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Abstract

In this paper, we prove the existence and uniqueness of the weak solution of a system of nonlinear equations involved
in the mathematical modeling of cancer tumor growth with a non homogeneous divergence condition. We also present
a new concept of generalized differentiation of non linear operators : ¥ —differentiability. Through this notion, we also
prove the uniqueness and the % —differentiability of the solution when the system is perturbed by a certain number of
parameters. Two results have been established. In the first one, differentiability is according to Fréchet. The proof is given
uses the theorem of reciprocal functions in Banach spaces. First of all, we give the proof of strict differentiability of a
direct mapping, according to Fréchet. In the second result, differentiability is understood in a weaker sense than that of
Fréchet. For the proof we use Hadamard’s theorem of small perturbations of Banach isomorphism of spaces as well as
the notion of strict differentiability.
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1. Introduction

Cancer (Marcotte, 2008) is a serious genetic disease that results in an imbalance between cell division and death, leading
to cells disequilibrium. The balance between these two processes regulates the number of cells in the tissues, and the
breakdown of this equilibrium leads to the development of clusters of cancer cells (called tumors) irrespective of the
normal functioning of the body. The cancer cell is a wanton cell that multiplies itself in an uncontrolled and excessive
manner within a normal tissue of the body. This anarchic proliferation gives rise to increasingly large tumors that grow
up and then destroy the surrounding organs. The cancer cells can also swarm away from a body to form a new tumor,
or circulate in a free form. By destroying its environment, the cancer can become a real danger to the survival of human
being. The fight against this disease is an important field of medical research. The need to adapt various types and forms
of cancers as well as the understanding of complex phenomena involved in its growth has led to the development of
many mathematical models (Patrick, 2013)(Tracqui, 1995) in recent decades. Mathematical modeling of cancer evolution
is a rapidly developing field. Their interest lies in their ability to gather large quantity of information accumulated by
biologists.

Indeed, it is important to understand that the mathematical complexity of a model is not a sufficient criterion to judge
its relevance. Thus, the nature of this phenomenon (the cancer cells have a fluid movement) motivated us to use the
non-stationary compressible Navier-Stokes model, which can describe the disease. These equations do not address the
tumor environment and its interactions directly, but present measurable magnitudes such as the volume density denoted by
p = p(x,t) and the density of the outer forces denoted by &, = &.(x, f), which models environmental factors. Furthermore,
the cells are considered to be transported by a velocity field v = v(x, f), with the corresponding pressure 7 = m(x, ).

The choice of the Navier Stokes system as working equations permits to tackle problems like unknown coupling, nonlin-
earity, and time dependence. The nonlinear nature of the convection term (v - Vv) that appears in these equations is the
source of difficulties in solving this problem. To overcome this difficulty, we use the method consisting of low estimates
and convergences in regular spaces like L*((0, T); L' (I, R%™)). Note that in this paper the goal is to obtain the existence,
uniqueness and %' —differentiability of a nonlinear dynamic system solution with (v, p) = R.(V), where V = (vgpy,&,), in
which vy, pp and &, are respectively the velocity, initial density and function that models the membrane surrounding the
tumor and R, the satisfactory operator

n
=111

[Ro(V) = 2.(V)]| < [V -Vl (1.1)
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where W is a continuous invertible operator and 5 a positive constant. Our approach is therefore to perturb the system,
using measurable functions and operators, twice continuously differentiable in Banach spaces in order to obtain the proof
of the differentiability of the solution (v, p). We end the introduction with a brief description of the content of the document.
In section 2, we formulate the problem and give some preliminary notations that will be used in the following. Section 3
introduces the definition of a weak solution by rewriting the system equations in a particular frame, then we present a result
of the existence and a criterion of weak uniqueness of the weak solution for the case of constant viscosity coefficients.
It generalizes classical criteria like (Solonnikov’s, 1978) criterion for the case of the initial-value problem through an
additional property of the weak solution. Then we give approximate estimates (see Varga, 1971; Aubin, 1972) used
during the process of passing limit in the solution. Finally, section 4 is about uniqueness and generalized differentiability
of the solution when the system is perturbed by a number of parameters.

2. Formulation of the Problem

Cancer is an important area of research in medicine, but also the suject of applied mathematics research. Mathematics
is used in particular to model the growth of cancerous tumors, with the main goal of optimizing treatment by increasing
antitumor efficacy and decreasing toxicity on healthy cells. In this paper, we present a model of differential equations
modeling the tumor across a given area. We consider a non-homogeneous region (variable density) as a function of time
I, = I x (0, T) occupied by the tumor, where I is a lipchitz bounded open set of R* and let 41 be its border. Let x € 1, the
size of the tumor and ¢ € (0, T'), the time parameter. At the initial time ¢ = 0, the tumor has a size x( in the I domain. The
non-stationary model is then described by the following differential equations

3
dpv; 0 _ i
ot " /Z; 6Xj(pvz ® Vi) = pé, + L), V) elx(OT), i=123
@7+§i6m”—o >0 Ve, e Ix0,T 2.1
6t axj_ ap— ’ ()C,) (s )7 ()
3 an
}:-—-zo, VxeIx(0,T),
=1 ot

where £, denotes the density of the external forces and L, ,(v) an operator formally defined by
def . orn .
Ly, (v) := udiv(Vv) + (A + w)V(Vv) - F i=1,2,3
with A and u respectively representing the volumetric and dynamic viscosity coefficients supposed to be constant. The
system is supplemented by initial conditions on density and proliferation rate
pl_y=po@ Vo=@, eyl = g0, V(oD e Ix {0} (2.2)

It is assumed that on the d1 border of the domain /, the velocity checks the boundary conditions

y|[” = 0, V(x, t) € 0l x (O’ T)7

(2.3)
lim (v.p) = (0,0), V1€ ©.7)

It should be mentioned that py ® v € R? in (2.1); is a tensor product of pv and v, and that

S S 5 oy
- vi®v) = - ovi)vi i 24
ZI Fe e > T +;va 7, (2.4)

ij=1
Before announcing the results, it is necessary to define the domains in which we work. In this sub section, we introduce
the notation that will be used throughout this document.
2.1 General Framework and Preliminaries

Let’s give here some notations. The following function spaces provide a standard framework for obtaining the unique
results of overall and differentiability of the solution of system (2.1) — (2.3).

The underlying domain. Let / ¢ R3, a delimited domain 9 its sufficiently smooth border. For T > 0, the interval (0, T
defines the considered time interval and I, = I X (0, T') a space-time domain with boundary 91, = dI X (0, T).
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Standard operators. x = (x;, X3, x3) is the space variable in R. For x,ye R3, x - y = Z?zl x;y;. V is the gradient and A
is the laplacian. When 4(x) = (%1, %, %) is an R3-valued function,

3 .
-3 G ¥l S el - le%llww ),

i,j=1

1/
”Vg“LP(I;R* - ZH “Ln(ﬂR‘ ""

Standard Lebesgue spaces. Let m be a non-negative integer. We denote by H™(I;R?) the usual Sobolev space
W™2(I; R?) as defined in (Lions and Magenes, 1972).

We note by D(I), the space of infinitely differentiable functions with compact support. Its closure in the norm W""(I; R?)
(1 < p < s < +00) is noted by W"”(I;R?). An alternate characteristic in the case where m = 1 and p = 2 is

Hé(l; R3) = {v € WM (I, R?) : yov = 0 on 81,

where 1 is the v trace operator. We also note by LP(I)? = LP(I; R?), the lebesgue space on I with the norm ||.||, and by
|l.llz the norm associated to a space E. If E is a Banach space, L”(0, T'; E) is the Banach space composed of functions,
measurable on (0, 7') which values in E. For details concerning these spaces, see (Adams, 1945) or (Girault ,1986).

Let introduce the solenoidal spaces. We consider zero divergence spaces introduced for the problem (2.1) — (2.3).

3
Ky = {pelR): ) Vi _0, yonl, = o).
=1 6Xj
0 1 3 \ dv;
K, = {veH):R): > 5= =0},
j= J
o 3 3 - avl
Co (R = {ve DURY: ) 7 = ol,
=10

where K, and K, are the respective closure of C (1;R?) in L*(I;R?) and Hy(I; R?).
Let us define the Stokes operator A : DIA]N K, — K!. by

A := —PA, D[A] = WX (I, R} nK!,, (2.5)

where P : L*(I;R*) — K, is the orthogonal projection. Note also that, we have

fAv~¢dx = va Vodx, Yv e D[A], ¢ € Kdlv (2.6)
I

It should also be noted that A~! K}iw — K}ﬁv is a self-adjoint compact operator on K(‘iiv and by the classical spectral
theorems, there exists a sequence £; > 0 and a sequence function {¢;(x)}7; € D[A] such as A¢; = £;¢; (for the existence
and regularity of these functions see for example (Layzhenskaya, 1969) and (Temam, 1977).

Let us now give the definition of a weak solution for the system (2.1) — (2.3).
3. Weak Solution : Existence and Uniqueness
First, let’s give the definition of the weak solution.

Definition 1 Let I be a bounded domain in R? with smooth boundary, and assume that the data vy(x), po(x), &.(x, 1)
satisfy the regularity conditions v, € Kalﬁv, Po € W2(I;R), &(x, 1) € L'((0, T); LAZTSI(I; R3)), (2 <5< 00). Then (v,p)isa
solution of the problem (2.1) — (2.3) on (0, T) corresponding to the initial conditions vy and py if the following conditions
are met :

i) v and p satisfy

v(x,t) > 0 and v(x,t) € L*((0,T); K% ) n L*((0, T); Kd”)

div

p(x, 1) > 0 and p(x, ) € L*((0, T); W"A(I; R)), (3.1
pv € C((0,T); L:'VZTY‘ (I;R%)),
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where C((0,T); X,,) is the space of continuous functions of (0, T) with values in a closed ball of X equipped with the weak
topology of the separable Banach space X.

ii) For all G € CY((0, T); Kd”)

f f(PV —)dxdt Zf fpvj vdxdt+(/l+2/,t)2f f@x] Z_f]dxdt

- f(v(x, T)G(x, T))dx + f(vo -G(x,0))dx + f ‘f(pfe - G)dxdt. (3.2)
I I 0 Jr

=0

iii) For all Y € C'((0,T); W'2(I; R))

f fp —dxdt— Zf fpvj dxdt = fpo(x)y(x, 0)dx. (3.3)
I

iv) Moreover, the following initial conditions hold in the weak sense ,i.e., for every v € Kd ,» we have
(., 1), U) (vo, v) and for every T € W'A(I;R), we have (p(., 1), ) ———> (00, T).

The next section, we discuss the existence and uniqueness of weak solution results for the system (2.1) — (2.3).
3.1 Existence

In this section, we are interested in a result of existence of a weak solution for the model (2.1) — (2.3) modeling the tumor
in a three-dimensional / domain with volumetric viscosity and dynamic coefficients supposed to be constant that satisfy
the following conditions :

u>0, 2u+1>0. (3.4)

The unknowns are the volume density p(x, t), the tumor cell velocity field v(x, t) and the pressure 7 that appears under
the effect of tumor cell movements. The first result of this document is the following lemma on the existence of weak
solutions to the (2.1) system, subject to (2.2) — (2.3).

Theorem 2 Let I c R3 be a Lipschitz bounded domain with a regular border 0I. Let py € W'Y(I;R) and &, €
2s

LY((0,T); L+T(I;R?), 2 < s < oo, Furthermore, suppose B > 0 such that B < p. Then, for a given T > 0, there

exists a unique weak solution (v, p) of the problem (2.1) — (2.3) such that

v e LX((0,T); K, ) N L=((0,T); K}, ),
peL (.7 W21, R)),
= e P7(O.TEKY,), ye©.1),

_p

ot
Proof. For proof, we establish the Galerkin approximation to the (2.1) — (2.3) system. We first present the approximation
scheme, then we estimate a priori the approximate solution, and finally we perform the process of passing to the limit to
approximate solutions.

€ L*((0, T); L(I; R)).

Step 1 (Construction of Approximate Solutions)

We construct approximate solutions using a semi-discrete Galerkin scheme as in (Dautary, 1992) and (Nakagiri, 1998).
To implement it, we take a basic functional subset of K}Ziv as follows

Kni={Y i, 1 <l < < by —— o0, g e C (D). (3.5)
m—+oo

We denote by {¢(x)}}_, linearly independent generalized eigenfunctions corresponding to each distinct unstable eigen-

value ¢, of the operator A = —PA defined on D[A] N K i K}iw, and PP the orthogonal projection of L*(/; R?) on K i
consider the eigenvalue problem
PA¢] + .ﬁj(ﬁj =0, VY(x,nelx(0,T) and ¢j =0, xedl (3.6)

It is well known that {¢;(x)}>., forms a complete orthogonal system in the space Kg. . For a detailed analysis of the
J= v
convergence of expansions of eigenfunctions and the regularity of eigenfunctions, see (Ladyzhenskaya, 1969). Suppose
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that pg, and &, satisfy the assumptions of theoreme 2. By regularizing the initial density, we choose pg,, so that

pom € C(D),
0 <p_0 < Pom < P_O, (37)
Vom € K,y vom — v, in K&

div®

We define approximate solutions for the formulation (2.1) — (2.3) as follows : We say that (v,,, 0,,) iS an approximate
solution if (v, pn) € C'((0, T); K,,,) X C'((0, T); I) such as for the entire domain 1

ot ! 0x; ’ (3.8)
Pmli=0 = Pom(X),  Y(x,1) € I x {0},

3
%+ZV.% =0, Y(x0)elx(,T)
j=1

and
f;( maal;" +V v, ® vm).qbk dx+ Qu+ ) [va.Vq’)kdx = ﬁpn,fem¢kdx,
V() = i LB, vl = Vo0, V(x) € Ix {0}, o
k=1
where ¢,k =1,---,m is abase of K, m € N and {,,4(¢) is defined through the following system :
fpm¢k¢pdx bk i f V- —¢p dxdt+
kp=1
+(2u + ) ;;‘1 f 3%’: a;?d dr = fl Puembpdx, G109

Lmk(0) = (V’o(X), o)), Y elIx{0}, k=1, ,m.

In order to resolve system (3.8), we use the classical method of characteristics to construct a solution. We thus have the
following result.

Lemma 3 Let v € C((0,T); C(D)) so that div(v) = 0 for all (x,t) € (0;T) x I, v(x,1) = 0, for all (x,t) € (0,T) x I and
px) € C'(D), P, < pom £ po forall (x,1) € (0,T) X I. Then (3.8) has a unique solution p € C'((0, T) x I). Moreover, for
every (x,1) € (0,T)x I, B< p <p.

Proof. The proof is standard and we can refer to (Kim, 1987) with a small change in the volumic density.
To simplify the mathematical formulations of the system (3.10), we introduce the following notations

(aznp)lsk,pSm = fpm¢k¢17dx € Cl(os T), (3.11)
I
m Oy
(bl 1<kpsm = jI‘,Okaa—xk%dX €C(0,T), (3.12)
(g i<k psm = (2u + 2) fl a_xka_x;dx €C(0,T), (3.13)
(d)1<kpsm = f PmEem@pdx € C(0,T). (3.14)
I

So we can rewrite the above system of differential equations in matrix form as follows
An(0)E,, (1) + Byu() + Cu(0))bn(t) = Dy (D), (3.15)

where Am([) = (am )mea Bm([) = (bz;)mxm, Cm(t) = (Cfp)mxms and Dm(t) = (d;?:)mxm

Since v € C((0, T),C(I_)) and p € C'((0,T) x I), it is clear that the matrices defined above belong to C(0,T). The
matrix (aqu)mxm is symmetric positive definite , thanks to the orthogonality of (¢i)i=1,. . In Kgiv. In particular, the matrix
(ak’”p) I<k,p<m 18 non-singular. Then (3.15) can be written as

{ £ + AL OBu(D) + Cu®)n(0) = AL (DD (D), (3.16)

Lnk(0) = (vo(x), pr(x)), Y(x,0) e Ix{0}, k=1,...m
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Since A, (1), Byu(t), Cu(t), Dyu(t) € C(0, T), as well as A, ! (1), the resolution of the initial value problem of the above system
follows from the classical theory of ordinary differential equations, so we are assured of the existence and uniqueness of
the solution of (3.10) and therefore, the one of the problem (3.9).

Step 2 (Parametric Sensitivity of Solutions). Let’s give a prior estimate of the solutions of (3.8) — (3.9) with variable
density and constant viscosity. For tumor-related reasons, we consider that the proliferation rate fields disappear on o/
(see the condition (2.3)), and for this reason, we only consider the limit data from Dirichlet for v.

Lemma 4 (estimated solution with low velocity assumption). Let I be a bounded domain in R? with smooth boundary, and
assume that the data v,,(0), p;(0), & satisfy the regularity conditions v,,(0) = vo,, € K(lﬁv, Pm(0) = pom € LX(I;R), Eem €

LY((0,T); L= (I; RY)).
For T > 0 (fixed), suppose there is a constant 3 > 0 such that ¥Y(x,t) € I X (0,T)

0<pB<pn<p, ppinl (3.17)
Then, there is a solution (v, p) of the system (3.8) — (3.9) satisfying the initial conditions (2.2) — (2.3) and the following

inequality :
|V’"||]I2<(‘m < ﬁ*l [(”pOmVOm”i%(l;R;) + ”‘fe’”niz((oj);lﬁzﬁ(1;R3))) exp(T)] . (318)

If p has the additional regularity po, € W"2(I;R), pym € L*((0,T); WhA(rI; R)), then

!
llomll 12z < loomlexp( fo IVVill oz ds). (3.19)

Proof. By combining (2.1); and (2.1), and multiplying by v,,, we then obtain, by integration on the volume /, the
following variational formulation

o2
(=2 )dx + [ (V2 PV ® Vin)Vndx + | V(o) Vindx = | pemVmdix
I ot 1 I I

=u f(Avm)vmdx +(A+p) deiv(vm)vmdx. (3.20)
I I
Applying the derivation theorem, the first term on the left gives the following estimate
OV 1d 2
f; (5 P = 5= flpm|ym| dx, Vte(0,7). (3:21)

The slow mode reaction-diffusion equations allows as to write that the integral on the / volume of the term V : p,,,v,, ® v,
is zero. Indeed we have

1 1
f(v 1 PmVm ® Vm)ymd)C = 5 f PmVmjVmiVmi I’l ds — 5 f pm ththdx
I 0x;

3

OV
Since v,, = 0 on 01, the boundary terms disappear. Further, thanks to the hypothesis of small speeds we have Z pm =0,
O
i,j=1 J
and so we find
fV D PmVm ® Vpdx = 0, Yte(0,7). (3.22)
1

(i) Estimate of u f (Avy)vindx
I

Integrating by parts (Green’s formula), we get
u f(Avm)vmdx = ,uf YoVi(Vvy, - D)ds — u ftr(va -VTy,)dx,
I ar I

(where yj is the unique continuous linear map defined from Wé’z(l ;R?) — L2(I;R?) such that ygv,, = 0, where 7 is the
normal at the border of I, denoted I and ds its surface element). It follows that

f (Av)Vmdx = - Z f a;’;’zz'"’ <y f HD V'”|| dx. (3.23)
i0Xj
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(ii) Estimate of (2 + u) deiv(vm)vm dx
I

(A+p) deiv(vm)vmdx =1 +/1)< fV(vdiv(vm))dx - fAvidx),
I I 1

A+p) detv(vm)vmdx —(A+p) fHDVm (3.24)
Finally, the force provided by the membrane : V¢ € (0,7),
jl\pmfemvmdx < ”Pme L‘;T»VI(I;R%erm”L%([;R3)- (325)
Considering estimates (3.21) — (3.25), the equality (3.20) becomes :
1d
2 f pulvuldx <~ + 2) f [ e o I . (3.26)
1d
35 [obala < lowal s el e (.27)
Applying Young’s inequality, the estimate (3.27) becomes
1d 1 2
2d1 fp'"lv'"| sy ”p’" m“L”l amy 2 éenll 24 1, (3-28)
If we integrate the inequality (3.28) on (0, ) we get
fpm|vm| dx < f “pwn vm”LM a: R’ s+ ”p()mv()m” m([ R3) ”fem“LI((O T)L=T 25 T (IR (3.29)
Applying the inequality of the Gronwall Lemma (Lions, 1972), the inequality (3.29) becomes, for T’ > 0, fixed
2 _ 2
||Vm“wa Sﬁ l(”pOmVOm”LXZT’](I;R; ||§em||L‘((0 ); LLI(I R})) eXP(T) (3.30)
On the other hand, it is easy to see that (2.1), can be in the form
Do+ ST Lo v = ~2Tpm v (3.31)
ot (pm I;:l axj (pm Vmi = Pm * Vm)Pm- .
By integrating on the / domain, we obtain
2 - 4 F<2 fl Vou ||V vldx. (332)
Integrating on (0, ¢) and using Gronwall lemma inequality
!
Hpm”Wl,z(I;R) < |p0m|€xp(wl j()‘ ||VV171||LI’(1;R3)dS)’ 2<p<oo.
]

Theorem 5 Let I be a bounded domain in R with smooth boundary, and assume that the data v,,(0), pu(0), E.m satisfy
the regularity conditions

Vm(0) = vom € KL . pu(0) = po € LA R), £un € L'((0, T); L1 (I; R?)).

Sofor2 < p <s < coand 2u+A>0, there is a solution (V,,, p) of the system (3.8) — (3.9) satisfying the initial
conditions (2.1) — (2.3) and the following inequality :

(2/,[ + /l)”AV’z’l”LZ((O,T);LI’(I;]R3)) s ”pme”;% (I:R%) + ||§€||L1((O,T);L%(1;R3))
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1 2
*t3 ||P0mV0m||L%(,;R3) (3.33)
Proof. According to (3.26), we have the following inequality

1d Dy 2
2 dt lpm|vm|2dx < _(2#+/1)f1”3:“ dx + flpmgemymdx_

By integrating on (0, T), we get the estimate

1 T
3 Ipmlvm(., T)|2dx + (2,u + /l)fo ||div(van)||LP(I;R3)dt

T
< f ( f P emvdx)dt + f (OomVom) dx, (3.34)
0 1 1

T T
(u ) [ 183z = [ ol 2 Il 2y
1
+5 loonvonll; 24 gz (3.35)
T, 2 2
(2/‘ + /l)j; “Aym||LP(I;R3)dx < ||pmvm| LT 1R + “fff“y((oj);L%(l;RS))
1 2
+5 loomvonl, 21 .z, (3.36)
Which completes the proof of theorem 5. ]

Step 3 (Process of passing limit in the approximate solution)

For the rest, we use the compactness results introduced by (Aubin-Lions, 1969) and (Simon, 1987). Indeed, considering
the fact that v,, is bounded in a compact of C((0, T); K}HV) and p,, is also bounded in a compact of C((0, T); W"2(I; R)),
we can define, taking in to account previous estimates, sequences extracted from (p,,) and (v,,) so that when m — oo

Vi 2y in L9((0,T); KL, ),
v 2y, in L2((0,7); KO, ), (3.37)

om 2T b in L2((0, T); WAL R)).
Using the fact that dp,, is bounded in L¥((0,T); W~"(I;R)), we deduce that p,,v,, — pv in Cy(I;R*) and weak in

L*((0, T); L*(I; R%)), and (9p,,/0t) —> Op/0t weak-* in L*((0, T); W=12(I; R)), therefore (v,,0p,,/0t) and (Op,nv,,/Ot) are
bounded in L%((0, T); W=12(I; R)). Thus, we can easily obtain the following convergences

T v, T ov
fo jl‘(.ﬁmg “¢jdxdt —— f(; ﬁpg - ¢ jdxdt,

T T
f f(va - Vo )dxdt — f va - Vo dxdt.
0 1 m—-oo O 1

T T
f f(V : PmVim ® Vi )@ jdxdt —— f fV 1 pv @V ¢idxdt. (3.39)
0 Ji 0 Jr

m—oo

(3.38)

Then
So, from (3.8) — (3.10), we get
! 39, S (7 39, (T (ov, 09,
- mVim + = )dxdt — mVimj 7V dxdt + (A + 2, - - —dxd
Lﬁ(pv BI)Xt ;Lﬁvjaxjv xr+(+”);fof15xj axjxt

T
=£(Vm(0)'¢j(x,0))dx+f0 j;(pmfem'¢j)dth-
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On the other hand, ¢; is the unit orthogonal basis. So we can easily get that for any function ¢; € ]ng, ¢;(.,T) = 0, there

holds
! Ov 0¢;
_fo f[(pv )dxdt—Zf fpvj dexdt+(/l+2y)2f fax, axjd xdt
= [0 6,05 09dx + fo [es. - opasar

This completes the proof of the existence of the weak solution. ]
3.2 Uniqueness of the Solution of the Problem (2.1) — (2.3)

This section is dedicated to the proof of the uniqueness of solutions to the system (2.1) — (2.3). Let us first consider the
case where the initial density has a positive lower limit. We have the following theorem :

Theorem 6 Let (v, p, ) and (v, p, ) be two weak solutions of the problem (2.1) — (2.3) on I X (0,T) for a time T > 0 with
the same initial data (vy, po,.) with regularity vy € de, po € WHA(ILR), &, € L'((0, T); L1 (I; R?)). If moreover (v,p)
,(v, p) satisfy the regularity of definition 1, then v =V and p = p.

Proof. To explain the ideas clearly, we present a formal argument. Let’s start by using the following equations
ov
p—+V: (pv ®v) = pé +divuD [v] + Adiv(v) — n(p)), Y(x,1) € Ix(0,T),

a
ZV" 0, Y(x,5)elx(,T),
i (3.40)

g
Z =0, Y(,0elx(0,T),
0x;j

p|t:0 = p()(x)7 VI[:O = VO(x)'

p(;: +V: (5“@‘) = P&, +diveuD V] + Adiv(y) - 7)), Y(x,1) € Ix (0, T),

P~
— 4+ pP— = 0, V(}C, t) el x (0, T),
7 2 o, (3.41)

v
Z Y120, V(1) eIx(0.T),

Ox;j

Bl_y =Po(®). V], = Vo).
By summing the two systems (3.40) and (3.41) we get the following system :

W V(=T + Y —-P) =0, (5,0 elx(,T),
pa(va;% +V:ipv®Vy-7v)—(1+20W)AWV-7)+V(r —7)

=(-p)~-0v-V:v®V)-V:ip(v-7)®Y, (3.42)

3oy
Z a =0,
j=1

p- /31,=0 = (po = PO)(x), v =V],_y = (vo = Vo)(x).

Multiplying equation (3.42); by (p — p) and integrating on I we get

d
< f lp—fdx + f Vo - Afdx < Ly ~7|V5lo - 71, (3.43)

d
- f|p —Zﬂzdx = LHV(V _%||L‘)(1;R3)”VZ)_”W”(I;]R)”p _'BHWLZ(I;R)’ (3.44)

||p ﬁ“wmu rydx < (1+ 2|V =0, + ||V/3”ivlﬂ(1;n§)||p _ﬁmvlﬂ([;R)' (3:45)

On the other hand, by multlplylng equation (3.42), by 2(v —v) and integrating on /
we have the next estimate :
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d
pr Ip|v —T/‘Izdx + (22 + 4p) f;|V(y —7)|2dx

<2 f|p —Blé - 07 -V - ve iy =] + 2plv - 7 |V¥dx. (3.46)
1
Applying the inequality of Holder and Sobolev we have the following estimate :
d
E“ Vel _%”12(1;]133) +(Q2a+ 4'“)||V(V _V)HZ’(I;H@) s ”V;”LP(I;R%” Ve(v _%”Z(I;R»*)

oAl e~ 05— 7 v T 2 6.47)
Summing the equations (3.46) and (3.47) we get :
d d
E“ Vel _7)“22(1;]1{3) +(u + /l)”V(V _7)“2(1;]1{3) + E“p _70‘“51/112(1;]1{)

= Hp _5”?4112(1;]1{)”5‘5 —0v-V: V®V”i.%1(l;R3)

+ “VV“LF(I;]R%” Vel _T’)”Z(I;]R}) + ||Vﬁ1|§vl-2(1;m)”p _'Z)1livl-2(1;R)

d
E(” Vel _7)“12(1;11@3) + “p _5”51/12(1;11@)) +(2u+ /l)“V(V -v) iZ(I;RS)

= (Hp —5“;1-2(1;@) + “ V(v =) iZ(I;R3))(||§e —0v-V: V®ﬂ|i%u;k3)

H ey * 9Pz} (3.48)

Thus, the application of the Gronwall inequality completes the proof of theoreme 6.

4. Theorems of Existence, Uniqueness and % —Differentiability of the Solution of the Perturbed Problem
4.1 Linearization of the 3D Dynamic System

We consider a bounded domain / with the same initial conditions. In this paragraph, we construct a linear functional
perturbation that linearizes the equation (2.1);. However, let’s look at the term (v - Vv) that appears in the equation
(2.1);. It is at the root of the difficulties encountered in solving this problem. We will therefore linearize the system by
substituting this term with the following perturbation :

FOH, ©) %S Ho(x,1) + Byp(x. 1, v, W), 4.1)

whese ¢ is a measurable function with respect to (x, £), twice continuously differentiable with respect to (v, w)e R? x R?,
and H,, = P a continuous integral operator (see Silvia, 2014) which, at any function ¢, matches H,,. That is written in
expanded form :

def

T
Hp(.,1) 1= f f?(x -y, t = 1)0,90,,v,w)dydt, t>1t, Vx,yel, 4.2)
0 JI

where the P(x — y, t — t’) operator is a linear and continuous application in I X (0, T'). Using the new functions introduced,
the initial value problem (2.1) — (2.3) is reformulated as follows

) T
P(%) + f f?(x -y, t—1)0,9(, 1, v, w)dydt + d,p(x,t,v,w) — Ly ,(v) = p&,
ot U
ap dpv;
ot JZ; o, = 0, V(x,1) € I x (0, T),
3
3 .
> =, VelIx(0.T) “.3)
— 6}Cj
j=1
Pl = P00, V], = o), V(x.0) € Ix {0},
v, =0 Y(x,1) € I x (0,T),
lim (v,p) = (0,0), Vte(,T).
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Note that this system is a simpler version of the (2.1) system since the term (v - Vv) has been replaced by §(H, ¢).
This approach introduced new variables v, w which are considered respectively as an argument of the v(x, ¢) field and its
divergence. We will then make hypotheses about the functions ¢(x, ¢, v, w) and ¥(y,#', v, w) defined on I X (0, T) X R3 x
R® — R°.

4.1.1 Assumptions and Definition

(H-1) : Let B, 8 > 0 and T > 0 (fixed). For every (v,w) € R3 x R?, the functions (x,7,v,w) —> @(x,1,v,w) and
o, ¢, v,w) — 3y, ¢, v, w) are measurable and verify the following conditions

[oCx t,vow)| < (WP + wi)exp(T), @4

|9, v, w)| < B (VP2 + IwP)exp(D). (4.5)

(H-2) : For almost every (x, 1), (y,t") € I X (0, T), the functions (x,#,v,w) — @(x,t,v,w) and (y,t',v,w) — 9, ', v,w)
are twice continuously differentiable with respect to couple (v, w). Moreover : Y(v,w) € R? x R°

|Ave| + |Awg| < 487 exp(T), (4.6)

|A] +|AO] < 4B exp(T). 4.7)

(H-3) : Let A, and B, be two nonlinear F-differentiable and G-differentiable operators. We note by ﬂ: and B'E', the
respective second differential of A, and B, defined as follows

AL X0 = 120, T); KL, — Lo(X0, L2((0, T); L2(1; RY)))
v(x,t) —> ﬂs W) (x, 1)

B L¥((0,T); KL ) — L(X0, L2((0, T); LA ;R?)))
v(x, 1) — B (v)(x, 1)

Let the increases h and g be difined on L2((0, T); H'(I; R?)). We also note by d[A.(v)g, h] and d[B.(v)g, h] (for these
notations see Trenoguine, 1985), the second derivative of A.(v) and B.(v) in v with ﬂ;(v)g =dA(, ).
For an increase of &, independent of g, we have

& gh

A v+ gh— A Oh = Z 6WI<,06 ot + ﬁzgogh + R.(v, gh), 4.8)
B.(v+g)h— B.(vh = Z oo gah + 820gh + Re(v, gh). (4.9)
For h = g we deduce the following formulas
Al A8, 1], Z o2 m +0%pg?, (4.10)
d[B,(1)g.h],, = ; Giiﬁ% + 0294 4.11)

Let us now give the definition of the generalized solution of the perturbed problem (4.3).

Definition 7 Let vy € K:liv , po € WI2(I;R). Generalized solution of the problem (4.3) is a couple of functions (v,p) €
L=((0,T); KL ) x L=((0, T); W'2(I ; R)) such as

1. integral equality is verified :

T T T
f (pd,v, G)dt — 1 f (Vv,VG)dt — (A + ) f (Vv,div(@))dt (4.12)
0 0 0

T T T
+ f f |Ove(x, 1,7, Vv) + f f Plx =yt = )0,0(, ', v, Vv)dydt|Gdxdt = f (p&., G)dt,
0 1 0

forany G e C ((0 T); de)

53



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 6; 2018

2. The function p(x, t) admits a generalized derivative with respect to (x,t). Moreover we have
T 3 T
oY oy
- f (o, =)dt =" f (pvj, 7= dt = {po(x), Y(x,0)), (4.13)
0 ot ‘oo 0x;

forany Y € C((0,T); W'(I; R)).

4.2 Generalized Differentiability of Non Linear Operators

In this section we propose a new concept of generalized differentiability. This concept encompasses the standard notions
of Fréchet differentiability, strict differentiability, according to Gateaux and Lipschitz continuity. We now begin with our
first definition of generalized differentiability.

Definition 8 (strong € —differentiability) Let E and H be two normed spaces, U an open set in E. The operator
F’' : U — H is said to be strongly € —differentiable at the point vo € U, where € is the system of all compacts in
F'(v+ gh—-F (Wh=d[F (v)g, h]hzg + R(v, gh), (a)

where d[F' (vo)g, hl,_, : E — Lo(E,H) is a linear and continuous operator, and R(v, gh) satisfies the following condition.:

8
Ve>0,¥S €¥,356>0

veU, g, heS, te]l-1,1[, |lv—wll <6,
(Da:{( 8 1= 1 1L v = vol

vl <6, v+rghel )= IR(x, Tgh)l| < GITI}, (b)

Proposition 9 The operator F' is € —continuous, respectively € —differentiable on U, if and only if F/ : U — H is
differentiable according to Gateaux and the operator d[F’(vy)g, h]hzg from U to H is continuous on U for each fixed
heE.

Proposition 10 Let I ¢ R? be a bounded Lipschitz domain with a regular border 01. For all (x,t) € I x (0,T), let’s
define the operator A, by Ae . L*((0,T); Kglﬁv) — L*((0,7); L*(I;R%))
v i— o(x,t,v, Vv).

If ¢ and A, satisfy the assumptions (H-1)—(H-3), then, dA.(v, g) is € —continuous and & —differentiable on W(0,T). On
the other hand, A_(v)g* is continuous and is defined by the following operator

d[A()g, 1],y = AL (V)G

for g € L*((0,T); H'(I1; RY)), fixed.

Proof. Suppose (H-1)-(H-3) are checked, and that the operator A.(v) checks the equality (a), we have for all small
enough g and &
A (v + h— A Mh = d[A (v)g, hl,_, + Re(v, gh).

Forte]l-1,1[,7#0, A (v+719h—-A (v)h=dA (v)rg, h]h:g + Rc(v,gh).
Let’s introduce the following reflexive space

’ 0 72 ST2(7-TR3
WO.T) = {ﬂe(v)e (0.7 2R - | e € LEG (0.1 L2(: R) }

A (v) € L(XY, L((0,T); LA ; RY)))
Let’s divide the last equality by 7 and taking the norm on W(0, T'), we have

2 2

’ A + 19 = AW A _ ”&’l;(v +19h AW A (v)h
T W(,7) T T llwo.r
o(x,t,v+ 18, Vv +1Vg)h
= H . - dph’ (4.14)

2

~ i 2 W lnt v I
P W"(’Daxiat T

W(0,T)
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In order to make writing easier, we often omit the variables x and 7.

I ﬂ;(v +71g)h — ﬂ;(v)h B ﬂ: (v)h2 : _ H e(v+18, Vv +19h _ o(v, Vv +1Vg)h
T WO.I) T T
v, Vv +1Vg)h v, Vv)h
—62 h2 [ g) _‘P( - (415)
Z 62h2
¢ X0 W(0,T)
, , 2
‘ A +719h — A (V)h B 3{;’ i o(x, t,v+718, Vv +1Vg)h
T W(.7) T
_olx t,v, Vv + 7Vg)h _ Bl )dxdt
4.16
(x t,v,Vv+1Vg)h ( )
3
go(x, t,v,Vv)h ) O*h? |2 )
- o, d xdt
T Z v oxor| ]
Using the Lagrange formula (Trenoguine, 1985) for a certain 8 € [0; 1], inequality (4.16) becomes
AV+19h-AWh 2 r,
H TR AN a2 < f A (v + 0rg, Vv + TV
T W(0,T) 0
_ 2 [)2],12 4
— 8h da)d di + 17
Ve . " oxion 17
, 2
+ AL (3, Yy + 6V g d&)dxdt
AV+1h-AWh 2
H LV +78) M _ A, (v)h* < (ng(x, tL,v+0rg, Vv + TVg)h2
T W(0,T)
62/’12
210 2
Boh ) Za o de)dxdz
(4.18)
Z ( 92 2
(X, 1, Vv + HTVg)h
O*h? |2
2 12 2
— R h ) Z e d@)dxdt
A +19h — A()h
H v+ 78) ) ~ A (v )h2 f f f Po(x,t,v + Org, VV+TVg)h
T W(0,T)
O*h? |2
2 of 2
_ Poh Za o dxdt)d
(4.19)
<p(x, t,Vv + 9‘1’Vg)h2
_ o] —' dxdt)d@

Passing limit in (4.19) for r — 0, we get

. AW+ TYOh— A
lim

-0 T

= A (vh*
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On this result, it has been shown that A_(v) is differentiable according to Gateaux. Therefore, according to the proposition
9, we can say that ﬂ;(v)h is ¥ —continous and % —differentiable on W(0, T'). Furthermore, ﬂz (v)h? is a bilinear operator
and A, (v)h? € Lo(L*((0,T), H'(I;R?)); W(0, T)).

Which concludes the proof. n
Remark 1 Similary, we can show that B;(v)h is & —continuous and % —differentiable on W(0, T). Furthermore, BZ (V)h? is
a bilinear operator and B, (v)h?> € Lo(L*((0, T); H'(I ; R?)); W(0, T)).

4.3 Lipschitz Approximation Scheme

Proposition 11 Let I be a bounded Lipschitz and open set in R3and T > 0, fixed. Let’s consider vi(x, 1), vo(x,t) € X(v) =
L0, T), K}hv) and Vvy, Vv, € L*((0,T); LP(I ;R3) (2 < p < o). Suppose then that the operator V satisfies at each point
of I X(0,T) the following inequality

V71 = 992,y oy < €xP(T) |1 = V2”K;,v (4.20)

Suppose g is small enough and ”8”21(1;11{3) < wexp(T) and finally ||%”2 < “g”z,([ B Then, there exists a constant

B > 0 such that V(x,t) € I X (0, T), the operator ﬂ;(v) satisfies

)

”ﬂle(vl) - ﬂ;(VZ)”W(O,T) < M@, T)Hv1 - VZ”L‘”((O,T);K‘ ) (4.21)

div

where M(B,T) = 287" NT @ exp(3T/2)(1 + V3)(1 + exp(T)).
Proof Suppose vy, v2 € X0 = L®((0,T); Klliiv)

“ﬂ;(m) - ﬂ;(VZ)“W(O,T) -

3 azg
§ Owip(vi, VV1)—6 +0,0(vi, Vvi)g
= x,-at

3 azg
- Z O p(v2, V) oo = Ovp(v2, VVz)g‘
P x;0t

-1

3 2 1
=) 2, Wy N R )gH2 dt]z
< WP R aar TR U  won

en (4.22)

3

3 62
0vp(v1,Vvi)g + E Ow,p(v1, V1)

P ox;0t

d’g
ox;0t

T 3
A ) - ﬂle(V2)”W(O,T) = [fo dyp(v1, Vv1)g + Z Buyp(v1, V1)
i=1

d’g
ox;0t

3
= 0,p(v2, Vvi)g — Z Ow,0(v2, V1)
o (4.23)
82g
ox;0t

3
+ 0up(v2, IV + ) Bup(v2, Vv1)
i=1

3 2
= > 072, Vv 128 oty )gdt“2
L wi 2 2 8)(,6[ v 2 2 W(O,T)

Using Minskowski’s inequality, (4.23) becomes
A1) = Ay S Mi+ Mo+ M3 + M. (4.24)
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where

Nl
My = f
0
My = f Hzaw(vl e

T

0yp(v1, Vvi)g — Ovip(v2, Vvl)g“W(OT) ] ’

Zawgo(vz VVl)a 3;”W(0T) } ’

M; =

2
Vvg = D, VVz)gHWm) } :

M, = f“ZGWgo(vz Vvl)

Z 0w, 0(v2, VVz)

2
Ox;0t “W(o T)dt} '

1

T
i) Estimate of M, = [ f
0

2
0,601, V7)g = Dt Vg, ]

i< [l

<48 exp(ZT)fO ”g||H1(1;R3)

0vp(vi, Vvi) = 0,0(v2, Vl)“ (OT)

|V1 |K¢lﬁv - |V2|Kzlm LZ(I;R3)d[.

Using Minkowski’s inequality and inequality (4.5), we get
T
M3 <40 [ =l el
T
<4 e =l [ el

Let’s now consider fo dt. Since g is small enough and || 2l < wexp(T) we deduce that

”g”H]([]R3 HI(IRS) -

My < 287" NT @ exp3T/2)|vi = 2|, (4.25)

(O.T)K}, )’

1

T 3 ) 3 2
.. . 0°g
ii) Estimate of M, = ljo‘ H Z Oyp(vi, Vvl)@ - Z Oyp(va, Vvl)MHW(o T)dt}

szz

w1, Vi) = 0y, p(va, VVI)HW(() T)” ;(1 R3)

Ox;0t

62g 2

M2 <128 exp(ZT)f '||V1|Kl |V2'K1 | PR

LX(I;R3)

M3 <128 exp(ZT)f b = vl H%”L a1

< 1282expCT) W = Vel o f“@x@t D

My <2 V3T @B expBT/2)|vi = va|,» (4.26)

(OI)KL)"

The other members M3 and M, are evaluated in the same way.

M; <287 NT @ exp(5T/2)||v1 — 4.27)

V2||L2(<0,T);K;,.‘,)'

My <2 V3T @' exp(5T/2)|[vi = va|» (4.28)

(07K},
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Now, using (4.25), (4.26), (4.27), (4.28) in (4.24), we get
A0 = Ay o, < 287 NT @ expGT/D|v1 =2l 2 1yt

+267 V3T @ exp(3T/2)|v1 - V2||L2«0T>Kﬂm

+287" VT @ exp(5T/2)||v) -

V2||L2((o )KL, )

28 ' V3T w exp(ST/Z)“Vl V2||L2

< M@y - V2”L2<(0,T>:K.‘m>'

((0,T):K! )

t[l\

where M(8,T) = 287" NT @ exp(3T/2)(1+ V3)(1 +exp(T)) is a constant that depends only on 8 and T. We have proved
that ﬂ;(v) is a Lipschitz operator and therefore continuous and satisfies (4.20). |

Remark 2 Note that, practically, we do not need to know the exact v solution to show the proposition 11. It suffices to
establish that v is sufficiently regular. It is also sufficient that g is sufficiently small in norm and that the condition (4.20)
be checked for all ¢ € (0, T) Similary, considering that B, (v) = 9(y,t,v,Vv), we can also show that B -(v) is Lipschitz

with constant N(B, T) = 28" VT @ exp(3T/2)(1 + V3)(1 + exp(T)).
Proposition 12 Let I be a bounded Lipschitz set of R3 and let T > 0 be fixed.
Let’s consider vi(x,1), vo(x,t) € XO = L2((0,7); Kl ) and Vvi, Vv, € L2((0,T); LP(I ; R?)). Suppose the increase g is

< wexp(2T) and finally | Then there is a constant ﬁ > 0 such

small enough and ||g2”illu Ry = axa;”LZ(] R3) = ”g2“H1(1 {R3)

that V(x,t) € I X (0,T), we have :
18008 = B.v2)& |y o) < PB.T) (4.29)

where P(B,T) = 437" NT @ exp2T)(1 + V3).
Proof Suppose vy, v, € L*((0,T); Kd”)

Z 8%, 9% (v1, VV1)

3
- Z 05, 9% (2, VVz)

i=1

|

3

=Y BP0, sz)

i=1

|B.(v)g* - BL(v2)g ||W(0 n= +c')2192(v1,Vv1)g

- 029%(v2, V)¢

wQ.T) (4.30)

2 2
20701, Vv)g? +Zr9wﬁ (1,93 7

x;0t

2
—62192(V2,Vv2)g Hw«m ]

2 2 2 2 g2 3282
S0 (vi, Vvi)g +Z;3W,ﬂ (VI,VVl)ﬂ

T
”BE(Vl)gz - BE(VZ)gZHW(Q’T) = |: 0 x;0t

02g2

2 2 g2

- 029%(v2, Vvy)g? —;3 k) (Vz’vyl)ax,ﬁt
o2

x;0t

4.31)

+ PP (v, Vv)g + Z &R0 (2, Vvl)
i=1

- 23: &2, 9%(vs, VVQ) — O (v2, Vv2)g dt“
i=1

w(.T)

Using Minkowski’s inequality, we get

|1B.0:0)8” = BL2)& ||y 0.y < N1+ Na+ N3 + N, (4.32)
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where

2200, Y98 - 8205, Vg

N = f HZawz(vl,vm

(2. Vg — 0,072, V)|

ﬁ .
M= f ||;5iﬁz<wvl>

2
W(0,T) ] ’

3
0282
— 2 2
':E (9W’_1? (v2, Vvl)6xiatHW(0,T)dt

1

W(0,T) ] ’

Zaz vy, Tra) 2 i a;“wwr) z] .

1

i) Estimate of N, = [ 29%(v1, Vvi)g? — 8y9%(va, Vvi)g H
0

2
W(.T) }

N} < 292 (v1, Vv) — 029% (v, v dt

RN 5 P

T
~ 5 2112 (4.33)
<4B exp(ZT)fo Hg ||HI(I;R3)dt
Ny < 287" VT w exp(2T)
1
\ 2 g2 2 g2 3282
ii) Estimate of N, = 059",V 0, 9" (2, V t
ii) Estimate of N, ; i (2 vl) Z (v2 Vl)ax o
T 3 2.2
07g” |12
2 2 g2 a2 g2
N2 < jov ; Haw,l9 (V],VV]) awiﬂ (VZ’ VVI)“W(O T)H(')x,()t LZ(I;R3)
Using Minkowski’s inequality
N; <12 2T dt
ﬂ exP( )f Hﬁxﬁt L2(1;R3) (4.34)
N, <2 V3w B exp(2T)
The other members N3 and N, are evaluated in the same way.
N; < 287" VT wexp(2T). (4.35)
Ny <28 V3@ T exp2T). (4.36)

By using now (4.33), (4.34), (4.35), (4.36) in (4.32), we get
[8:008* = B.02)& ||y 0.y < PB.T)
where P(8,T) = 48" NT @ exp(2T)(1 + V3).

QED |
Remark 3 Similarly, it is easy to prove that the operator A_ (v)g> verifies the following inequality

A, 18" = AL oy < 4B NT @ exp@T)(1 + V3). (4.37)

Proposition 13 (strict differentiability). Let I be an open bounded Lipschitz set of R3.
Let I(x,1), g(x,1t) € Lz((O, T); H'(I; R3)). Since W(0,T) is a reflexive space, then there is a subsequence (v,)nen Which
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converges strongly in L°((0, T); L*(I;R%)), such that v, — v and g, — 0 almost everywhere in I x (0,T) for
T €] - 1;1[. Moreover, if

1
‘(;RE(HT"giH)’ I(x, 0)' — 0, (4.38)
then ﬂ;(v) is strictly differentiable on W(0, T).

Proof. Let’s fix m € N. Suppose that for n — o0, v, — v, in L*((0, T); L*(I;R?®)). The operators A"(v,) and
ﬂ;’m(vm) satisfy (4.8). Then let’s put

(A

RZ(Il7"g:1l)

AV + 880 — AL V) — A (Veo) g
A+ T"80)8n — AL (Vg — A (veo)T g2, VT el - L5 11

'(lan(llr"gnu ). 1Gx, D) ' f f =R ([[7"2])) x i, Ddxd
Z

—[8vtp(x, 1V + T, Vv + T'V0,) g0 (4.39)

—0up(x, £, Vi, V)gn = O3 p(x, 1, veo) T" 2|, Dyl xdlt

Since the operator A_ is ¢ —differentiable (therefore Gateaux differentiable), the use of the Lagrange formula (Trenoguine,
1985) for some 6 € [0; 1] gives

(R (1721 )| =

V(p(x, vy + HT”gn)T"gﬁ - ﬁgga(x, t, voo)T"gﬁdO) ] I(x, )dxdt

T"
(4.40)
— 63<p(x, 1V + 07'g,) — O2(x, 1, vw)de]r"gﬁ I(x, fdxdt
I T" 0
Using the Cauchy Schwarz inequality, We deduce that
}( " (" g21l)  ix, 1)) |< € DX, 1,y + 07" 8,) = Brp(x, 1, vw)de‘ dxdt) [LE] S
On the other hand, as ||v,, — v«|| — 0 and "g, — 0 almost everywhere in I X (0, T), so
Fo(x,1, vy + 07"g,) — 82 @(x,1,veo) — 0.
|

Remark 4 Following the same steps, we arrive at the same strict differentiability result for the operator 8B, (v). On the other
hand, as % is a linear continuous mapping, from Proposition 11, we deduce that the operator P[B’(v)] is also Lipschitz.
As the operator A’ (v) is lipschitz we show from (4.21) and (4.30) that

|7 0) = A o) + B 00) - PB )|, < b=l (441)

W(.T)

[0 = A ) + (B 0)) - PB )| < Dy max BB (4.42)
where Q = 2 x(T)cosh(T) max(ﬁ‘l,ﬁ‘l) and y(T) = 4 VT @ exp2T)(1 + V3).

Theorem 14 (unigueness of the solution of the perturbed system). Let vy € K! i PO € WUY2(I;R). There is a number

¢ > 0 such that 0 < max(5~ ,ﬁ h < { and suppose that the assumptions (H-1), (H-2) and (H-3) about the functions ¢
and 9 are satisfied. Then the problem (4.3) admits a unique solution (v, p) = Re(qo, &) forall &, € Xg . Moreover :

Re: LT (LR x XY — L0, T); L1 (I RY))

(vopo , &) > Re(qo , &)

is € —continuous and € —differentiable. On the other hand, the operator R is highly differentiable on L (I;R3) x ng

as an application on space (L*((0, T); K. ); o) where o is the weak topology in LX(0,T):;K dw)

div’>
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Proof. Let “V be the functional space defined by
VO.7) :={veX), 3& eX{, g€ L¥(ILRY) 0 = (q0.£.)),

where

“V”(ZV(O,T) = “q0| ifﬁ([;]RB) + ”fe”;o (4'43)
e

with L, ,(v) formally defined by
©p: V(O,T) — L1 (I;R3) x L'((0, T); LT (I; R%))
1 ov
v ;La,y(v) M (90, &)

According to (Ladyzhenskaya, 1970) , it follows that the operator L, ,(v) is a continuous and bijective isomorphism and
V¢, € Xg ,qo € L (I;R?), there is a single couple (v, p) of the perturbed problem (4.3).

Moreover, if fOT flP(x— v, t—=1)0,9(y, ', v, w)dydt +d,¢p(x, t,v,w) = 0, then the equality (4.43) is satisfied. We deduce that
L, ,(v) is linear, continuous and admits an inverse which is also continuous. On this basis, if moreover, the inequalities
(4.21) and (4.42) are satisfed, so L;,(v) is continuous and invertible. Since A’(v) + P(B’(v)) is Lipschitz, then using the

Hadamard theorem, we can write that for all vy € V(0, T), the operator
T

RV) = (g0 LawO) + d[ A1) hl—y + f f Pd|B (v0)g. hl;,_,dxdt) defined from V(0, T) in L= (1; R?)x X2 admits
} ,

a continuous inverse having the following form
T
RO = (q0.Lay®) + A0 + f f PB (v)gdxdt), (4.44)
0 Ji

from L1 (I;R3) x L1((0, T); L¥1 (I; R3)) in V(0,T) .

R(v)~! has an inverse Lipschitz function, so there is a unique (v, p) = R(V), solution to the (4.3) problem. However, under
Proposition 11, R~ is a strongly ¥ —differentiable function. Thus, by using the theorems of strong ¢ —differentiability,
we conclude that R, is ¥’ —continuous and ¢ —differentiable. |

In this paper, we presented a non-stationary, time-dependent mathematical model that models a given tumor. The model
is based on partial differential equations with some initial parameters and conditions. An estimate of the rate v of cell
development and propagation is given. The addition of linear members to the first system allowed us to find a domain in
which we could solve this problem. However, the results obtained can be used in the theory of optimal control, to establish
the necessary optimality conditions.
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