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2 Université Abdou Moumouni; Faculté des Sciences et Techniques, Niamey, Niger
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Abstract

This paper talks about Riemannian Lie subalgebroid. We investigate the induced Levi-civita connection on Riemannian
Lie subalgebroid, and give a construction of the second fondamental form like in case of Riemannian submanifold. We
also give the Gauss formula in the case of Riemannian Lie subalgebroid. In the case of the Lie subalgebroid induced by
a Leaf of a characteristic foliation, we obtain that the leaf carries more curvature than the manifold as shown by Boucetta
(2011).
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1. Introduction

The notion of Lie groupoids and Lie algebroid are nowadays central resarch subjects in differential geometry. Lie alge-
broid was first introduced by Pradines and appeared as an infinitesimal counterpart of Lie groupoid. It is a generalization
of the notion of Lie algebra and fiber bundle. A. Wenstein shows the crucial role of Lie algebroid in the study of Poisson
manifold and Lagrangian mechanics. This motivated many studies on Lie algebroid, among others integrability by M.
Crainic and R. L. Fernandes (2003), covariantes derivatives by Fernandes (2002) and Riemannian metric by M. Boucitta
(2011), · · ·
The authors introduced in [1] the notion of geodesically complete Lie algebroid, and the notion of Riemannian distance.
They also give a Hopf Rinow type theorem, caracterise the base connected manifold and characteristic leaf of this Lie
algebroid.

This paper deals with Riemannian Lie subalgebroid. We will introduce the notion of Riemannian Lie algebroid as a
generalisation of Riemannian submanifold. Hence we will give the second fondamental form of Lie subalgebroid and
rewrite the Gauss’s formulas type. We will investigate the special case of Riemannian Lie subalgebroid induced by a leaf
of a characteristic foliation of a Riemannian manifold.

The paper is organised as follow. After this introduction, the second section gives some preliminary. In the third section,
we introduce the notion of Lie subalgebroid of a Lie algebroid, induced by a submanifold of the base manifold. The
fourth section deals with Riemannian Lie subalgebroid, and the second fondamental form in the case of Riemannian Lie
subalgebroid will be introduced. We also give the Gauss’s type formulas. In the last section we investigate a special case
of Riemannian Lie subalgebroid induced by a leaf of a characteristic foliation.

2. Some Basic Facts on Lie Algebroids

Most of notions introduced in this section come from Boucetta (2003) and from J.-P. Dufour and N. T. Zung’ s book
(2005).

2.1 Lie Algebroid

A Lie algebroid is a vector bundle p : A→ M such that :

• the sectons space Γ(A) carry a Lie structure [, ];

• there is a bundle map ♯ : A→ T M named anchor;

• For all a, b ∈ Γ(A) and f ∈ C∞(M), then

[a, f b] = f [a, b] + ♯(a)( f )b (1)
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Note that a Lie algebroid is said to be transitive if the anchor is surjective.

The anchor ♯ also satisfies:

♯[a, b] = [♯(a), ♯(b)]

where a, b ∈ Γ(A) and the bracket in the right is the natural Lie bracket of vector bundle. We also have:

[ f a, b] = f [a, b] − ♯(b)( f )a (2)

and

[ f a, gb] = f g[a, b] + f (♯(a)(g))b − g(♯(b)( f ))a (3)

for any a, b ∈ Γ(A) and f , g ∈ C∞(M). We also have a local splitting of a lie algebroid. given by R. Fernandes in (2002).

Theorem 2.1(2002)(local splitting) Let x0 ∈ M be a point where ♯x0 has rank q. There exists a system of cordinates
(x1, · · · , xq, y1, · · · , yn−q) valid in a neighborhood U of x0 and a basis of sections {a1, · · · , ar} of A over U, such that

♯(ai) = ∂xi (i = 1, · · · , q),

♯(ai) =
∑

j

bi j∂y j (i = q + 1, · · · , r),

where bi j ∈ C∞(U) are smooth functions depending only on the y′s and vanishing at x0 : bi j = bi j(ys), bi j(x0) = 0.
Moreover, for any i, j = 1, · · · , r,

[ai, a j] =
∑

u

Cu
i jau

where Cu
i j ∈ C∞(U) vanish if u ≤ q and satisfy

∑
u>q

∂Cu
i j

∂xs
but = 0.

n = dim M, and r = dim A.

2.2 Linear A-connection

The notion of connection on Lie algebroids was first introduced in the contexte of Poisson geometry by Vaisman (1994)
and R. Fernandes (2002). It appears as natural extension of the usual connection on fiber bundle (covariant derivative).

Remark 2.1 The notion of A-connection is a generalization of the notion of the usual linear connection on a vector
bundle. Lot of classic notions associate with covariant derivative can be written in the case of Lie algebroid.

To introduce the notion of parallel transport, Boucetta sets the following definition and then we can introduce the notion
of linear A-connexion.

Definiton 2.1 Let p : A → M be a Lie algebroid. A linear A-connection D is an A-connection on the vector bundle
A→ M

If (x1, · · · , xn) is a system of local coordinates in a neighborhood U ⊂ M in which {a1, · · · , ar} is a base of sections of
Γ(A), then the Christoffel’s symbols of the linear connection D can be defined by:

Dai a j =

r∑
k=1

Γk
i jak.

The most interesting fact about this notion is that one can ask about his relationship with the natural covariant derivative.
The answer given by Fernandes in (2002) is relative to the notion of compatibility with Lie algebroid structure.

Defintion 2.2 A linear A-connection D is compatible with the Lie algebroid structure of A if there is a linear connection
on T M (covariant derivative) ∇ such that

♯D = ∇♯

Proposition 2.1 (2002) Every Lie algebroid admits a compatible linear connection.

Remark 2.2 There is another notion of compatibility between linear A-connection and Lie algebroid structure introduced
by Boucetta (2011) which is less stronger than the above one. A linear A-connection D is strongly compatible with the
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Lie algebroid structure if, for any A-path α, the parallel transport τα preserves Ker♯. A linear A-connection D is weakly
compatible with the Lie algebroid structure if, for any vertical A-path α, the parallel transport τα preserves Ker♯.

Proposition 2.2 (2011)

1. A linear A-connection is strongly compatible with Lie algebroid structure if and only if, for any leaf L and any
sections α ∈ Γ(AL) and β ∈ Γ(Ker♯L), Dαβ ∈ Γ(Ker♯L).

2. A linear A-connection D is weakly compatible with the Lie algebroid structure if and only if, for any leaf L and any
sections α ∈ Γ(Ker♯L) and β ∈ Γ(Ker♯L), Dαβ ∈ Γ(Ker♯L).

2.3 Riemannian Metric on Lie Algebroid

Let p : A→ M be a Lie algebroid.

Definition 2.3 A Riemannian metric on a Lie algebroid p : A → M is the data, for any x ∈ M, of a scalar product gx on
the fiber Ax such that, for any local sections a, b ∈ Γ(A), the function g(a, b) is smooth.

Like in the classic case of Riemannian manifold, one of the most interesting fact is the existence of a linear A-connection
which has the same characteristics with the Levi-civita connection. The A-connection is

• metric, i.e. ♯(a)g(b, c) = g(Dab, c) + g(b,Dac),

• free torsion Dab − Dba = [a, b]

Also, the Linear A-connection D is characterized by the Koszul type formula: for all sections a, b, c ∈ Γ(A)

2g(Dab, c) = ♯(a)g(b, c) + ♯(b)g(a, c) − ♯(c)g(a, b)
+ g([c, a], b) + g([c, b], a) + ([a, b], c)

The Christoffel’s symbols of the Levi-civita A-connexion are defined, in a local coordinates system (x1, · · · , xn) over a
trivializing neighborhood U of M where Γ(A) admits a local basis of sections {a1, · · · , ar}, by:

Γk
i j =

1
2

r∑
l=1

n∑
u=1

gkl(bu
i ∂xu(g jl) + bu

j∂xu(gil) − bu
l ∂xu(gi j))

+
1
2

r∑
l=1

r∑
u=1

gkl(Cu
i jgul +Cu

ligu j +Cu
l jgui)

where the structures functions bi
s,C

u
st ∈ C∞(U) are given by

♯(as) =

n∑
i=1

bi
s∂xi (s = 1, ...., r)

and

[as, at] =

r∑
u=1

Cu
stau (s, t = 1, ..., r),

gi j =< ai, a j > and (gi j) denote the inverse matrix of (gi j).

The author of [?] define the sectional curvature of two linearly independant vectors a, b ∈ Ax by

K(a, b) = − g(R(a, b)a, b)
g(a, a)g(b, b) − g(a, b)2 . (4)

where R is Riemannian curvature.

2.4 Notion of Lie Subalgebroid

The notion of Lie subalgebroid is studied by many authors. K. Mackenzie (1987) gives the following definition

Definition 2.4 Let p : A → M be a Lie algebroid. A Lie subalgebroid of A is a Lie algebroid A′ on M together with an
injective morphism A′ → A of Lie algebroid over M.
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Here we give a construction of this notion which generalised the classic notion of a submanifold.

Let p : A→ M be a Lie algebroid with anchor map ♯ and let N be a submanifold of M. Let’s set

(AN)x = {ax ∈ Ax/♯xa ∈ TxN}

and

AN =
∪
x∈N

(AN)x

Then AN ⊂ A. Let pN : AN → N be the restriction of p : A→ M to AN .

If there is no risk of confusion, let’s denote by ♯ : AN → T N the restriction of ♯ to AN . Then we can defined a Lie bracket
[, ]N on Γ(AN), which is like a restriction of the Lie bracket of Γ(A), by setting for all a, b ∈ Γ(AN) and x ∈ N:

[a, b]N(x) = [a, b]|M (x)

This bracket is well defined and induced a Lie algebroid structure on pN : AN → N.

Thus

[a, f b]N(x) = [(a), f b]|M (x)
= ( f [a, b]|M + ♯(a)( f )b)(x)
= ( f [a, b]|M )(x) + (♯(a)( f )b)(x)
= ( f [a, b]N)(x) + (♯(a)( f )b)(x)
= ( f [a, b]N + ♯(a)( f )b)(x)

then

[a, f b]N = f [a, b]N + ♯(a)( f )b

Remark 2.3 One of the best example of this Lie subalgebroid structure, it’s the one induced by a leaf of a characteristic
foliation L. This structure Lie subalgebroid is transitive. We will use this structure to study some particular Riemannian
Lie subalgebroid.

3. Riemannian Lie Subalgebroid

Let p : A→ M be a Lie algebroid with anchor map ♯ and let g̃ be a Riemannian metric on A. Let N be submanifold of M
and pN : AN → N be an induced Lie subalgebroid. As in the Riemannian case, if f : AN → A is an isometric immersion,
then g = f ∗g̃ is an induced metric on AN .

Definition 3.1 (AN , g) is a Riemannian Lie algebroid called Riemannian Lie subalgebroid.

Like in the classic case of Riemannian submanifold, one can ask about the induced Levi-Civita AN-connection and it’s
relationship with the Levi-civita A-connection.

As an answer, we will give a similar connection construction with the classic one of Riemannian submanifold. For this
construction for all x ∈ N we denote by (AN)⊥x the orthogonal complementary of (AN)x in respect with g̃x. then we have :

Ax = (AN)x ⊕ (AN)⊥x

hence

A = AN ⊕ A⊥N

where (AN)⊥x can be defined by:

(AN)⊥x = {a ∈ A/g̃x(a, b) = 0,∀b ∈ (AN)x}

Thus for all a ∈ Γ(A) one has a = a⊤ + a⊥ with a⊤ ∈ Γ(AN) and a⊥ ∈ Γ(AN)⊥.

Moreover if D is the Levi-civita A-connection, then for all α, β ∈ Γ(AN) one has:

Dαβ = (Dαβ)⊤ + (Dαβ)⊥ (5)
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Let’s set DN
α β = (Dαβ)⊤.

Then we have the following proposition.

Proposition 3.1 DN is the Levi-civita AN-connection associate to the Riemannian metric g.

proof Indeed DN is free torsion: for all α, β ∈ Γ(AN) one has

DN
α β − DN

β α = (Dαβ)⊤ − (Dβα)⊤

= (Dαβ − Dβα)⊤

= ([α, β])⊤

since α, β ∈ Γ(AN), one has [α, β] ∈ Γ(AN) and

[α, β]⊤ = [α, β] = [α, β]N

then we have

DN
α β − DN

β α = [α, β]N

DN is metric: since D is metric, then for all α, β, γ ∈ Γ(AN) one has:

♯(α)g(β, γ) = ♯(α)g̃(β, γ)
= g̃(Dαβ, γ) + g̃(β,Dαγ)
= g̃((Dαβ)⊤ + (Dαβ)⊥, γ) + g̃(β, (Dαγ)⊤ + (Dαγ)⊥)
= g̃(DN

α β, γ) + g̃(β,DN
α γ)

= g(DN
α β, γ) + g(β,DN

α γ)

Then

♯(α)g(β, γ) = g(DN
α β, γ) + g(β,DN

α γ).

3.1 Second Fondamental Form

This notion is a generalization of the classical case of Riemannian submanifold. we will show that the A -second fonda-
mental form satisfies all properties of the second fondamental form of a Riemannian submanifold.

From the equation (5), let’s set h(α, β) = (Dαβ)⊥. Then we have the following definition.

Definition 3.2 The operator

h : Γ(AN) × Γ(AN) → Γ(AN)⊥

(α, β) 7→ h(α, β)

is called the AN-second fondamental form associated to Riemannian Lie subalgebroid pN : AN → N.

This operator h is C∞(N)-bilinear and symmetric.

3.2 Gauss and Kodazzi’s Equations

Here we rewrite the Gauss and Kodazzi’s formulas in the case of Riemannian Lie subalgebroid.

For all α ∈ Γ(AN) and ξ ∈ Γ(AN)⊥ the relation (5) becomes :

Dαξ = (Dαξ)⊤ + (Dαξ)⊥ (6)

Now if we set Bξα = −(Dαξ)⊤ and L(α, ξ) = (Dαξ)⊥ then we have the Gauss type formula:

g̃(ξ, h(α, β)) = g(Bξα, β) (Gauss formula) (7)

for all α, β ∈ Γ(AN) and ξ ∈ Γ(AN)⊥.
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Proposition 3.2 The map

B : Γ(AN) × Γ(AN)⊥ → Γ(AN)
(α, ξ) 7→ Bξα

is C∞(N)-bilinear and symmetric.

Proof For all α ∈ Γ(AN), ξ ∈ Γ(AN)⊥ and f1, f2 ∈ C∞(N) one has:

B f1ξ( f2α) = −(D f2α( f1ξ))⊤ = −( f2Dα( f1ξ))⊤

= − f2[ f1Dαξ + ♯(α)( f1)ξ]⊤

= − f2 f1(Dαξ)⊤

= f1 f2Bξα

One of the important fact in the study of Riemannian submanifold is the relationship between the Riemannian curvature
of the manifold and the one on the submanifold. Similarly to this case we can investigate this relationship between
Riemannian curvature associate to g̃ and the induced one associate to g.

The following proposition gives the Gauss equation in the case of Riemannian Lie subalgebroid.

Proposition 3.3 If R and RN are respectively the curvature associate to g̃ and g, then we have:

g(RN(α, β)γ, δ) = g̃(R(α, β)γ, δ) + g̃(h(α, γ), h(β, δ)) − g̃(h(α, δ), h(β, γ)) (8)

Particulary, if KN(α, β) =
g(RN(α, β)β, α)

g(α, α)g(β, β) − g(α, β)2 and K(α, β) =
g̃(R(α, β)β, α)

g̃(α, α)g̃(β, β) − g̃(α, β)2 are respectively the sectional

curvature on AN and A, then the Gauss equation (8) become by sitting Q(α, β) = g̃(α, α)g̃(β, β) − g̃(α, β)2:

KN(α, β) = K(α, β) − g̃(h(α, α), h(β, β))
Q(α, β)

− ∥h(α, β)∥
Q(α, β)

. (9)

Moreover if α and β are orthornormal, then the equation (9) becomes :

KN(α, β) = K(α, β) − g̃(h(α, α), h(β, β)) − ∥h(α, β)∥ (10)

3.3 Totally Geodesic Lie Subalgebroid

Definition 3.3 Let (AN , g) be Riemannian Lie subalgebroid of a Riemannian Lie algebroid (A, g). AN is said to be totally
geodesic if any AN-geodesic is an A-geodesic.

This class of Riemannian Lie subalgebroid is characterised by the following proposition.

Proposition 3.4 Let pN : AN → N be a Riemannian Lie subalgebroid of the Riemannian Lie algebroid p : A→ M. Then,
the following assertions are equivalent:

1. AN is totally geodesic;

2. the second fondamental A-form is identically nul.

Proof

1)⇒ 2. Supposed that AN is a totally Riemannian Lie subalgebroid. Let s be an AN-geodesic, then DNss = 0 and s
is an A-geodesic (Dss = 0). Since Dss = Dss + ds

dt , one has:

Dss = (Dss)⊤ + (Dss)⊥ +
ds
dt

= DN
s s + (Dss)⊥ +

ds
dt

= (Dss)⊥

= h(s, s)

hence h(s, s) = 0.
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2⇒ 1). Supposed Bξ ≡ 0. Let s be an AN-geodesic, then :

Dss = DNss +
ds
dt
.

With the Gauss’s formula (7), h(s, s) = 0 and s is an A-geodesic.

Corollary 3.1 If (AN , g) is a totally geodesic Riemannian Lie subalgebroid, then the Gauss type formula becomes: for all
linearly independent vectors α, β ∈ (AN)x

g(RN(α, β)γ, δ) = g̃(R(α, β)γ, δ) (11)

3.4 Minimal, Parallel and Totally Umbilical Lie Subalgebroid

From the splitting theorem, consider {a1, · · · , ar} a local basis of the sections space Γ(A). Supposed that the sections
space Γ(AN) is dimension d (d ≤ r) and let {a1, · · · , ad} an induced orthonormal basis. As in the case of Riemannian
submanifold, the mean curvature H associated to the second fondamental A-form is defined by:

H =
1
d

d∑
i=1

h(ai, ai) (12)

If {ξ1, · · · , ξr−d} the g-orthogonal basis of {a1, · · · , ad}, then with the Gauss formula (7) the mean curvature become:

H =
1
d

r−d∑
k=1

Tr(Bξk ) (13)

Definiton 3.4 A Riemannian Lie subalgebroid de Lie pN : AN → N is called minimal, if the mean curvature H vanishes
identically (i.e. H ≡ 0). And AN is called quasi-minimal (pseudo-minimal) if H , 0 and < H,H >= 0 at each point of N.

Corollary 3.2 If for all ξ ∈ Γ(AN)⊥, Bξ ≡ 0, then (AN , g) is minimal.

Proof Supposed that for all ξ ∈ Γ(AN)⊥, Bξ ≡ 0 . Since {ξ1, · · · , ξr−d} is the g-orthogonal basis of {a1, · · · , ad} and

H =
1
d

r−d∑
k=1

Tr(Bξk ) (14)

we have ξk ∈ Γ(AN)⊥ and Bξk = 0. Then H ≡ 0 and AN is minimal.

Definition 3.5 Let (A, g) be a Riemannian Lie algebroid and (AN , g) a Riemannian Lie subalgebroid of (A, g).

1. A normal section ξ ∈ Γ(AN)⊥ is called parallel, if for any section α ∈ Γ(AN), one has:

Dαξ = 0.

2. A Riemannian Lie subalgebroid is called parallel if the second fondamental A-form is parallel. i.e. Dh = 0

3. (AN , g) is said to be totally umbilic if, for all normal section ξ ∈ Γ(AN)⊥, there exist a scalar λ such that:

∀α ∈ Γ(AN)⊤, Bξ(α) = λα

Theorem 3.1 Let (A, g̃) be a Riemannian Lie algebroid with constant sectional curvature c. If the Riemannian Lie
subalgebroid (AN , g) is minimal, then

Ric(α) ≤ c (15)

for all unit AN-section α. Moreover the equality hold if and only if AN is totally geodesic. Where Ric is a Ricci curvature.

Proof Let α be a unit AN-section and {a1, · · · , ad} be a local orthonormal basis of the space of sections Γ(AN). Then we
have:

Ric(α) =
1

d − 1

d∑
i=1

g(RN(ai, α)α, ai)
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with the Gauss equation (8), one has:

Ric(α) =
1

d − 1

d∑
i=1

[g̃(R(ai, α)α, ai) + g̃(h(ai, ai), h(α, α)) − g̃(h(ai, α, h(ai, α))]

=
1

d − 1

d∑
i=1

[c + g̃(h(ai, ai), h(α, α)) − ∥h(ai, α)∥2]

= c +
1

d − 1
g̃(

d∑
i=1

h(ai, ai), h(α, α)) − 1
d − 1

d∑
i=1

∥h(ai, α)∥2

= c +
d

d − 1
g(H, h(α, α)) − 1

d − 1

d∑
i=1

∥h(ai, α)∥2

since AN is minimal and 1
d−1
∑d

i=1 ∥h(ai, α)∥2 ≥ 0, one can conclude Ric(α) ≤ c.
Moreover Ric(α) = c if and only if 1

d−1
∑d

i=1 ∥h(ai, α)∥2 = 0 which hold if and only if h = 0 and we have AN is totally
geodesic.

Corollary 3.3 Let (A, g̃) be a Riemannian Lie algebroid with constant sectional curvature c̃. If the Riemannian Lie
subalgebroid (AN , g) has constant sectional curvature c, then:

1. c ≤ c̃,

2. c = c̃ if and only if AN is totally geodesic.

Theorem 3.2 Let (A, g̃) be a Riemannian Lie algebroid with constant sectional curvature c̃. The scalar curvature of the
Riemannian Lie subalgebroid (AN , g), S is given by :

S = c +
d

d − 1
∥H∥2 − 1

d(d − 1)
∥h∥2 (16)

Proof Let {a1, · · · , ad} be a local orthogonal base of the space of AN-section Γ(AN); then one has the scalar curvature:

S =

d∑
j=1

Ric(a j)

=

d∑
j=1

[
1

d − 1

d∑
i=1

g(R(ai, a j)a j, ai)]

=
1

d − 1

∑
i, j

g(R(ai, a j)a j, ai)

=
1

d − 1

∑
i, j

[c + g̃(h(ai, ai), h(a j, a j)) − g̃(h(ai, a j), h(ai, a j))]

= c +
d

d − 1
∥H∥2 − 1

d(d − 1)
∥h∥2.

4. Characteristic Riemannian Lie Subalgebroid

One of the interesting case is the situation of N with a leaf of characteristic foliation. Here we investigate on the following
case :

If N = L: In this case one has locally :

∀x ∈ L, Ax = (AL)x ⊕ Ker♯x

hence

(AL)⊥x = Ker♯x
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Hence with the notion of compatibility of the A-connection D with the Lie algebroid structure (in the sens of Fernan-
des(2002)), one has the following theorem.

Theorem 4.1 Let (A, g̃) be a Riemannian Lie algebroid. If L is a Leaf of the characteristic foliation, then:

1. For all ξ ∈ Γ(AL)⊥, one has Bξ = 0. Hence (AL) is totally geodesic.

2. The Gauss’s equation become:

g(RL(α, β)γ, δ) = g̃(R(α, β)γ, δ) ∀α, β, γ, δ ∈ Γ(AL). (17)

Moreover KL = K.

3. (AL, g) is minimal

Proof

1. For all α ∈ Γ(AL) and ξ ∈ Γ(AL)⊥, one has:

Dαξ = (Dαξ)⊤ + (Dξα) = −Bξα + (Dαξ)⊥

thus

♯(Dαξ) = ♯(−Bξα) + ♯(Dαξ)⊥ = 0

since (Dαξ) ∈ Γ(AL)⊥ one has:

♯(−Bξα) = 0 and Bξα ∈ Γ(AL)⊥

from the definition of Bξ one has Bξα ∈ Γ(AL), and with the fact that g̃ is not degenerate, one has: Bξ = 0. And AL

is totally geodesic.

2. Since Bξ = 0, then with the gauss formula we have :

g̃(h(α, γ), h(β, δ)) = g̃(h(α, δ), h(β, γ)) = 0

3. This is because that ∀ξ ∈ Γ(AL)⊥, Bξ ≡ 0.

Corollary 4.1 Let (A, g̃) be Riemannian Lie algebroid with constant sectional curvature c̃ and L a leaf of the characteristic
foliation. If (AL, g) has constant curvature c, then we have:

1. c̃ = c

2. for any unit section α ∈ Γ(AL), one has : Ric(α) = c

One of the particularity of the notion of A-connection is the existence of the F -connection (see [?]). Hence we have the
following proposition.

Proposition 4.1 If D is an F -connection, then we have:

(Dξα)⊥ = (Dξα)⊤ = 0

and

[α, ξ] = Dαξ ∈ Γ(AL)⊥

for all α ∈ Γ(AL) and ξ ∈ Γ(AL)⊥.

Proof For α ∈ Γ(AL) and ξ ∈ Γ(AL)⊥, one has:

Dξ = 0 ⇒ Dξα = (Dξα)⊤ + (Dξα)⊥ = 0
⇒ (Dξα)⊤ = −(Dξα)⊥.
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since (Dξα)⊤ ∈ Γ(AL) and (Dξα)⊥ ∈ Γ(AL)⊥ one has:

(Dξα)⊤ = (Dξα)⊥ = 0

Moreover, since Dξ = 0, one has :

[α, ξ] = Dαξ − Dξα = Dαξ

thus

♯[α, ξ] = [♯α, ♯ξ] = 0 ⇒ Dαξ ∈ Γ(AL)⊥

Proposition 4.2 If D is an F -connection, then the isotropic algebra Ker♯ is a Riemannian Lie algebra.

Proof A consequence of the definition of an F -connection (As in the case of Poisson manifolds).

If L ⊂ N

In this case, one has the following decomposition:

AN = AL ⊕ (AL)⊥N

where (AL)⊥N is the complementary gN-orthogonale of AL in AN . Thus for all α, β ∈ Γ(AL) one has:

DN
α β = DL

αβ + h1(α, β)

Moreover :

Dαβ = DN
α β + h(α, β)

= DL
αβ + h1(α, β) + h(α, β)

In other words, since L ⊂ N than AL ⊂ AN and (AN)⊥ ⊂ (AL)⊥. Thus

hN(α, β) = hL(α, β) + h1(α, β)

Hence we have the following proposition

Theorem 4.2 If the submanifold N is entierelly contained in a leaf L of a characteristic foliation, then the Riemannian AN

Lie subalgebroid is totally geodesic. Moreover AN have a reduction of codimension.

Proof This is a consequence of the fact that if L is a leaf of characteristic foliation, then AL is totally geodesic.

Corollary 4.2 If the Lie algebroid p : A → M is transitive, then N is a totally geodesic Riemannian submanifold of the
Riemannian manifold M.

Proof Let γ be a geodesic on M and s an A-path with base path γ. Then α is an A-geodesic (see [?]). From the above
theorem, α is an AN-geodesic and we can conclude.
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