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Abstract 

This paper examined the problem of ill-posedness of solution in identifying parameters from a given groundwater flow 

model. The solution approach to the problem was attempted by the method of Parameter Transformation coupled with 

Tikhonov Regularisation with and without Truncation which has not been explored. Convergence of the method was 

assessed by the L-Curve criterion. Numerical examples were presented to illustrate the efficiency of the proposed 

Regularisation Technique. Tikhonov Regularisation with Truncation turns to give a more realistic solution estimates 

when examined numerically, compared to that of Regularisation without Truncation.  

Keywords: ill-posed problem, parameter transformation, regularization with and without truncation, l-curve 

1. Introduction 

The idea behind Regularisation is to construct a family of continuous maps from data space to model space, such that 

the parameter of interest can be approximately recovered from noisy data. For a small noise level, the parameter of 

interest can be approximated very close to the true parameter value as possible. Yeh (2015) noted in the context of 

groundwater flow parameter estimation that the parameter estimation problem is often ill-posed and beset by instability 

and non-uniqueness, particularly if one seeks parameters distributed in space-time. Various techniques for alleviating 

the ill-posedness of parameter identification problems have been proposed by incorporating prior information into the 

objective function. Gomez-Hernandez et al. (1997) and Doherty (2003) made a submission in their studies that it will be 

very difficult to estimate field parameters in groundwater modelling without any complexity. A common approach to 

this complexity is the use of the Regularisation, which adds a penalty function or term to convert the constrained 

problem to an unconstrained problem. Different Regularisation techniques have been proposed by many researchers. 

Some of the Regularisation techniques explored for constraining the distributed parameter identification problems are 

Pilot Point Regularisation (Doherty, 2003; Kowalski et al., 2004 and Alcolea et al., 2006), Levenuberg-Marquardt 

Regularisation Scheme (Hanke, 1997), Preference-Base Regularisation (Neuman, 1973), Tikhonov Regularisation 

(Tikhonov, 1963). Parameter Choice rules (Nguyen et al., 2015), and Total Variation Regularisation (Chan & Tai, 2003; 

Vogel, 2002). Most of the regularisation schemes mentioned above are Optimisation schemes.  

Other statistical related regularisation models have also been explored. Most of the statistical related regularisation 

models can be categorized into: Smoothing penalty functions, State-space Modeling in Time Series and 

Spatio-Temporal data, and Bayesian and Maximum Likelihood Modeling. Examples of studies where statistical 

approaches have been applied in smoothing penalties are the works of Wood (2004), and Chouldechova and Hastie 

(2015). Both studies used Generalised Additive Models in fitting and smoothing sparse data from field measurements to 

estimate model parameters of interest. The work of Harvey (2001), Demel and Du (2015), and Pebesma (2012) are 

typical examples of studies where state-space modeling has been explored. In recent times, an area that have gained 

much attention is Bayesian modeling. Zhu et al. (2014), Li and Goel (2006), and Kneib (2008) are some of the studies 

that have looked at the problem from Bayesian Regularisation perspective. Most of the Bayesian regularisation 

approaches focuses on controlling penalties arising from fitted models to avoid overfitting of data by introducing priors 

to smooth uncertain variables and parameters.  

This study focuses on optimal utilisation of systems information such as model coefficients, boundary condition settings 

and field or experimental data to estimate parameter of interest in flow models. Though, many Regularisation techniques 

for stabilizing the computations of flow parameters have been proposed, no published work has claimed to fully handle 
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the parameter estimation problem (Demissie et al., 2014; Nguyen et al., 2015). In view of this, the study aims at 

developing a parameter dependent Regularisation model using the basic idea proposed by Tikhonov to help stabilise the 

ill-posedness generated in the solution for the groundwater flow model. 

2. The Regularisation Method 

Consider a distributed parameter system with observation of the solution as in Equation (1) 

( )A q u f ; obsu Cu               (1) 

where 𝑞 represents the parameter to be estimated, 𝐴(𝑞), the parameter dependent operator, u  the state variable, and C 

the state-to-observation map. If the parameters in the model are represented by an abstract space, such that 𝑄 denotes the 

parameter space which contains the parameter 𝑞. 𝒰 denote the state space which contains the vector 𝑓 ⊂ 𝒰, and 𝓞 

denotes the observation space which contains the observed data 𝑢𝑜𝑏𝑠 . For uniformity sake, assume that all the three 

spaces described above are Hilbert Spaces. Suppose the parameter to observation map (𝐹: 𝑄 → 𝓞) can be formulated as  

  1: ( ) ( )
def

obsF q u F q Cu q CA q f                (2) 

The inexact measured data can be modelled as 

 ( )obsu F q                (3) 

where 𝔶 denotes noisy data or the inadequacies of the model. The problem of estimating 𝑞 given the observed data 𝑢𝑜𝑏𝑠 

in Equation (1) is expressed as a constrained least squares problem by minimising the function in Equation (4) 

2

2min ( )obs
q Q

Cu u subject to A q u f


  .        (4) 

The constrained minimisation problem in Equation (4) is transformed by the PTM as  

2

2min ( )obs
q Q

Cu u subject to B u q f


          (5) 

where 𝐵(𝑢) is the coefficient matrix that depends on the state variable 𝑢. Formulating the unconstrained least squares 

minimisation function 𝜙(𝑞) by assuming that the forward problem for solving for 𝑢 in Equation (1) is well-posed, one 

obtains Equation (6) 

1 2

2min ( ): ( ) ( ) obs
q Q

q q CA q f u   


             (6) 

Incorporating a Regularisation term to address the problem of data insufficiency (or ill-posedness) yields the 

unconstrained regularised least square minimisation function in Equation (7) 

1 2

2min ( ): ( ) ( ) ( )obs reg
q Q

q q CA q f u J q   


                  (7) 

or further 

22

2 0 2
min ( ): ( ) ( ) ( )obs
q Q

q q F q u L q q   


              (8)  

The term ( )regJ q  in Equation (7) is the Regularisation functional and  is a Regularisation parameter. The 

Regularisation function is defined as 
2

0 2
( ) ( )regJ q L q q  , where 𝑞

0 is an initial guess of the solution, the matrix 𝐿 is 

typically either the identity matrix 𝐼𝑛 or a (𝑛 − 𝑝) × 𝑛 discrete approximation of the 𝑝 − 𝑡ℎ derivative operator. The 

side constraint ( )regJ q  is incorporated to impose stability on the solution. Substituting Equations (2) and the 

transformed equation 𝐴(𝑞)𝑢 = 𝐵(𝑢)𝑞 = 𝑓 into Equation (8) yields 

21 2

2 0 2
min ( ): ( ) ( ) ( )obs
q Q

q q CB u f u L q q   


           (9) 

The transformed minimisation problem in Equation (9) is equivalent to minimising the Equation (10), with the state to 

observation map C taken or assumed as unity. 

22

2 0 2
min ( ): ( ) B( ) ( )
q Q

q q u q f L q q   


           (10) 

Solving the minimisation problem in Equation (10), gives: 
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 

 0 0 0

( ) B B 2 B

2

T T T T T

T T T T T T

q q q q f f f

q L Lq q L q q L q





  

  
         (11) 

Taking the gradient of the function with respect to the parameter 𝑞 yields: 

   0( ) 2 B B 2 B 2 2 0T T T Tq q f L Lq L Lq               (12) 

1
0( ) ( )T T T Tq B B L L B f L Lq

            (13) 

3. Incorporating Prior Orders 

Normally the penalty function imposed as side constraint to the minimisation Equation (13) to recover q depends on the 

extent of error within the solution or the field data considered. For Order Zero Regularisation, substituting nL I  into 

Equation (13) gives: 

1
0( ) ( )T Tq B B I B f q

             (14) 

In the case where the component in a solution oscillates with moderate amplitudes, order zero Regularisation may not be 

ideal since it dampens components that are low in magnitudes. To dampen such moderate components or error term, a 

penalty term that is not too low for rapid change in solution is required. This penalty term results in another form of 

Regularisation called “Order One Regularisation”. For this reason, a moderate penalty term is added to Equation (14). 

The objective function of order one is thus formulated as in Equation (15) 

 
22

2 1
2

( ) ( )
n

i i
i

q B u q f q q 


             (15) 

The Equation (15) is minimised by a solution 𝑞𝜆 of the form 

1 1 1 1 0( )T T T TB B L L q B f L L q           (16) 

where  is an (𝑛 − 1) × 𝑛 first derivative operator. The solution to Equation (16) is given by Equation (17) 

1
1 1 1 1 0( ) ( )T T T Tq B B L L B f L L q

            (17) 

On the other hand, if the penalty term is much stronger than that of order one, a penalty term that seeks to recover the 

parameter to give a much better solution is used. This type of Regularisation term is an Order Two Regularisation and is 

an extension of order one. It is based on minimising the function defined in Equation (18) as 

 
1

22

2 1 1
2

( ) ( ) 2
n

i i i
i

q B u q f q q q


  


              (18) 

subject to the solution system of the form 

2 2 2 2 0( )T T T TB B L L q B f L L q           (19) 

where  is an (𝑛 − 2) × 𝑛 second derivative operator. Equation (19) has solution of the form given by Equation (20) 

1
2 2 2 2 0( ) ( )T T T Tq B B L L B f L L q

           (20) 

The estimated solutions of the parameter 𝑞 in Equations (17) and (20) are termed as Regularisation of Order One and 

Two respectively. They are used to dampen moderate and large error components. 

4. Assumptions of the Method 

In estimating flow parameters for a distributed parameter system using Regularisation techniques, certain assumptions 

need to be factored into the equation to achieve a desired solution. From the unconstrained regularised minimisation 

function in Equation (8), with noisy data 𝑢𝑜𝑏𝑠 = 𝐹( 𝑞𝑡𝑟𝑢𝑒) + 𝔶𝑛, ∀ 𝑛 ≥ 1, the following assumptions were factored into 

the model: 

1L

2L
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i. The true solution for the unknown parameter 𝑞𝑡𝑟𝑢𝑒 should lie or be defined in a deterministic dimensional 

space. 

ii. The mean square convergence of the error within the data should be negligible if not zero as the number of 

parameters to be estimated increases indefinitely. Thus, if ( ) ,n trueError e q q  then 0n trueE q q asn    

iii. The regularised minimisation functional should be constraint such that ||𝐹(𝑞) − 𝑢𝑜𝑏𝑠||2
2 →  0, whenever 𝑞𝑛 

converges weakly to 𝑞 in a deterministic dimensional space. 

5. L-Curve Criterion 

The L-curve criterion for selecting the Regularisation parameter depends on the trade-off between over-Regularisation 

and under-Regularisation at the corner of the curve. The characterisation of the corner of the L-Curve can be determined 

either by inspection or by estimating the point of maximum curvature. The point of maximum curvature for the distributed 

parameter system in Equation (1) according to Hansen and O’Leary, (1993) can be formulated as:  

 

2 4

3
2 2 2 2

( ) ( ) '( ) () 2 ( ) ( ) ( ) '( )
( )

'( ) ( ) ( )

S R S R S R S S

S S R

          
 

   

 
  

 
  

        (21) 

where 𝑆(𝜆)  is the solution norm, 𝑅(𝜆)  is the residual norm, and '( )S   is a derivative operator defined as 

4 ( )
'( )

S
S




 
  . The parameter 𝜌 is called the filter factor and   the Regularisation parameter. In this paper, both 

techniques are explored to determine the Optimal Regularisation parameter.  

6. Numerical Problem 1 

The numerical problem 1 is based on the steady-state diffusion equation given by Equation (22)  

( ) ( )
u

q x f x
x x

  
  
  

, (0,1)x            (22) 

The interval chosen for the model example was [0,1], with homogeneous Dirichlet boundary conditions 𝑢 as in 

Equation (23) 

  𝑢(0) = 0, and   𝑢(1) = 1           (23) 

The source term or forcing function for the model problem was taken as Dirac delta (𝛿) function, as defined in Equation 

(24) 

( ) ( 1 2)f x x                  (24) 

The parameter of interest is to determine the unknown diffusion coefficient q(x), given a measurement of the solution u(x), 

called the observed data (𝑢𝑒), and the source or sink term 𝑓. The solution approach for solving the problem after 

discretising Equation (22) is by the Parameter Transformation Method (PTM) coupled with Regularisation. A detailed 

solution approach for the problem using the PTM is discussed in Acquah et al. (2018). For this study, the focus is how 

to apply Regularisation techniques to recover the unknown estimated diffusion coefficient. The fitness plot for the true 

and estimated parameters using the PTM with least squares is shown in Figure 2.  

6.1 Implementation of the Tikhonov Regularisation for Example 1 

Using the Regularisation weight of 16 15 14 0 1[10 ,10 ,10 , ,10 ,10 ]    , Equations (13), (17) and (20) are solved for the 

parameter 𝑞𝜆 for order zero, one and two. Usually, a large λ favours a small solution norm at the expense of a small 

residual norm. Each chosen λ value gives a column regularised solution. The implementation of the Tikhonov 

Regularisation leads to several columns of regularised solutions for each order, having a convergent regularised solution. 

The convergent regularised solutions are not the Optimal solution to the problem. To determine the Optimal solution for 

computing the parameter of interest, the L-curve for Order Zero, One and Two are assessed to determine the Optimal 

Regularisation parameter and its corresponding Optimal solution. The simulated L-curve of Order Zero, One and Two 

for determining the Optimal Regularisation parameter and its corresponding Optimal solution are shown in Figure 1.  

The solution curve for Order One depicts the L-shape nature required to estimate the Optimal Regularisation parameter, 

whilst that of Order Zero and Two for the test problem on the other hand, did not in any way depict an L-curve. This 

discrepancy in solution for can be attributed to either over-smoothing or under-smoothing. The Optimal Regularisation 

parameter corresponding to the Optimal solution was determined using the L-curve of Order One. 
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6.2 Determining the Optimal Regularisation Parameter 

The choice of an Optimal Regularisation parameter (𝜆)  corresponding to the estimated parameter values for the 

numerical problem 1 was determined by the L-Curve of Order One. The vertical part of the Curve depicts 

over-Regularisation whilst the horizontal part under-Regularisation. The corner of the L-curve defines the point of 

maximum curvature. The Optimal Regularisation parameter is a minimiser of the estimation error norm. The plot of the 

solution norm against the residual norm for the Numerical Problem 1 shows a concentration of points at the corner of the 

L-curve. The values of the residual and the solution norms for the 1D test problem were computed and assessed for a 

range of values of the Regularisation parameter 𝜆. The value corresponding to the Optimal Regularisation parameter was 

determined by inspection using the L-curve and the computed regularised solutions.  

Table 1 shows the values of the residual norm error and the solution norm for a range of values of the Regularisation 

parameter 𝜆. The points concentrated at the shape corner of the L-curve are bolded in red in Table 1 and have the 

parameter values 𝜆13 = 10−4, 𝜆14 = 10−3 and 𝜆15 = 10−2 respectively. The Optimal Regularisation parameter value 

by inspection was 𝜆0 = 10−3. The value  𝜆0 = 10−3 was obtained by observing the parameter with a minimal solution 

and residual error norm, as well as the ratio of solution to residual norm errors. The Optimal solution corresponding to 

the Optimal Regularisation parameter 𝜆0  was determined from the column regularised solutions computed. The 

Optimal solution corresponding to  𝜆0 = 10−3 is indicated in Table 1. Table 1 shows the values of the residual norm 

error and the solution norm for a range of values of the Regularisation parameter 𝜆 with weights of 𝜆 = 10−1 to 

𝜆 = 1016.  

The Optimal solution is then used to estimate the parameter 𝑞 of interest. The true and estimated parameter values are 

also shown in Table 1. Although, there are slight variations between the true and the estimated parameter values, the 

estimated parameter values approximate the true parameter values perfectly well. The model fitness plots of the 

regularised parameters for the Numerical Problem 1 is shown in Figure 2. The solution curve for the regularised 

parameters shows a perfect model fit between the estimated and the true parameter values compared to that of 

un-regularised. The relative norm-error between the estimated and true parameter values is 0.013619 , which is 

approximately zero signifies the stability of the estimated solution. 

 

Figure 1. L-Curve of Various Orders for Numerical Problem 1 
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Figure 2. Fitness Plots for Regularised and Un-Regularised Parameter 

Table 1. Optimal Regularisation Parameter and its Corresponding Solution  

λ R(λ)=||A(q)𝑢𝜆-f|| 𝑆(𝜆) = ‖𝐿𝑢‖ U at λ=10E-03 

For Order One 

q-Estimated 

𝜆 = 10−3 

𝑞-True 

1.00E-16 1.20E-11 10.39295207 10.1233020954 1.0006 1.0000 

1.00E-15 1.3505679eE-l 1 10.39295207 19.4953360930 1.0018 1.0000 

1.00E-14 3.83E-11 10.39295207 28.6122324045 0.9974 1.0000 

1.00E-13 1.29E-11 10.39295207 37.2221527411 0.9999 1.0001 

1.00E-12 2.58E-10 10.39295206 45.1188147599 1.0040 1.0019 

1.00E-11 2.44E-09 10.39295196 52.0135364374 1.0148 1.0183 

1.00E-10 2.42E-08 10.39295103 57.4972669758 1.1067 1.1054 

1.00E-09 2.42E-07 10.39294167 64.5508751863 1.4400 1.3679 

1.00E-08 2.42E-06 10.39284807 67.1641639395 1.8059 1.7788 

1.00E-07 2.42E-05 10.39191221 69.9576579045 2.0010 2.0000 

1.00E-06 2.42E-04 10.38256492 72.9757250470 1.8696 1.7788 

1.00E-05 2.42E-03 10.29020833 76.4804043804 1.4335 1.3679 

1.00E-04 2.39E-01 9.46612597 79.4851554364 1.1063 1.1054 

1.00E-03* 2.15671E-01* 5.704894576* 82.2959892732 1.0139 1.0183 

1.00E-02 1.09E+00 2.302168975 85.7197581063 1.0055 1.0019 

1.00E-01 1.89E+00 1.072313707   87.0601753384 0.9997 1.0001 

1.00E+00 2.21E+00 1.072313707 88.1495088617 0.9985 1.0000 

1.00E+01 1.20E-11 10.39295207 88.6227977106 1.0006 1.0000 

To verify the Optimal Regularisation parameter value by inspection, the maximum curvature formula in Equation (21) 

was used to estimate the Optimal Regularisation value. The estimated maximum curvature value of 
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5( ) 3.9674918 10     was far less than 10-3, the value estimated by inspection using the L-curve method. In reality, 

one expects the 𝜅(𝜆) value computed to be greater than the value estimated by inspection to give room for improving 

upon the solution where necessary. In brief, the value obtained using Equation (21) signifies that the L-curve method 

over-determines the Optimal Regularisation parameter value by nearly two orders of magnitude. 

7. Numerical Problem 2 

The Numerical Problem 2 was adapted from Sun (1999). The problem is on a horizontal two-dimensional confined 

aquifer with boundaries AB, BC, CD, and AD. AD has a constant head boundary (𝑢𝐿 = 100 𝑚.), and the other heads are 

impervious, with length of 𝐴𝐵̅̅ ̅̅  being 6500 m, 𝐵𝐶̅̅ ̅̅  is 4500 m, and the aquifer is heterogeneous. In the model problem, the 

aquifer was divided into three zones (AEGD, EFHG, FBCH) with transmissivities 𝑇1, 𝑇2, 𝑇3, respectively but their 

storage coefficient S being same. Also, it was assumed that there was a pumping well located at the third zone with 

constant pumping rate 2000 𝑚3/𝑑𝑎𝑦, and at the beginning of the pumping, the head is constant everywhere in the 

aquifer with initial head data value 𝑢𝑜 = 100 𝑚. Two scenarios were considered by the problem, the first was to assume 

values for the transmissivities and the storativity to estimate the head distribution by solving a defined forward problem 

generated out of the flow equations. The second scenario was to use the head distributions as an observed data to solve the 

inverse problem to recover the parameter of interest. A more detailed solution approach is discussed in Acquah et al. 

(2018). The problem is solved using the Parameter Transformation Method. The estimated parameters obtained are 

indicated in Table 2. Table 2 gives the true and estimated parameter values at selected time points. The estimated 

parameter values do not approximate to the true parameter values and has a minimal relative norm error value of 

10.98314. 

7.1 Implementation of Tikhonov Regularisation 

Using the Regularisation weight of 
16 15 14 0 1[10 ,10 ,10 , ,10 ,10 ]    , Equations (13), (17) and (20) are solved for the 

parameter 𝑞
𝜆 for the Orders Zero, One and Two respectively. The implementation of the Tikhonov Regularisation leads 

to several column regularised solutions for each order. The column regularised solutions for each Order has a convergent 

regularised solution. To assess Optimality, the L-curve plot of Order Zero, One and Two were determined. Figure 3 shows 

the L-Curve plot of Various Orders for Tikhonov Regularisation. Here, the full rank of the generated system (B(u)) in 

Problem 2, with its singular values was used to compute the regularised solutions. The solution curve for Order Two 

depicts the L-shape nature, but that of Order Zero and One show some irregularities on the solution curves of the L-curve 

plots. The irregularities on the solution curves of Order Zero and One can be attributed to the small singular values within 

the solution estimates. From Figure 3, it can be said that all the three orders show some resemblance to the L-shaped 

nature of the L-curve, but with distortions on the solution plots of order zero and one. In all three cases, the corner part 

needed to assess the Optimal Regularisation parameter with minimal error can be determined.  

The Optimal Regularisation parameter for the Tikhonov case without truncation was observed on the L-curve plot of order 

two with a parameter value of 𝜆0 = 10−11. Table 3 gives the values of the Optimal regularised parameters using 

Tikhonov Regularisation of Order Two. Although, the estimated parameter values approximate the true parameter 

values to an extent, a norm-error value of 7.30020true estq q   which is not approximaly zero, indicates that the 

Optimal regularised parameters still have some appreciable errors in the solution. For a solution curve that truly depict 

that of the L-Curve  shape in all three cases, with no or very minimal error norm, some form of truncation needs be 

enforced. 

Table 2. True and Identified Parameters 

Parameters True Values PTM at t=0.5 PTM at t=1.0 PTM at t=1.5 

𝑇1 500 503.9443469 497.60331158  497.60331485  

𝑇2 1000 1007.588869 995.20662375  995.20662755  

𝑇3 2000 2011.777388 1990.4134992  1990.4132575  

S 1 × 10−4 9.925 × 10−4 1.935 × 10−4  2.902 × 10−5  
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Figure 3. L-Curve of Various Orders for Problem 3 Using Tikhonov 

7.2 Implementation of Tikhonov Regularisation With TSVD  

To obtain a smooth curve needed to determine the Optimal Regularisation parameter at the corner of the L-curve with 

minimal error estimate, some form of truncation needed to be enforced. Here, the proposed Tikhonov Regularisation with 

Truncated Singular Value Decomposition (TSVD) method is employed. Applying the rank-k approximation, the singular 

values for the generated matrix 𝐵(𝑢) in Numerical problem 2 with order 𝑘 = 4 is determined. The estimated singular 

values are respectively 1 28.956679  , 2 8.226  , 
5

3 3.81195 10  , and 
7

4 9.8964 10   

Using a rank-3 approximation 3B , that is cutting-off the smallest singular value
7

4 9.8964 10   of 𝐵(𝑢) with 

3B  defined as in Equation (25) 

3

3

1

T
i i i

i

B u v


             (25) 

where 𝑢𝑖 , 𝑣𝑖 are the singular vectors and 𝜎𝑖 the singular values. The regularised solution of the parameter q for Order 

Zero, One and Two becomes respectively Equations (26), (27) and (28): 

1
_ 0 3 3 3 0( ) ( );T Tq B B I B f q

              (26) 

1
_1 3 3 1 1 3 1 1 0( ) ( );T T T Tq B B L L B f L L q

             (27) 

1
_ 2 3 3 2 2 3 2 2 0( ) ( )T T T Tq B B L L B f L L q

    .          (28) 
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Table 4. Optimal Regularised Parameters Using Tikhonov with TSVD 

Parameters True Values 
Un-regularised 

(At λ=0) 

Optimal Regularised 

Parameter 

(At 𝜆 = 10−13) 

𝑇1 500 497.60331158 500.0000002574 

𝑇2 1000 995.20662375 1000.000000861 

𝑇3 2000 1990.4134992 2000.000000737 

S 1 × 10−4 1.935 × 10−4 1.0508× 10−4 

The solution plots of the L-curve for Order Zero, One and Two for the regularised parameters are shown in Figure 4. After 

truncation, all the three orders depict a smooth L-shape nature. The truncation also reduced the range of values of the 

Regularisation parameters to values concentrated only at the corner of the curves. The corner of the L-curve in all three 

cases are evident and easy to identify. The Optimal Regularisation parameter values in all three cases were determined. 

The Optimal Regularisation parameter value with minimal error norm solution was observed at Order Two with an 

Optimal parameter value of 𝜆0 = 10−13. The Optimal solution corresponding to  𝜆0 = 10−13 was then used to estimate 

the parameter 𝑞 of interest. The Optimal regularised and un-regularised parameter values for Numerical Problem 2 are 

indicated in Table 4.  

 

Figure 4. L-Curve for various Orders Using Tikhonov with TSVD 

The Optimal regularised parameter values of the 2D test problem approximate very well to the true parameter values 

with a minimal relative norm-error value. The relative norm-error values of the regularised and unregularised parameters 

of 0.000043733 and 10.9831 respectively, signify that the regularised parameter values are more stable. In conclusion, 

Tikhonov Regularisation method with Truncated Singular Value Decomposition is efficient in reconstructing groundwater 

flow parameters with a very minimal error norm. 
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8. Results and Discussion 

The paper has focused on the use of Regularisation techniques to recover estimated groundwater flow parameters. The 

Tikhonov Regularisation Method with and without TSVD, and the L-Curve Method were applied to estimate the flow 

parameters. Two numerical examples were considered and regularised to assess how the parameters of interest behaved. 

The results show that for the studied one-dimensional test problem, the convergent regularised solutions for Order One 

and Two are accurate to about 15-digits of precision compared to the computed solutions of 10-digits. The Regularisation 

parameter corresponding to the Optimal solution (𝑢𝜆) for the 1D test problem was determined using L-curve of Order One 

with an Optimal parameter value of 𝜆0 = 10−3.  

The solution curves for Order Zero and Two for the 1D test problem did not in any way depict an L-curve. This anomaly 

in solution was attributed to either over-smoothing or under-smoothing. The estimated parameters for the 1D test problem 

using the Optimal solution (𝑢𝛼) approximate perfectly well to the true parameter values with a relative norm error value 

of ‖𝑞𝑡𝑟𝑢𝑒 − 𝑞𝑒𝑠𝑡‖ = 0.013619. The estimated maximum curvature value of 𝜆 = 3.96365 × 10−5  signifies that the 

L-curve method over-determines the Optimal Regularisation parameter of the 1D problem by nearly two orders of 

magnitude. For the two-dimensional test problem, it was evident from the study that the initial time set could not yield a 

solution even after Regularisation. When the time step was increased and solved using the PTM with least-squares, the 

solution became more stable with a norm error value of 10.9831 compared to the initial time step of 14.47566. 

Implementing Tikhonov Regularisation for Order Zero, One and Two yields a solution for the Optimal regularised 

parameter. The Optimal Regularisation parameter was determined using L-curve of Order Two with a norm-error value of 
7.300020true estq q  . The estimated norm-error value of 7.300020, which is high and signifies that the estimated 

parameter values cannot be used for any prediction, though they approximate very well to the true parameter values. 

Upon implementing Tikhonov Regularisation with TSVD to further reduce the error in solution, the L-curve plots of 

Order Zero, One and Two gave a smooth L-shaped nature needed to estimate the Optimal Regularisation parameter. The 

Optimal Regularisation parameter value was observed on the L-curve plot of Order Two with a parameter value of 

𝜆0 = 10−13, and at a time step of 𝑡 = 1.0 . The Optimal solution corresponding to the Optimal Regularisation parameter 

value of 𝜆0 = 10−13 was determined from the column regularised solutions computed in Appendix A. The Optimal 

solution was used to estimate the parameter values. The estimated parameter values of the 2D test problem approximate 

very well to the true values with a minimal norm-error value of 0.0000043733. In conclusion, the application of the 

Tikhonov Regularisation Techniques together with Truncated Singular Value Decomposition in stabilising the 

computations of groundwater flow parameters from a discretised transformed system that depends continually on an 

observed data is achievable. 

9. Conclusions and Future Work 

The application of Tikhonov Regularisation techniques in stabilising the computations of the flow parameters by 

incorporating Order Zero, Order One and Order Two penalty functions that depend on squared norms derivative functions 

is possible. The L-curve criterion for determining an Optimal Regularisation parameter and its corresponding Optimal 

solution for the studied one-dimensional and two-dimensional test problems proved to be reliable and efficient in 

computing the Optimal solution. Also, the Modified Tikhonov Regularisation method with and without TSVD 

introduced in this study reduced the drastic effect of the small singular values on the solution. It was obvious from the 

study that the Tikhonov Regularisation method with TSVD gives a much better solution curve if appropriate rank-k 

approximation techniques are observed.  

To conclude, the application of the Regularisation Methods in stabilising the computations of groundwater flow 

parameters from a discretised transformed system or PTM with least squares that depends continually on an observed data 

is feasible. Further research needs to be done to investigate if varied time step for computing inverse flow parameters can 

have a drastic effect on the flow parameters, and to investigate if geological information and other prior information can 

be directly incorporated into the inverse problems to increase stability and accuracy of the solution. 
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Appendix  

Two-Dimensional Regularised Solution 

U Reg0 =              U Regl = 

4.1198e-001 8.2346e-001 1.6469e+000 6.6425e+001  4.1025e-001 8.2000e-001 1.6400e+000 6.6288e+001 

4.1198e-001 8.2346e-001 1.6469e+000 6.6425e+001  5.1382e+002 1.0276e+003 2.0553e+003 -3.6633e-001 

4.4081e+002 8.8163e+002 1.7633e+003 9.0978e+000  4.9912e+002 9.9823e+002 1.9965e+003 1.4745e+000 

5.0305e+002 1.0061e+003 2.0122e+003 9.9671e-001  5.0026e+002 1.0005e+003 2.0010e+003 1.3399e+000 

5.0207e+002 1.0041e+003 2.0083e+003 1.1173e+000  5.0022e+002 1.0004e+003 2.0009e+003 1.1668e+000 

5.0012e+002 1.0002e+003 2.0005e+003 1.2894e+000  5.0011e+002 1.0002e+003 2.0004e+003 5.4241e-001 

5.0002e+002 1.0000e+003 2.0001e+003 8.2380e-001  5.0002e+002 1.0000e+003 2.0001e+003 8.6007e-002 

5.0000e+002 1.0000e+003 2.0000e+003 1.7685e-001  5.0000e+002 1.0000e+003 2.0000e+003 8.7048e-003 

5.0000e+002 1.0000e+003 2.0000e+003 2.0048e-002  5.0000e+002 1.0000e+003 2.0000e+003 9.8152e-004 

5.0000e+002 1.0000e+003 2.0000e+003 2.1209e-003  5.0000e+002 1.0000e+003 2.0000e+003 1.8670e-004 

5.0000e+002 1.0000e+003 2.0000e+003 3.0236e-004  5.0000e+002 1.0000e+003 2.0000e+003 1.0927e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.2024e-004  5.0000e+002 1.0000e+003 2.0000e+003 1.0131e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0202e-004  5.0000e+002 1.0000e+003 2.0000e+003 1.0054e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0020e-004  5.0000e+002 1.0000e+003 2.0000e+003 1.0047e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0002e-004  5.0000e+002 1.0000e+003 2.0000e+003 1.0050e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0000e-004  5.0000e+002 1.0000e+003 2.0000e+003 1.0069e-004 

 

U Reg2 = 

5.1454e+002 1.0291e+003 2.0582e+003 -4.9244e-001 

4.9708e+002 9.9415e+002 1.9883e+003 1.7613e+000 

5.0066e+002 1.0013e+003 2.0026e+003 1.3262e+000 

5.0031e+002 1.0006e+003 2.0013e+003 1.3875e+000 

5.0024e+002 1.0005e+003 2.0009e+003 1.3868e+000 

5.0018e+002 1.0004e+003 2.0007e+003 1.1120e+000 

5.0008e+002 1.0002e+003 2.0003e+003 4.7777e-001 

5.0001e+002 1.0000e+003 2.0000e+003 7.4681e-002 

5.0000e+002 1.0000e+003 2.0000e+003 8.2501e-003 

5.0000e+002 1.0000e+003 2.0000e+003 9.0728e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.8369e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.1248e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0578e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0508e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0500e-004 

5.0000e+002 1.0000e+003 2.0000e+003 1.0500e-004 
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