
Journal of Mathematics Research; Vol. 11, No. 1; February 2019
ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

Optimal Method of Runge-Kutta of Order 5
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Abstract

The Runge-Kutta method of order 5 with 6 stages requires finding a matrix A, whose coefficients must satisfy a system of
nonlinear polynomial equations. Butcher found a 5-parameter family of solutions, which displays different characteristics
depending on whether b2 = 0 or b2 , 0. This paper presents an optimal method in the case b2 = 0, which is significantly
better than several popular methods of order 4.
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1. Introduction

The methods of Runge-Kutta (RK) are one of the principal methods of numerical resolution of the issue of Cauchy for
ordinary differential equations (ODE) (Hairer,Nersett & Wanner,1990; Cassity,1969). These methods are part of the
family of non separate methods. The method RK used for the resolution of ODE is characterised by two main parameters
(p; s) for which p indicates the order of the method and s the number of steps or stages.
For the resolution of the method with s stages, we must find a matrix A, the coefficients bi and ci for i = 1, · · · , s which
corresponds to a system of non linear polynomial equations . These methods are generally represented in the form of
tabulation named the Butcher table (butcher,1969):

C A

bT

in which A represents the triangular square matrix which is strictly inferior of coefficient ai j, i, j = 1, · · · , s for dimension
s× s, b and c are respectively vectors of dimension s such as bT = (b1, · · · , bs) and c = (c1, · · · , cs)T . The vector c contains
variables called free variables .
If the matrix A = ai j is such t ai j = 0 for i < j, the method is said to be explicit(ERK) in the one hand. it is settled implicit
on the over hand.
Practically, we always have

ci =
∑i−1

j=1 ai j,
∑s

i=1 bi = 1, cs = 1.

For instance, the methods of Runge-Kutta of order 4 with 4 stages known under the famous name of ”classical RK meth-
ods” are characterised by a square matrix A for which the coefficients satisfy a system of eight (8) nonlinear polynomial
equations with ten (10) variables. There are family of rational and bidimensional solutions. In these methods, the free
variable usually used are c2 and c3 (Hairer, Nersett & Wanner,1990).
For the resolution of the Runge-Kutta method of order 5 with 6 stages, the coefficients must correspond moreover to 9
equations that is to say we obtain a system of 17 equations with 21 variables. It is known in (Hairer,Nersett & Wan-
ner,1990;Cassity,1969) that this system does not have any solutions. But the value S 2 designates the sum of the square
values of the supplementary equations may be used to compare the efficiency of the different methods of Runge-Kutta of
order 4: the best equation is the one which is near 0.
by the way of comparison,the values of S for certain methods are:
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Method S ≈
the rule ”3/8” 0.015
c2 = c3 = 1/2 0.022

c2 = 0.312; c3 = 0.642 0.014

The value of the last line is the smallest as possible. We can see that the ”error” S is not too different for various
methods. In the most detailled way, this issue has been studied by diverse authors, for more detail, see. (Hairer, Nersett,
Wanner,1990), ch.11,3. Practically these methods of resolution do not make a success because of a slight increasing of
precision and the rightness. With the methods of order 5, the situation is different. The value of the error for these methods
is indicated in the literature and the method used are practically distinguished to hundred times.

2. The Error Function

The method of Runge-Kutta of order 5 with 6 stages is given by the following Butcher table:

c2 a21
c3 a31 a32
c4 a41 a42 a43
c5 a51 a52 a53 a54
c6 a61 a62 a63 a64 a65

b1 b2 b3 b4 b5 b6

(1)

If the table (1) below definies the methods of RK of order 5 then these coefficients must correspond to a sytem of 17
equations (Hairer,Nersett, Wanner 1990;Cassity,1969). This system is presented as follows:

(1) {b} = 1
(2) {b ∗ Ãe} = 1/2,
(3) {b ∗ Ã2e} = 1/6,
(4) {b ∗ Ã ∗ Ãe} = 1/3,
(5) {b ∗ Ã3e} = 1/24,
(6) {b ∗ Ã2e ∗ Ãe} = 1/8,
(7) {b ∗ Ãe ∗ Ãe ∗ Ãe} = 1/4,
(8) {b ∗ Ã(Ãe ∗ Ãe)} = 1/12,
(9) {b ∗ Ã4e} = 1/120,
(10) {b ∗ Ã(Ã2e ∗ Ãe)} = 1/40,
(11) {b ∗ Ã(Ãe ∗ Ãe ∗ Ãe)} = 1/20,
(12) {b ∗ Ã2(Ãe ∗ Ãe)} = 1/60,
(13) {b ∗ Ã3e ∗ Ãe} = 1/30,
(14) {b ∗ Ã(Ãe ∗ Ãe) ∗ Ãe} = 1/15,
(15) {b ∗ Ã2e ∗ Ã2e} = 1/20,
(16) {b ∗ Ã2 ∗ Ãe ∗ Ãe} = 1/10,
(17) {b ∗ Ãe ∗ Ãe ∗ Ãe ∗ Ãe} = 1/15.

which

Ã =



0 0 0 0 0 0
a21 0 0 0 0 0
a31 a32 0 0 0 0
a41 a42 a43 0 0 0
a51 a52 a53 a54 0 0
a61 a62 a63 a64 a65 0


and e = (1, · · · , 1)t

The analytical solution of this system of equations is an extraordinary difficult issue and in the general cas this system
of equation is not solved yet but only the varieties of solutions are particulary known (Butcher,1964). These particular
solutions exist allow by the use of ”simplifying assumptions” which allow to reduce the system of equation. This family of
solution is parametrically represent according to the free variable which are c2; c3; c4; c5 and a43. Two main characteristics
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distinguish these solutions. These are the following cases:

First case : b2 = 0;
Second case : b2 , 0.

The property of these solutions has been isolated to the only case b2 = 0 in this paper. The analytical expressions of
solutions which result from the system are quite cumbersome and cannot be explicitly given in this work; the algorithm
MAPLE can systematically expressed the values of these variables by free variables.

A few later, in the work in (Cassity,1969),we have found a family of the most general solutions. The expressions which
result are more complex and contain the irrational of quadratic irrationality step.

Recently, there had obvious analytical expressions obtained via D. Werner’s Maple.For others results, see for instance
(Khashin,2013).

If we want to obtain a method of order 6 with 7 stages, then you must add 20 other equations to the previous system. It
is clear enough that such a system is insoluble that is to say the additional equations do not take simultaneously 0 as the
value. But we can try to minimize the members of left of these equations by using the value of S 2. S 2 is used to evaluate
the quality of the method of Runge-Kutta .

The methods of RK of order 5 available in (Khashin,2013), have been achieved with aid of MAPLE functions:

RK56 (c2, c3, c4, c5, b2, a43) with b2 = 0
RK56a (c2, c3, c3, c4, c5, b2, a43) with b2 , 0

In the first case, all the coefficients of the matrix are rational numbers but the second case gives very large family of the
solutions.The coefficients of the matrix are quadratic irrational numbers depending on a parameter and can be undeter-
mined if the expression which is found under the radical is negatif. When b2 = 0, we obtain exactly the coefficients of
first case.

The formula obtained by the method of RK56a are too complex for the analytic study of the expression of S 2. That is
why, we first study the method of RK56. In this case it is possible to obtained the explicit obvious expression and rational
of S 2 by the parameters c2, c3, c4, c5, a43. The formula is too wide to be written here, because the numerator is degree 10
and contains 144 monomials.however the system of computer algebra can be said that it works efficiently.

3. Minimization

In the denominator of the function error constructed there is an expression of the shape c2
4(c3 − c4)2. It permits to show

that c4 , 0 and c3 , c4. However the methods of RK 56 are challenge deny to the following restrictions only :

ci , 0, ci , 1, c3 , c4, c3 , c5, c4 , c5

Besides in the calculations, all the values of the variables ci must be comprised between the interval [0; 1].

Dependence of a43: we notice that the numerator of the rational function which is being analysed depends on the square
of a43 and the main coefficient is always non negative. Since the denominator shape c2

4(c3 − c4)2 doesn’t depend on a43 at
all, the minimum is unique and is reached to a43, that is a rational function of other variable. After replacing it in S 2, we
get a new rational function again S 2

1(c2, c3, c4, c5) that doesn’t depend anymore on a43.

Dependence of c4: we notice that the denominator of this rational function doesn’t depend on c4, and the numerator
depends on the square of c4 and once again the first coefficient is always greater than zero. Therefore the minimal value is
obtained in c4 that can be easily found. By replacing it in S 2

1, we get once again rational function S 2
1(c2, c3, c4) that depends

more on c4. The constructed rational function is not too complex. Its denominator is of degree 10 and is composed of 75
members. the numerator is of degree 11 and is composed 159 members.

The problem amounts to consists in finding the minimum of a rational function of three variables in the unit cube. The
value of the S 2

2 function maybe arbitrarily small, but some coefficients of the methods will increase indefinitely in absolute
value. Therefore, the problem will be complicated, we require that all coefficients of the method don’t gobeyond a certain
constant of 20 for example.

Optimum 1: The direct checking shows that the values close to the optimum will be the following :

c2 = 2/23, c3 = 12/37, c4 = 27/29, c5 = 199/200, a43 = 24/5. (2)

Here is the resulting Butcher table :
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2
23 a21

12
37 a31

828
1369

27
29 a41

−8039673
622340

24
5

199
200 a51

−78986676649487
3964032000000

103911467638313
14784768000000

−308153608007
5544288000000

1 a61
−12785194207

625202172
904736654489
125792366742

−246740990
4701689307

−1472000000
264184008767

b1 0 1145112371
2326257360

386882707
156505608

−7360000000
366413327

721
40

However ak1 = ck =
∑k−1

i=2 aki and b1 = 1 − b3 − b4 − b5 − b6

Therefore with six numbers after the comma, the table of Butcher becomes:

0.869565 0.869565
0.324324 −0.280496 0.604821
0.931034 9.049492 −12.918400 4.800000
0.995000 13.948144 −19.925800 7.028270 −0.055580
1.000000 14.315445 −20.449700 7.192300 −0.052479 −0.005572

0.097345 0 0.492260 2.472000 −20.086610 18.025000

So S 2 ≈ 2.18 × 10−9.

Optimum 2: The maximal value of the absolute value of the coefficients of matrix A is greater to 20. It will lead to an
increase of the error of rounded. So we present another method with a slightly bigger value of the S function but more
smaller in absolute value. The coefficients used are :

c2 = 1/6, c3 = 12/37, c4 = 15/16, c5 = 74/75, a43 = 11/24. (3)

So S 2 = 9.54 × 10−9 and the table of Butcher will be in this case :

1
6 a21

12
37 a31

432
1369

15
16 a41

−66417
9472

119
24

74
75 a51

−238171162168
24349359375

2910761155207
438288468750

−14380276736
365240390625

1 a61
−317812436

30260043
47844943720
6764346369

−3895040
144757503

−111796875
6026555708

b1 0 1182595591
2401898400

3227648
963765

−335390625
32098832

751
100

Therefore with six numbers after the comma, the table of Butcher becomes :
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0.166667 0.166667
0.324324 0.008765 0.315560
0.937500 2.99110 −7.0119 4.95833
0.986667 4.16625 −97814 6.64120 −0.03937
1.000000 4.47506 −10.5027 7.07311 −0.02691 −0.0185507

0.09733 0 0.49236 3.34900 −10.4487 7.51

In comparison with the method of Dormane-Prince which is very after used (Wanner,Hairer,Nersett,2000) with

c2 = 1/5, c3 = 3/10, c4 = 4/5, c5 = 8/9, a43 = 32/9

the value of S 2 is 0.25 × 10−6, that is to say 90 times bigger.
For the method described in the book (Butcher,2008) for:

c2 = 1/4, c3 = 1/4, c4 = 1/2, c5 = 3/4, a43 = 1/2

the value of S 2 is 4.9 × 10−6, that is 1750 times bigger.
For the method of Fehlbert (Wanner,Hairer,Nersett,2000) with

c2 = 1/4, c3 = 3/8, c4 = 12/13, c5 = 3/4, a43 = 0

the value of S 2 is 24 × 10−6, that is 8500 times bigger.

Let’s remind that S 2 is equal to the total of the squares of the gaps which is the absolute value of the error which report is
a little smaller: for Dormane-prince’s method the error is about 10 times bigger; for the method described in the book of
Butcher, it is 40 times and for the method of Fehlbert it is 90 times.

Dependence of b2: the formula of the S 2 function in the case b2 , 0 is very cumbersone. For example, the matrix A
obtained with the help of Maple gives values of order of 2.106 and it doesn’t permit us to built the S 2 function in general.
That is why studing entirely and analytically its behavior is not possible yet. But its value is easy to find for any particular
or valid whole of free variables.

The dependence of b2, let’s consider a value of b2 relatively to the other variables proposed in the formula (2). Here,
let’s notice that for small values of b2 is absolute value lower to 0, the formula under the radical is negative. Therefore a
solution exists in the neighborhood of 0 when b2 ≥ 0. The table below, present the relation between 105.S in relation with
b2 when

c2 = 2/23, c3 = 12/37, c4 = 27/229, c5 = 199/200, a43 = 24/5.

we study the negative and positive value of the square root separately :

b2 +
√

D −
√

D
0.000000 4.66828 4.66828
0.000002 4.67505 4.66376
0.000004 4.67852 4.66256
0.000006 4.68146 4.66191
0.000008 4.68413 4.66156
0.000010 4.68464 4.66139
0.000012 4.68902 4.66136
0.000014 4.69132 4.66144
0.000016 4.69356 4.66160
0.000018 4.69574 1.66184
0.000020 4.69788 4.66214

97



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 1; 2019

From the table above, we notice that although we can decrease the value of S by an appropriated choice of b2, this
reduction is not sufficient and doesn’t compensate the complexity of the algorithm. A similar situation exists for other
initial values of the variable c2; c3; c4; c5 and a43. That is why, for the coming we will limit ourselves to the solutions in
the case b2 = 0.

And in general, we can suppose that the optimal methods are obtained when b2 takes some values close to 0 and so we
limit ourselves only to the methods for which b2 = 0. But to confirm this hypothesis, we need more important arguments.

4. Field of Stability

The order is not the only incoming important condition in game in the choice of a method of Runge-Kutta. The second
important condition is the field of stability of the method.

Both methods are steady enough. Their area of stability is more sread than the method extensively used by Dormane-
prince. See graph in figure 1.

Figure 1. Graph
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5. Evaluation of the Error With 3 Steps

While solving the differential equations by a method of Runge-Kutta, it is very desirable to be able to estimate the local
error in every stage. It allows us to select the size of suitable step automatically and to change it during the calculations.
In the absence of such step of evaluation, we must choose it among a big margin, we mean a lot less that what is really
necessary, it increases considerably the quantity of calculation. Usually, the evaluation of the truncation error is made by
makes using” pair overlapped of RK methods, (Runge-Kutta pairs) they are less used.

In the work (Khashin,2014), we suggest a method to assess the local error by the classic methods of RK from the fourth
order on the basis of three consecutive steps. The technique adopted can be applied to the methods of the fifth order.

We notice that for the methods of order 4, we cannot get the evaluation of the error by using two steps, that is why we will
search the evaluation of the error in three steps.

The table of Butcher of the method with 6 stages seems :

c2 a21
c3 a31 a32
c4 a41 a42 a43
c5 a51 a52 a53 a54
c6 a61 a62 a63 a64 a65

1 b1 b2 b3 b4 b5 b6

(4)

We can consider the three steps of lengths fixed by this method with a step which can be considered like a method of 13
steps whose table of Butcher is the following:

c2 a21
c3 a31 a32
c4 a41 a42 a43
c5 a51 a52 a53 a54
c6 a61 a62 a63 a64 a65
1 b1 b2 b3 b4 b5 b6

1 + c2 b1 b2 b3 b4 b5 b6 a21
1 + c3 b1 b2 b3 b4 b5 b6 a31 a32
1 + c4 b1 b2 b3 b4 b5 b6 a41 a42 a43
1 + c5 b1 b2 b3 b4 b5 b6 a51 a52 a53 a54
1 + c5 b1 b2 b3 b4 b5 b6 a61 a62 a63 a64 a65

2 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6
2 + c2 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6 a21
2 + c3 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6 a31 a32
2 + c4 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6 a41 a42 a43
2 + c5 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6 a51 a52 a53 a54
2 + c6 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6 a61 a62 a63 a64 a65

3 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6 b1 b2 b3 b4 b5 b6

b′1 b′2 b′3 b′4 b′5 b′6 b′7 b′8 b′9 b′10 b′11 b′12 b′13 b′14 b′15 b′16 b′17 b′18 b′19

In the process of three consecutive steps of the original method of the RK, we get 19 intermediate vectors.

k01 k02 k03 k04 k05 k06
k11 k12 k13 k14 k15 k16
k21 k22 k23 k24 k25 k26
k31

.

Their linear combination with the coefficients b′i can give an estimate of the error with an accuracy of O(h7). As suggested
in the work (Butcher,2000), we will search for b′i in the form b′i = bi + betai. Thus, the formula for estimating the error
vector tol will be

tol ≈ h(β1k01 + · · · + β19k31) . (5)
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The coefficients of βi are obtained as the solutions of a system of 37 equations of Butcher.The solution is unidimensional
and β19 can be chosen as a free variable. The choice of β19 = 0 is particularly convenient because, the error can be found
immediately after the 3 step, without calculating k19.

For the method (optimum 1) we get the following coefficients:

β1 = 890113/7737120, β10 = −19357476133/1565056080,
β2 = 0, β11 = 40215040000/366413327,
β3 = −8387174393/23262573600, β12 = −7931/80,
β4 = 5616469643/1565056080, β13 = 4695337/1934280,
β5 = −12379520000/366413327, β14 = 0,
β6 = 12257/400, β15 = −4673296433/5815643400,
β7 = 1280389/7737120, β16 = 26681566/19563201,
β8 = 0, β17 = −5755520000/366413327,
β9 = −1454602201/4652514720, β18 = 721/50.

(6)

The maximum modulus coefficient is β11 ≈ 110.

For the method (optimum 2) - such:

β1 = 183937/1598400, β10 = −81498112/4818825,
β2 = 0, β11 = 3624901875/64197664,
β3 = −8661713653/24018984000, β12 = −8261/200,
β4 = 403456/81675, β13 = 970021/399600,
β5 = −18781875/1088096, β14 = 0,
β6 = 12767/1000, β15 = −4826268493/6004746000,
β7 = 264469/1598400, β16 = 9279488/4818825,
β8 = 0, β17 = −126106875/16049416,
β9 = −1502216021/4803796800, β18 = 751/125,

(7)

The maximum modulus coefficient is β11 ≈ 56.

To complete, we give the same coefficients for the Dormane-Prince method (Hairer,Nersett and Wanner,1990)

β1 = 261323/2602920, β10 = −11183389/8329344,
β2 = 0, β11 = 1648414071/1471517440,
β3 = −5768864/24142083, β12 = −13896839/18220440,
β4 = −212473/520584, β13 = 109371217/83293440,
β5 = −588303/22992460, β14 = 0,
β6 = 374033/2277555, β15 = −2340314/24142083,
β7 = 109371217/83293440, β16 = −1685293/8329344,
β8 = 0, β17 = −187616169/1471517440,
β9 = −24427322/24142083, β18 = 749309/3644088,

(8)

the maximum modulus coefficient is β6 ≈ 1.34.

For the Butcher Method (Butcher,1964)

β1 = 137/900, β10 = −19/75,
β2 = 0, β11 = −296/225,
β3 = −16/45, β12 = −77/180,
β4 = −1/75, β13 = 1117/450,
β5 = 64/225, β14 = 0,
β6 = 119/900, β15 = −152/225,
β7 = 119/900, β16 = −2/15,
β8 = 0, β17 = −8/225,
β9 = −8/225, β18 = 14/225,

(9)

The maximum modulus coefficient is β13 ≈ 2.5.
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For the Felberg method, (Hairer,Nersett and Wanner,1990)

β1 = 827/10800, β10 = −1412671/615600,
β2 = 0, β11 = −296/2025,
β3 = −704/2375, β12 = 22/25,
β4 = 81289/123120, β13 = 6401/2700,
β5 = 64/2025, β14 = 0,
β6 = −34/125, β15 = −1856/2375,
β7 = 2159/10800, β16 = 37349/153900,
β8 = 0, β17 = −8/2025,
β9 = −256/475, β18 = −16/125,

(10)

The maximum modulus coefficient is β10 ≈ −2.3.

6. Conclusion

So the smallest error of the indicated methods is the one of Dormane-prince and felhberg. Of course an example is not
sufficient to appreciate fully the quality of the method. However, we got a part of their comparative description as shown
by other experiences, the relation between the different methods of gotten precision is more or less the same for a lot of
other methods.
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