odd interval tree T ∗I with depth K∗ ≥ K, the
nodes at the positions l − αp and r + αp on levels lower than

⌊
log2 p

⌋
in T ∗I will have p as their divisors.

Example 1. Given an odd interval [81, 109] and its interval tree, as seen in figure 3. It can see that, 5|(N(0,0) = 95),
χ =

⌊
log25

⌋
+ 1 = 3, l = 2χ−1 − p+1

2 = 22 − 3 = 1, r = 2χ−1 +
p−1

2 = 22 + 2 = 6 and α =
⌊

l
5

⌋
= 0. Two nodes

N(χ,l) = N(3,1) = 85 and N(χ,r) = N(3,6) = 105 are multiples of 5. It also can see that, the odd interval tree T[71,99] rooted
with N(3,1) = 85 also has two nodes, N(3,1) = 75 and N(3,6) = 95, divisible by 5, as shown in figure 4.

Figure 3. Interval tree constructed from odd interval [81, 109]

Corollary 11 (Factorization of Root) Let N(0,0) be the root of an interval tree TI with depth no less than
⌊

1
2 log2N(0,0)

⌋
+1;

if p is a divisor of N(0,0), then N(0,0) can be factorized in at most p+1
2 steps.
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Figure 4. Interval tree constructed from odd interval [71, 99]

Proof. [Proof of Corollary 10] Without loss of generality, assume N(0,0) = pq with p ≤
√

N and TIl is the left subtree of
TI . Then

⌊
log2 p

⌋
+ 1 ≤

⌊
1
2 log2N

⌋
+ 1. Referring to Corollary 10 and taking σ =

⌊
1
2 log2N

⌋
+ 1, it can see that, on each

level χ with χ ≥ σ, there is at least one p’s multiple-node N(χ,l) with l = 2χ−1 − (p + 1)/2. It can see that, N(χ,l) is the node
that is p+1

2 nodes away from the rightmost node on level χ of TIl. �

Theorem 3 Let TN(0,0) be the odd interval tree rooted with N(0,0) > 1 and

P =


⌊√

N(0,0)

⌋
,
⌊ √

N(0,0)

⌋
is odd⌊ √

N(0,0)

⌋
− 1,
⌊ √

N(0,0)

⌋
is even

then the depth of TN(0,0) is no less than
⌊
log2N(0,0)

⌋ − 1 if P ∈ TN(0,0) .

Proof. [Proof of Theorem 3] Assume TN(0,0) is constructed from odd interval [a1, au] with u = 2K+1 − 1 ; then N(0,0) is the
middle item of the interval and there are u = 2K − 1 items left to N(0,0). By definition, P is surely an odd integer and is
probably one of those left items. Not that, there are N(0,0)−P

2 + 1 items from P to N(0,0); hence in order to ensure P is one of
the left items, it must hold

2K − 1 ≥
N(0,0) − P

2

Namely,
2K+1 ≥ N(0,0) − P + 2 > N(0,0) − P

Since P ≤
⌊ √

N(0,0)

⌋
≤
√

N(0,0), it knows N(0,0) − P ≥
√

N(0,0)(
√

N(0,0) − 1) > (
√

N(0,0) − 1)2, which leads to

K > 2log2(
√

N(0,0) − 1) − 1

Note that, the inequality log2(
√

x − 1)2− log2x = log2(1− 2√
x (1− 1

2x )) < 0(x ≥ 3) indicates log2N(0,0) > 2log2(
√

N(0,0)−1),

and thus
⌊
log2N(0,0)

⌋ ≥ ⌊2log2(
√

N(0,0) − 1)
⌋

by Lemma 2, it knows that, taking K =
⌊
log2N(0,0)

⌋ − 1 can ensure P ∈
TN(0,0) . �

4. Application in Factoring Integers

Let N = pq be a positive odd integer with divisors p and q satisfying p < q; construct an N-rooted odd interval tree TN

with depth σ =
⌊

1
2 log2N

⌋
+ 1; then check on level σ in the left subtree of TN the greatest common divisor (GCD) between

each node and N. By Corollary 10, there must be one or more nodes containing p’s or q’s multiples on the level. It is
sure that N can be always factorized. The approach can be summarized to be the procedure list below. Programming with
the procedure in Maple software, picking randomly some odd composite integers in the form of Maple array and running
the program on a PC with E5450 CPU and 4.0GB memory with Maple V15.0 obtain the results as figure 5 shows. The
experiments show that the approach is valid for factoring odd integers.
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Od:=Array([16637, 2129189,
4538873, 8772041,

1035918371, 2512642129,
5783560579, 9048212729,

80735174503, 211041144109,
170442776634553, 1808898276844231,

35249679931198483, 37522676526028537,
556499304645216091, 1123877887715932507,
1129367102454866881, 1902408569846737793,

10188337563435517819, 24928816998094684879]);

Procedure To Factorize Odd Integers

Procedure FactoringOdd
Input: N;
Step 1. Calculate l =

⌊
1
2 log2N

⌋
+ 1;

Calculate s = 2l−1 − 1;
Step 2. For i = 1 to i = s do

Ni = N − 2l+1 + 4i + 2;
d = gcd(Ni,N);
if(d > 1) break;
EndFor

Step 3. Output d;
EndProcedure

Maple Programming Codes

f := proc (N)
local s, l, M, X, d, g, i;

l := floor(0.5*log(N)/log(2))+1;
s := 2(̂l-1)-1; M := N-2(̂l+1)+2;
for i from 0 to s do

X :=M+2*i;
d := gcd(X, N);
if 1 < d then break end if

end do;
g:=N/d;
printf(”With %d steps, %d=%d*%d”,I, N,d,g);
end proc

5. Conclusions

Both theoretic deductions and experiments show that, the odd interval tree is another new approach in knowing the
integers. The properties discovered in this paper can surely provide a new way to demonstrates the genetic traits of the
odd integers and a practical way in exploring solution of factoring of integers. In the end, reader can see that, the approach
provided and tested with Maple software can be improved a lot, especially in parallel computing. Hope more followers
can show more profitable results.
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Figure 5. Screenshot of Maple computing results
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