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Abstract

In this paper, we introduce the bi-periodic Jacobsthal and Jacobsthal-Lucas quaternions. We give the Binet formulas and
the generating functions for these quaternions. We obtain some well-known identities such as the Cassini, Catalan and
D’ocagne’s identities. Additionally, we give summation formulas and the relationships between bi-periodic Jacobsthal
and Jacobsthal-Lucas quaternions.
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1. Introduction

Number sequences such as Fibonacci, Pell, Lucas, Jacobsthal, etc., have been studied by many authors (Horadam, 1996;
Horadam, 1971; Koshy, 2001). These sequences play an important role in many fields of science (EI Naschie, 2005;
2007; Kilic & Stakhov, 2009; Stakhov, 2005). For instance, microcontrollers and other computers use conditional
instructions to change the flow of execution of a program. Additionally, some microcontrollers use skip instructions that
conditionally bypass the next instruction. This is useful for one case out of the four possibilities on 2 bits, 3 cases on 3
bits, 5 cases on 4 bits, 11 on 5 bits, 21 on 6 bits, 43 on 7 bits, 85 on 8 bits, etc., which are the Jacobsthal numbers
(Horadam, 1996). Jacobsthal and Jacobsthal-Lucas numbers are defined by, respectively,

Jn =Jn-1 + 2Jp_,, for n > 2, with initial conditions J, =0, J; =1,
Jn = Jno1 + 2jn_y, for n = 2, with initial conditions j, = 2, j; = 1.
The different number sequences have many generalizations in the literature (Bilgici, 2014; Edson & Yayenie, 2009;
Horadam, 1961; Uygun, 2018; Uygun & Owusu, 2016; 2017; Yayenie, 2011). Bi-periodic Fibonacci numbers are
well-known (Edson & Yayenie, 2009; Yayenie, 2011). Bilgici introduced bi-periodic Lucas numbers in (Bilgici, 2014).

In (Uygun & Owusu, 2016), bi-periodic Jacobsthal and in (Uygun, 2018) bi-periodic Jacobsthal-Lucas numbers were
defined as, respectively,

bC,_, +2C,_,, ifniseven
aC,_q + 2C,_,, ifnisodd

A {ajn—l + Zjn—z; if n is even

In=bjsy + 2, ifnisodd 29 Cn ={

n=2,

where a, b non-zero numbers have initial values j, = 0,j, =1 €, = 2,C; = a.

In (Uygun & Owusu, 2017), some relationships between these numbers were obtained as C,, = 2,1 + jn4+1 and

(ab + 8)j, = 2C,_1 + Cp41. The generating function of the sequence {j,} is J(x) = _xrax2®) - ang the Binet

1-(ab+4)x2+4x%

=

formula of the sequence {j,} is j, = (‘11_5[(,?) «=F% where e(n) =n — 2|%| expressed as e(n) =0 when n is
(ab)\2

even and e(n) =1 when n is odd and the roots of the poliynomial x? — abx — 2ab are a and B defined by

ab+va?b2+8ab and ﬁ _ ab—va?b?+8ab
2 2

a= Vet 271840 with the following properties:

a+pB =ab, a — B =Va?b? + 8ab, aff = —2ab.
For further information about these sequences, see (Uygun, 2018; Uygun & Owusu, 2016).
Quaternions were defined by Hamilton (1866) as a generalization of complex numbers. Hamilton introduced a
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quaternion in the form
q4 = qoeo t+ q181 + g€ + qze3
where qq, 91,92, g3 are real numbers. The set of quaternions is denoted by
H ={q = qoeo + q161 + q2€; + q3e3 : qs € R,s =0,1,2,3}
isa 4-dimensional R-vector space with basis {eg, e;, €5, e3}. The basis satisfies the following:
e? =el =e2 =eje,e;3 =—1, eje, = e3 = —eye, €63 = e; = —eze, and ese; = e, = —e,e;.
q* the conjugate of the quaternion q is defined by q* = qoep — q1€1 — 262 — qses.

The number sequences have many applications in quaternion theory. The study of the quaternions of the sequences began
with the earlier work of Horadam (Horadam, 1993) where the Fibonacci quaternion was investigated. Several authors
worked on different quaternions and their generalizations (Giil, 2018; Halic1, 2012; Szynal-Liana & Wloch, 2016; Tan,
Yilmaz & Sahin, 2016a; Tan, Yilmaz & Sahin, 2016b; Tasci, 2017).

In 2016, Tan et al. defined bi-periodic Fibonacci and Lucas quaternions and obtained identities for them (Tan, Yilmaz &
Sahin, 2016a; Tan, Yilmaz & Sahin, 2016b). In this paper, we will introduce bi-periodic Jacobsthal and Jacobsthal-Lucas
quaternions and give some of their properties.

2. The Bi-periodic Jacobsthal and the Bi-periodic Jacobsthal-Lucas Quaternions

Definition 2.1. The bi-periodic Jacobsthal and the bi-periodic Jacobsthal-Lucas quaternions are defined by, respectively,
jn = Z?:Ojnﬂ'ei and én = Z?:O Ch+i€i

where J,, isthe nth bi-periodic Jacobsthal number and C,, is the nth bi-periodic Jacobsthal-Lucas number.

Lemma2.2. Let J, and C, be the bi-periodic Jacobsthal and the bi-periodic Jacobsthal-Lucas quaternions, respectively.
There exist some relations between bi-periodic Jacobsthal and bi-periodic Jacobsthal-Lucas quaternions, for a,b
non-zero numbers, as in the followings:

i Jans1 = blon + 2an-1 and Jon = afonog + 2Jon-2,
i, Copar = bCop + 2051 and Con = alopq + 2f5n—s,
i, Jope1 = (@b + Doz — 4on-s,
V.  Copoq = (ab+4)Cop_3 — 4Cop_s,
Voo Co=2fp1 +nsn
vi. (ab+8)J,=2C 1+ Cpis.
Proof. By using definitions of the bi-periodic Jacobsthal and Jacobsthal-Lucas sequences, we obtain the results (i) and
(ii).
i, Jono1 = bfan-a + 2fan-3 = b(afan—s + 22n-s) + 2203
= abJyn_3 + 2(Jan—s = 2fon-s) + 2an—3 = (@b + ) fan_3 — 4f2ns.
V. Conos = @lonoy + 2Con_3 = A(bCons + 2Con_s) + 2Con_s
= abCyp_3 + 2(Con_z = 2Cons) + 2Cop_3 = (ab + 4)Cpp_3 — 4Cop_s.
Other proofs can be obtained using the equations C, = 2j,_1 + ju+1 and (ab + 8)j, = 2C,_1 + Cpy1q-
Theorem 2.3. The generating functions for the bi- periodic Jacobsthal and Jacobsthal-Lucas quaternions are

T S P i .3
G(x) = Jot+J1x—bJox + (a—b)x Jix+J3x°—(ab+4)J1x

(1-bx—2x2) (1-bx—2x2)(1—-(ab+4)x2+4x*%)’
CO + élx - béox €1x + €3X3 - (ab + 4)élx3
Hx)=——————————(a—b)x ,
(1 —ax —2x2?) (1 —ax —2x2)(1— (ab + 4)x? + 4x%)

respectively.
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Proof. The generating function for J,, is

GO = Y Jux™ =Jo + Jux + Jpx? + 4 [y +
n=0

By multiplying both sides of this equation by -bx and —2x2, we obtain

—bxG(x) = —b anxnﬂ = — bjox — bjix* = bfox® — - — bJpx™t — -,
n=0
2x2600) = 2 ) Jo™? = = 2yt — 2 — 2t — = 2y
n=0

By using Definition 2.1 and f,,41 = bj, + 2/,,—1 in Lemma 2.2, when adding these equations, we obtain

(1 —bx — 2x2)G(x) = Jo + J1x — bjox + (jz - bj;, — Zjo)x2 + (j4 —bjs — ij)x4 + o

+(j2n - ijn—l - 2j2n_2)x2n + .-

From Lemma 2.2, since we know that J,,, = af,,_1 + 2/on—2, We have

(1= bx = 269)G () = Jo + Jyx = blox + ) (@ = b) fon 1"
n=1

and so

(1 — bx — 2x?)G(x) = Jo + Jix — bjox + (@ — D)x Ty fon—1 2™ L. (2.1)
By Lemma 2.2, we have [,,_; = (ab + 4)],n,_3 — 4J,,_s. Hence, by adding the following equations, we obtain
¥ Jono122™1 as follow:

ZjZn_len—l =j1x +j3x3 4o +]"2n_1xn2n—1 4o

n=1

—(ab + 4)x? Zon—3x2"_3 =— (ab + 4)J;x% — (ab + D)J3x5 — -+ — (ab + 4)Jpp_3x?" 1 — -,

n=2

4x* Zfzn—sxzn's = 4f, x5 + 4fax7 + o+ Afpy_ox? 4 e,

n=3

Hence, we get

_ Jix+jzx3—(ab+4)j1x3
T (1-(ab+4)x2+4x%)

Yooq fan—ax? (2.2)

By rewriting (2.2) in equation (2.1), we obtain

Jix + J3x3 — (ab + )], x3
(1—(ab+ 4)x2% + 4x*) "’

Jo + Jix — bjox +(a—-bh) Jix + J3x3 — (ab + )], x3

(1 — bx — 2x2) @ x (1 —bx —2x2)(1 — (ab + 4)x2 + 4x*)

Similarly, we obtain the generating function for the bi- periodic Jacobsthal-Lucas quaternion.

(1 —bx —2x2)G(x) = Jo + J;x — bjox + (a — b)x

G(x) =
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Theorem 2.4. The Binet formulas for the bi-periodic Jacobsthal and bi-periodic Jacobsthal-Lucas quaternions are,
respectively,

* M _ p*pN
1[3] M, n is even ﬁa**a” + [**B™, niseven
Jo =4 @7 ot and ¢, =@
n — **k M _ p** N n — . ]
1an¢1 Ola Z’ B n is odd ln+1Ja (X + .8 ﬁn nis odd
(ab)|2 - (ab)

a€+1) ; . 3 a€(i+1 ; o 3 a€® ;
where =Y3, [ I ate; B* =i L I Bte; a* =30, IMJ ate; and
(ab)!2 (ab)!2 (ab)

€
ﬁ** = ?:0( £ [HIJ)ﬁlel
(ab)

Proof. By using Definition 2.1 and the Binet formulas of bi-periodic Jacobsthal and bi-periodic Jacobsthal-Lucas
numbers, we obtain the desired results.

Theorem 2.5, (Catalan’s identity) For nonnegative integer numbers n and r, with n > r, we have

2n 2r4

fz(n—r)jz(n+r) —J3. = (—[ﬂ% (a* B*B?" — B*a*a?"),

2n 2rs

A A A ]2 k% Kk Kk Rk
C2(n—r)C2(n+r) - szn = ( b)rr ( - ,8)(,8 a? —a B BZr)_
Proof.
N N o 1 Qta?n-2r_ grgan-2r 1 ata?nter_ grganter B 1 a*a?n- grp2n 2
Jam-rJ2@ary = Jon = ((ab)n_T a—p )((ab)”“’ a—p ) ((ab)n a—p )

— (ab)an(a_ﬁ)Z (0{* ﬁ*((aﬁ)Zn _ aZn—Zrﬁ2n+2r) + ﬁ*a*(((xﬂ)Zn _ a2n+2rﬁ2n—2r))

3 1 on . _,BZT aZr
= @ —pe P (“ﬁ (1 >+ﬁ ( ﬁ”))

= (@B ) g (e )

_ 22™(ab)"jor a' pr  praty _ 222050, 2r * ok o 2T
- a(a_ﬁ) (a2r '821“) (0( ﬂ)a(ab)r( ﬁ ﬁ ﬁ aa )

Similarly, we prove that

2n-2r4
]Zr

. A A 2
CZ(n—r)CZ(n+r) - C22n = a( b)r ( - ﬁ)(ﬁ** ** 2r a**ﬁ**ﬁZr).
Theorem 2.6. (Cassini’s identity) For n > 1, we have
2n-2

fz(n—1)fz(n+1)—fzzn= ab(a — ﬁ)( *B*B?% — Bra*ta?),

2n-2

(a ﬁ)(ﬁ** *k 2 a**ﬁ**ﬁz)-

éz(n—l)éz(n+1) - CAZzn =
Since Cassini’s identity is a special case of Catalan’s identity, the proof is seen by taking r = 1.
Theorem 2.7. (D’ocagne’s property) For nonnegative integer numbers n and m, with m > n, we have

. . ~ . 22n b n-m * % . 2m—2n __ * % N2M—2N
]2m]2(n+1) _]2(m+1)]2n = (ab) ( ﬁ(z_ B) Fap )

ComCatman) = ComanyCon = 22" (ab)" ™ (a = B)( B o™ BZ20 — @™ B a?M=2).
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Proof.

N N -~ a _ 1 a*g?Mm— ﬁ*ﬁzm 1 a*aq2nt2_ Bxﬁzn+2
Jombatnssy = Joomsnon = g (S ) gyt (g )

1 a*q?mt2_ 3*32m+2 1 a*a2n_ﬁ*32n
T (apym+t ( a-B ) (ab)n ( a—p )

1 (0(* ﬁ*(a2m+2ﬁ2n _ a2mﬁ2n+2) + ‘B*a*(amﬁzmn _ 0(2"+2,82m))

= (ab)m+n+1 (a_ﬁ)z

22 @)t L ke 2m—2n42 2m—2np2 * % P2M=2N+2 2 p2m-2n
o @ B(a — IR + frat (B — a2gFm=im))

2n n-m-—1
— 2 E‘:’_)B)Z ((X* 'B*a2m—2n(a,2 _ﬁZ) + 'B*a*‘BZm—Zn('BZ _ aZ))

zzn(ab)n m(a B*azm 2n_ B*a*ﬁzm Zn)
(a-p)
D’ocagne’s property for the bi-periodic Jacobsthal-Lucas quaternion can be proven similarly.
Theorem 2.8. For n = 1 and nonnegative even integer r such that r < n, we have

2"y, o . _

i J 72 I _m(a Bra” —Bra’p"), nis even
]n+r]n—r _]n = Zn ra ’
I (a™ —B*a™B"), nisodd

La(ab)(’"‘z)/ “(a=p)

Zn_r(a - ﬂ)jr *% k% T Kk ik DT .
A A2 {W (a a” —f”a”BT), niseven
Cnrlnor =Ci =0 gnor(a = gy .
_—h * * r _ * % r . dd

L a(ab)r+2)/2 (a"p*a” = p*a’B"), mniso

Proof. If n is even then we have

]”m_rjn B ]n _ (ab)n (a*an+;__£*ﬁn+r) (a*an—;__g*ﬁn—r) _ (a;n (a*a';:g*ﬁn) (a*az:g*ﬁn)

S SR CS)

"~ (@a-p)?

=2t (" ra’ — BT,

a(ab)™/2(a-p)

If n isodd then we have
1 (a**an+r— B**ﬂ"”) i_H (a**an—r— ﬁ**ﬁ"‘r) . _ (a**a:l:ﬁ**ﬁn) (a**aa__g”ﬁn)

JnirSn—r —Jn = (ab)n+;_1 a—p (b3 a-p (ab)n—1
G (@B @ BN 2
= @)@ By (“ e )>_a(ab)“‘2’/2(a—ﬁ) rprar=pranin

The other part of the proof is calculated using the same method.
Theorem 2.9. For k isevenand [ > k, we have

k(n+1) k(n+2)
O(ab) ]krﬂ Ji—(ab)” 2 1kn+1k:(lz+azb)(l?b()ak:Bk])knﬂ 2 (ab)zlz k
k(n+1) k(n+2)
O(ab)z Ckr+l Ci—(ab)” 2 Ckn+1k:(l;(12b)(kab()akiﬁkg‘knu 2 (ab)ZCl k
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Proof. Let [ be even. Additionally, we know that k is even with [ > k. Thus, we obtain as follows:

n

kr, n (ab) 2 a* kr+l B*‘Bkrﬂ
(ab) 2] r+ r+
Z:‘J Ll ek

n

* 1 n *nl
= —Lll a akr — ‘[l{ ﬁ Z Bkr
(ab)z(a — B)r=o (ab)z(a — B) =0

3 a*al 1— (a,)kn+k B ﬁ*ﬁl 1-— (ﬁ)kn+k
@)@-p 7 @pe-p T

1 a*al l,Bk a* kn+k+l + a*akn+k+lﬁk ‘B*Bl + ,8*,8[0(’( +,8*,8kn+k+l _ B*ﬁk"”‘”a"
" (@a—p) ( A== )
— (@) Jnrs + 24 (ab)” — 24ab)¥k

1+ (2ab)k - (a'k + B¥)
The equation is provided in the case [ is odd. Similarly, we see the other part of the proof for bi-periodic
Jacobsthal-Lucas quaternions.

Theorem 2.10. For k isevenand s > k, we have

N r b)* . A
Z(ab) 3k J]kr+$ = ( b)3k (ab()ct‘(zxk +ﬁk) + Zk ((ab)2k]s - zk(ab)k/zjs—k);
N -2 A ( b)k 2k A 24
Z(ab) l 2 J Ckr+s = (ab)3k _ (ab)a"(ak + ,Bk) + 2k ((ab) kCS - Zk(ab)k/ Cs—k)'

Proof. Let s be even, then we obtain

3kr 1 arakrts — pgrpkrs
Z(ab) lz J]kr+s Z(ab) = krts) a—p

(ab)
BB~
s )(“b)zz(ab) -~ ﬁ)(ab)zz(ab)zkr
Ca-m@z| \1- ) T\ B
(a ﬁ)(ab)z\ - - /
= (ab)Zk ( a*a’ ) _( ﬁ*ﬁs )
(@ — ) (ab)s \ \@)* —a*/ ~ \(ab)?* — B

3 (ab)Zk ((ab)Zka,*as _ a*asﬁ" _ (ab)Zkﬁ*Bs +ﬁ*akﬁs>
TP\ (@) (@b — (@) ek +BH) + 29
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_ ()" ((ab)z'f(a*as — BB — @p) (e’ ek — ﬁ*ﬁs"‘))
B ((X _ ,B)(ab)% (ab)3" - (ab)"(ak + Bk) + 2k

_ (ab)" (ab)**(a’a® — B*B*) — 2(ab)(a*a*™* — B*B*")
(ab)3k - (ab)"(a" + ,Bk) + 2k (a _ B)(ab)%

(ab)* e ) s
~ (ab)?* — (ab)*(a* + BF) + 2F ((ab)?*js — 2K (ab)*/?fs_y).

When s is odd, the proof is calculated using the same method.

Similarly, we see the other part of the proof by using the Binet formula for bi-periodic Jacobsthal-Lucas quaternion.
Theorem 2.11. For n = r = 0 such that n is even, we have the following summation formulas:

n

() vramrany /2, = J,,

r=0

i () oz @y mec, = ¢,
r=0
Proof.
n ron-r _n/2s - _ . 1 * 27 ﬁ*ﬁzr
Z(:) (=1)72"7 (@b) ™2,y ‘ZO(:) (—1)72"" (ab) /> (ab)ra - a—p
( b)—n/Z * o ron-r 2\ * N ron-r 32 r
—BI (Z () vz (%) )—E (Z () () )]
@)™ ( (@ \'_ o p N\
=W<a (E_2> —F (E‘2>>
) %ﬂ;’/z(“*“” B
1 (@a"=pp™
~ay ey )=

For the bi-periodic Jacobsthal-Lucas quaternion, desired result can be seen.

Finally, we give the relationships between bi-periodic Jacobsthal quaternion and bi-periodic Jacobsthal-Lucas quaternion.
In Theorem 2.12, the identities given in Lemma 2.2 (v and vi) will be proven by using the Binet Formula.

Theorem 2.12. There are the relationships between bi-periodic Jacobsthal quaternion J,, and bi-periodic
Jacobsthal-Lucas quaternion C,, as follows:
jn+1 + 2]An—l = én'
Cn+1 + 2C,\n—l = (ab + B)jn-
Proof. For n is even, by using the Binet formulas, we obtain

. ~ 3 1 a**an+1 _ ﬁ**ﬂn+1 2 a**an—l _ ﬁ**ﬁn—l
Jnvr ¥ 2 g = (ab)"/? < a—B ) + (ab)m-2)/2 ( a—p )
B 1 a,**a,n+1 _ B**ﬁn+1 a**an—l _ ﬂ**ﬁn—l
‘(ab)n/2< a—p o a—p )

_ 1 fa"a™(@—p)—-B"p"(B—a)
~ (ab)? a—p
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(a**an_l_ﬁ**ﬁn) —_

(ab)l"J
For n is odd,

. ~ 1 a*an+1 _ ﬁ*ﬁn+1 2 a*an—l _ B*,Bn_l
Jnvr ¥ 2 g = (ab)(n+1)/2 ( a—pB ) + (ab)(n—l)/z ( a—p )

B 1 n+1 ,8 'Bn+1 aﬁ a*an—l _ ,B*Bn_l
- (ab)(n+1)/2 a—p a—p
__ ! (a*an(“ —B) BB -
- (ab)(n“)/z a—p
— (@ + g pM) =
(ab) Tz

Similarly, if n iseven

Cusa + 201 = oty (@™ + BT (abz)n/z (@a™+ pp" )
W(d*a’l“ + BB — ap(ata™ + pAY))
= W(w*an(a —B)+ BB(B — @)
_ (a:)%m (@a® — B*B™)
S BR) — @b+w

If n isodd, we have C,.; + 2C,_; = (ab + 8),.
Theorem 2.13. For n is odd, we have

J2 = (ab +8) (Con + 2@ B + ™)),

Proof. If n is odd, then we have
- 1 (a**a"— ﬁ**B")Z
Jn = (ap)n-1 a-p

g (@@ = B @Bt — B at @p) + BB

= (ab1(a—p)?

(a ,8)2 (Czn + Zn(a** ‘3** + ,B** **))

= (ab +8) (Cpn + 27(a™ B + fa™)).
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