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Abstract

In this paper we introduce a method for solving the nonlinear equation f(x) = 0 where x, f(x) are two vectors. This
method uses the theory of distributions, and it’s a non-iterative method, indeed it creates a sequence of vectors with an
explicit formula and this sequence will converge to the solution of the nonlinear equation.
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1. Introduction

In general, iterative methods are used for solving nonlinear equations (f(x) = 0), thus a starting point of the iterative
sequence is required for these methods. The starting point must be in a neighborhood and close enough to the solution of
the nonlinear equation so that the sequence converges to the solution, which is a disadvantage for these methods.

This paper is a generalization of (Houssein, 2018) in order to treat the case where x and f(x) are two vectors. therefore
the method in this paper will produce a sequence of vectors with an explicit formula, where the solution of the nonlinear
equation is the limit of this sequence. In the following we will study a sequence of distributions in order to present the
algorithm responsible of the creation of this sequence which converges to the solution, in addition two examples are
presented to illustrate the method.

The explicit formula of the sequence and the requirement of only few conditions for the function f in a neighborhood of
the solution are the advantages of this method.

1.1 Distributions and Test Functions (Houssein, 2018), (Schwartz, 1963), (Schwartz, 1966)

Let Q C R? be an open set with d € N*, and let f a locally integrable function on Q, f : Q — R, then the considered
distribution T is the following:

<T,p>=T(p) = ffq&d/l Vo € D(Q)
Q

Where A is the Lebesgue measure, D(Q) the space of the test functions on Q. T is also noted by f, in other words
<f,p>=<T,¢>.

An example of a test function belonging to D(R?) is the following:

o0 = { eTIEif | < 1

0 otherwise

2. Building a Sequence of Distributions That Converges to a Dirac

In the following we consider a function g : Q — R where Q c R? is a non-empty, bounded and open set with d € N*.
The function g is supposed to be a positive function g(x) > 0 Vx € Q. Using the theorem 1 we will be able to create a
sequence of distributions which converges to the Dirac distribution.

Theorem 1 We suppose that the function g has only one zero x* in Q and x* € Q such that g is C? in a neighborhood
of x* and the Hessian matrix at x*: Hess(g) is positive definite, in addition we suppose that exists a neighborhood
of x* which contains a finite number of critical points of g , if we consider the sequence of functions g, defined by:
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d
gn(x) = Ia(x) (n \/; ) 8 then:

1
gy — ——= 8 In the sense of distributions
n—+oo —\/E

Where ¢ = det(Hess-(g)), 0, the Dirac distribution at x*. The convergence in the sense of distributions means that:

1
< gn¢>= f 2(X0)P(x)dA(x) — — ¢(x*) V¢ € DERY)
RY n—+oco \/E

Proof. At first because g > 0, the function g reaches its minimum at x*, thus:

Jac(g) = (a_g a_g)

=0
le 6xd

x=x*

Where x = (x1, ..., Xxg).

Using the Taylor’s theorem g can be expressed by:

g(x) = g(x™) + Jacy-(g).(x — x*) + % "(x — x*).Hesso(g).(x — x*) + ||x — xPe(x = x)

= g(x) = % "(x — x*).Hessy(g).(x — x*) + ||x - xXPe(x — x)

Where € is a function € : R? — R such that: e(x) — 0 and where:

x—0
g &g *
m(x ) Tnron (x*)
Hessy(g) = . :
azg * azg *
o XD @(x )

The Hessian matrix at x*: Hess,-(g) is symmetric and positive definite therefore:
Hess-(g) = 'ODO

Where O is a d x d orthogonal matrix and D a d X d diagonal matrix:

C1 0 RN 0
0 (5 N 0
D=|. | )
0 0 Cqd
Where ¢y, ...,cq > 0.
We obtain that:

1
g(x) = 5 HO0.(x = x)).D(0.(x = x*)) + ||x — x*|Pe(x — x*)

For a ¢ € D(R?) we consider the distribution sequence:

<8¢ >= L | 8n(0)¢(x) dA(x)

d
=< gn, ¢ >= f 1o(x) [n,/zi] e D () dA(x)
R4 JT

d
1 1 s ® * s
=< g, @ >= f 1o(x) [I’l ’2 ] efnz(% (0.(x=x")).D.(O0.(x=x))+|lx—x*| Pe(x—x ))¢(x) dA(x)
R4 JT
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If we make a substitution y = x — x* we obtain:

d
1 HOv y
< g >= f 1o(y) (” e ’ ¢ G IONDONBED gy 4 2%) dA(Y)
Rd JT

Where QF = {x — x* | x € Q}. Q" is a neighborhood of 0.
Another substitution is made x = Oy thus we obtain:

1o () = 10:(07'x) = 1oo- (%)

Where OQ* = {O.y|y € Q*}, OQ" is also a neighborhood of 0, indeed because Q" is a a neighborhood of O then there
exist a ball B(0,7) = {x € R?|||x|| < r} such that B(0, ) c Q*. O(B(0, r)) c OQ* because O is bijective and:

O(B(0,r)) = {0.x|x e R*& ||x]| < r}

In addition we have
lox|* = (0.x).(0x) = 'x('0.0).x = 'x.Id.x = "x.x = |x|”

Then [|Ox]| = ||x]| and

= O(B(0,r) = {0.x|x e RY&||x|| < r} € B(0,7) = {y e R||yll < r}
In the other sens let y € R? such that |[y|| < r then y = 0.(0~'.y) thus y € O(B(0, r)) and B(0, r) c O(B(0, r)).
We deduce that B(0, ) = O(B(0, r)) c OQ* therefore OQ* is a neighborhood of 0.

Back to the substitution x = Oy, the Jacobian matrix of this transforamtion is equal to Jac = 07!, therefore |det(Jac)| = 1.
We know also that 07! (R?) = R because O~! is bijective. Therefore:

d
1 , )
< g § >= f Log: (x) (n £/ 2—) e G EDAHPEO™ D) (071 4 x*) dA(x)
R4 JT

Let the sequence E, be defined by:

d
1 ,
<E,¢>= f (m/—) e 2" EDD GO x 4 x*) dA(x)
R4 27T

we will prove next that:

1
<E,¢>— —— ¢(x")
n=teo | Jdet(Hess,(g))
Indeed
(&5} 0 0 X
0 ¢ ... o[
"x.D.x = (x1,...,%g). .
0 0 ... cg ™

= 'x.Dx= clx% +...+ cdxﬁ

d
Let In = ‘[]R" (n '%‘r) e‘%nz(fx.D.X) d/l(x) then:

d
In — f n i e—%nz(clx%t.ﬁrcdxﬁ) d/l(x)
R4 2

Let the substitution be y = nx < (yv1,...,yq4) = n(x1,..., xg) then the Jacobian matrix of this transformation is equal
to Jac = 11, and |det(Jac)| = (1)?. We will obtain:

d
1
In — ( g] fd e—%(CIy%Jr...Jrcdyi) d/l(y)
R
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Using Fubini’s theorem:

1 1 2 1 1 2
I, = —fe*f“yldA(y.)x...x ,/—fe*deydd/l(yd)
2 R4 2w R4

1 1
C VaxX...Xcq ydet(Hess,(g))

=1,

Using the substitution y = nx for E,;:

d
1
< Ep¢>= (, /2— l f edentrrand p 0t L 4 ¥ dy)
T R4 n

Vy e RY, Vn e N*, |07 2 + x")| < sup(lp()]) = M < oo
n yERd

Otherwise we have:

= Vy e R, Vn € N, Je 30i++ad) g(07! L 4 x)] < MLembenivrend)
n

The application e‘%(C‘»"%“'*C'ﬁ’rzl).(p(O‘l.% + x*) is measurable and the application emalenitrean)) g integrable, therefore
using the Dominated Convergence theorem we deduce that:

n—+co 2

d
<En¢>— [ i) f eI dA(y).9(x)
R4

=< E,,¢>— S S B(x%)
n=teo | Jdet(Hess,(g))

d
Let G, and F, be two sequence of functions defined on R4 by: G,(x) = 1po(x) (”dﬁ) e~ X DxHIPe(070) gnd

d
Fao) = (n &) eirne,

We will prove next that:
IGn = FullLirey — 0
n—-+oo

First we will study it on the ball B(0, \/Lﬁ).
There AN; € N* such that B(0, %) C 0 ¥n > Nj because O is a neighborhood of Og«. Therefore:

d
1 : -

f IGn—F,,IdF[" Vz—] f e = A 4y

B(0.) ) JBo.p)

By making the substitution y = nx:

d
f |G, — F,|dA = /i f e’%(cl}%+--~+9d.¥'{2’)|1 _ e*llyllzé(O’l ,’;)l da®y)
B 2m ) I

Besides we have e(y) 2 0 and:
yA)

1
0.4

) _ i ) 1
||O 12”2: t(O 1X)(0 1X): t(X)OO I.X = 2||)’||2
n n n n n n

Because O~! = 0.
LetO<n< %Min(cl, ...,Cq) then:

JA > 0,Yy € RY such that||y|| < A, = |e()| < n



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 6; 2018

We have |ly|| < vn = %H)’H < \/Lﬁ

There AN, e N*,Vn > N, = # < A thus:

1072 < A Vn = N3 = Max(Ny, Ny)
n

= Ie(O_l%)l <n Vn>Nj

For n > N3 we have two cases to treat:

L If0<eO'H<np=1- e MIPe0™D) < 1 — ¢ b7 and because IvIPe(0'2) > 0:

y

|1 — e DIPEO™ D) = | — P03 < p _ oIbiPn

2. If-n<e0')<0= e MIPe0™ D) _ 1 < oM — 1, and because —IylFe(07'2) > 0:

—IIvII? 1Y _IlvII2 -1 2
1 — e DIPEO™)) Z = bIPe0™ ) _ g < GiPn _ g

We conclude that:

Vi > Ny = |1 — e PO D) < pax(l — M, M1 1) < (1 = g DIy 1 (P _ 1)

v

S Vn >Ny |1 = DIPEO™ D) < bl _ bl

We deduce that Yn > N3:

d
f G, — F,|dA < [ lzi] f g hettten) (gl _ gy 43y
B(0,4;) ) Jre

e_%(Cly%"'m‘*'('dy,zj)'(eTI”)’HZ _ e—nIIyHZ) — o 1(@=2Y A ea=2my]) _ = 3+ 2yt (eat2yy)
By supposition 7 < %Min(cl, ...,Cq) then:
¢i—2n>0 c¢;+2n>0 V1<i<d

Therefore:

f e*%((ﬁ‘l*271),\'%*-4*(9:1*2'7)}’,21) d/l(y) < 00 andf e*%((Cl+2'])}’%+---+(U¢I+2'])ys) dﬁ(y) < oo
R4 R4

In the other hand for y fixed:
10 \F)(y)e—%(m)'%+-~+6d);2,)|1 _ ¢ hiPe0™ ,’7)| -0
,\Vn

n—+oo

Using the Dominated Convergence theorem, we deduce that:

f IG, — Foldl — 0
B(O,%) n—+oo

The second part of the proof will use the lemma 1 presented after the proof. The lemma 1 says that there exists a R > 0
where
Y0 < r < R,3¢ € C(x*,r)such that g() < g(x) Vx e RY & r < ||x — x*|| < R

Where C(x*,r) = {x € R?|||x — x*|| = r}, R is chosen such that B(x*,R) C Q.

Besides AN4 > N5 such that Vn e Nand n > Ny = # < R thus:

1 .1
Yn > Ny, AL, € C(x7, %) such that g(£,) < g(x) Yx € C(x", %’R)

W b
By making two substitutions y = x — x* and then x = 0.y we obtain:

f gndd = f G,dA
C(x*, L R) C0,--.R)

Vi

Where C(x*, 4=, R) = {x € R?| Lf <|lx — x*|| < R}
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d
[ 1 >
f G,dA < A(B(X",R)).|ny[—| e 8@
C0,%.R) 2w

ke

Thus

Where A(B(x*,R)) < co and ¢, € C(x%, %).

e 8E) — (5 Yu Dy A0 yulPe(07 )

Where y,, = 0.({, — x*)

1
0yl = 1lZy — X'l = —
O~ .yull = 1, I N7

And
’y,,.D.yn = clyil +...+ CdJ’id

Let k = min (c;) then:

1<i<d
1
Yu-Doyn > k(g + ...+ yog) = Kllyall* = k-

Therefore
o8 < g ink-ne07 y) _ = dnk ,mne(07 )

Otherwise let 0 < 7 < 1k then:
JA > 0,Yy € RY such that||ly|| < A, = |e()| < n

We have [|O071.y,|| < \/Lﬁ
There AN5 > Ny € N*,¥n > N5 = \LM < A thus:
07 y,ll <A V¥n> Ns
= e(0 y)l <n VYn>=Ns

For n > N5 we have two cases to treat:

1. IFO< 0 ly,) <p= €0 <]

2. If-n < (07 y,) <0 = @) < gm

-1 5,
Thus ¢ "0 ) < | + ¢™ and
P (D) < o1k 4 pmn(zk-m)

By supposition %k — 1> 0 Therefore

f G,dAa — 0
C(O,%,R) n—+oo

d
In the other hand F,(x) = (n A /%{) e~ ('xD.x)

d
F.(x)<|n i o~ 3 lllP)
e 2r
1 d
ﬁf Fodd < A(BO,R).[ny/—| ¢ #7®0 — 0
€. 5B 2 n—+00

f IG,,—F,,ld/lsf G,,d/l+f F,di — 0
C(0, =R C(0, %R CO0, 4R nore

f |Gy — Fpldd — O
B(O,R) n—+oo

Therefore

We deduce that:
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Finally on Q\B(x*, R) the application g is strictly positive g > 0 then g reaches its minimum at o € Q where g(c) > 0.

fG,ld/lzfg,,d/l and f G,,d/lzf gndd
R4 R4 B(0,R) B(x*,R)

Besides we have:

Therefore )
[1
f Gn da = f &n dl=1|n _ f e—nzg(x) d/l(x)
RA\B(O,R) RI\B(x*,R) 2r Q\B(x* R)
And
1 d
f Gpdad <|nq[5=| AQ\B(X',R).e™ ¥ — 0
RY\B(O.R) 2r 400

Otherwise

d
1 ¢
f F,dl= f Lm0 [n4] = | e 2P0 da(x)
R4\ B(0,R) R4 2n
; d
f Fnd/l:f Lipiznri ) | A 52 e 3DV ga(y)
RA\B(O,R) RS 2n

Using the substitution y = nx:

As .
[ 1 i
l(lyllan}(Y)[ EJ e 2(3:DY) fond 0 almost everywhere
Then
f F,d1 — 0
R"”\B(O,R) n—+oo
And

f |G, = Fpldd — 0
Rd\B(O,R) n—+oo

We conclude that:
G, — Fallprey = |G, — FpldA — 0
R n—+oo

Finally V¢ € D(R?)
<gno>= f (G(x) = Fu(x))$(0™ ' x + x*) dA(x) + f Fu(x)¢(0™ " x + x*) dA(x)
R4 Rd

As ¢ is bounded then :
1 .
<G> — —F————=9(x")
n=teo (Jdet(Hess,(g))

The following lemma is used in the proof of the theorem 1.

Lemma 1 Let g be a positive application g : RY — R, we suppose that there exists x* € R? such that g(x*) = 0, and that
exists a neighborhood Q of x* such that g € C'(Q) and such that the number of critical points of g in Q is finite. Then

AR >0,Y0 <r <R, € C(x*,rysuchthatg({) < gx)¥x e RY & r < |lx = x| <R

Where C(x*,r) = {x € RY|||x — x*|| = 7}

Proof. We will proceed by contradiction, we will suppose that it’s not true thus we have:
VYR > 0,30 < r <R, ¥ € C(x",r), 3x € R? such that r < [lx — x*|| < R & g(¢) > g(x)
we will construct a sequence, indeed let R, > 0 for n € N thus:

30 < r, < R, ¥ € C(x*, 1), Ax € RY such that
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o <|lx =X < Ry & g() > g(x)
First let R;, > O such that B(x*,R;,) C Qand M, = inf (g(x))>0

xeC(x*,R;;)
The application g is continuous at x*:

Ve>03r>0, VxeBx,r) =|gx) —gx) <e

g > 0 and g(x*) = 0 then
Ye>03dr>0,VxeB(x"r)=gx)<e

Lete, = M, < M, thendr;, >0, Vx € B(x",r,) = g(x) < M, < M,, we choose r, such that r;, < R;.
Let R, < r; then
30 < r, < Ry, ¥ € C(x*,r,), Ax € R? such that

< |lx—x"| <R, & g() > g(x)

Let ¢, such that g(£,) = inf (g(x)) therefore dx, such that r, < ||x, — x*|| < R, and

xeC(x*,ry)

8(xn) < (&) < 8(0) YL € C(x", 1)

Therefore we conclude that there exists x, € B(x*, R))\B(x*, r,) such that:

{ g(xn) < g(0) VZ € C(x*,ry)
g(xn) < M, < g(y) ¥y € C(x",Ry)

Figure 1. The neighborhood Q

Otherwise the set 0, = {x e R?|r, < |lx — x*|| < R}} is closed and bounded thus O, is a compact set.

The application g is continuous on O, thus the minimum of g is reached on O,, let x;, denotes the vector where g
reaches its minimum on O,,. x;, does not belong to JO, because as we saw above, Jx, belongs to the interior of O, and
8(x,) < g(y) Yy € 00,. Therefore we deduce that x} is a critical point.

*

"1 < llx, = x*|, therefore we will ob-

Second we will repeat the process for the step n + 1 by taking R} | such that R
tain an infinity of critical points in Q, which leads to a contradiction.

In general we have the following theorem if g has several zeros in Q:

Theorem 2 If we suppose that the function g has only k zeros x,...,x] in Q and X],...,X; € Q such that g satis-
fies the hypotheses of the theorem I at each x}, then by considering the sequence of functions g, defined by: g,(x) =
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d
1n(x) (n \/ %) ¢80 e have:

k 1
—

k d o
Proof. It’s enough to say that Q = [J Q; and g,(x) = Y5, 19,(x) (n ,/ﬁ) ™8™ where €; are disjoints and x € ;.
i=1

In the sense of distributions

&n 6)(?

3. Application
Let (S) be a system of equations defined by:

fl(xl,...,xd) =0
(S): :

fd(xl,....,xd) =0

Where Vi = 1,...,d the application f; : Q — R is a function defined on Q where Q ¢ R an open and bounded set with
d € N*. In addition we suppose that there exists only one zero x* of the system of equations in Q and x* € Q, we suppose
also that Vi = 1,...,d the application f; is C? in a neighborhood of x*.

Let g the application g : Q — R defined by g(x) = f7(x) + ... + f7(x) Yx € Q, we suppose that exists a neigh-
borhood of x* which contains a finite number of critical points of g, let g, be a sequence of functions defined by

d
gn(x) = 1a(x) (n \/;) e and let

K = det (2['Jace(fi).Jace (fi) + ... + "Jacy(fa).Jacy (f1)])

Where Jac,-(f;) denotes the Jacobian matrix of the application f;.

Let Jac,-(S) be the Jacobian of the system (§') at x* in other words:

0 * 0 %

P A
Jace($)=| :

0 * 0 %

2 (x) 7 (x)

If Jac,+(S) is invertible then:

1
gn — ——= Oy In the sense of distributions
n—+oo \/f
Proof. It results from the theorem 1. In fact
%8/ « &g %
ﬁ(x ) 6x16x[1(x )
Hess,-(g) = :

&g * g x

0x10xq (x ) @()C )

And for two integers i and j less or equal than d

&g (0 2 2 9 ofi Ofa
= —(— =2— A2+t
ax,ﬁxj (.X ) 6x,~ (axj (fl + + fd ))x* 6X,‘ (fl 6.Xj * * fd 6xj X
filx*) =...= fa(x*) = 0 then ,
g . ofi1 0fi Ofa Ofa
=2 =+ 4
Bxiaxj (x ) (8xi (9xj * * Bxi (9)(]' -
Therefore

Hess(g) = 2(Jace(fi)-Jacy(fi) +

ot tJaCX*(fd)-JaCx*(fd))
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¥YxeR4and x # 0
d
"x.Hess(g).x =2 Z ((Jacy(f)) .x)*
i1

As Jac,-(S) is invertible then (‘Jac,(fi),..., 'Jac,(f) is a basis of R, therefore ‘x.Hess,-(g).x > 0 because if
"x.Hess,(g).x = 0 = (Jac,(f})).x = 0Vi = 1,...,d then x is orthogonal to all vectors of the basis thus x is the
zero vector. We conclude that Hess,-(g) is positive definite.

4. Climbing the Dimensions Algorithm for Finding the Solution

This section will present an algorithm to find the zero x* of the function g which satisfies all conditions presented in the
theorem 1.

d
We take into consideration the sequence of functions g,(x) = 1o(x) (n A/ %) e8), Using theorem 1 we have:

lim f gn(X)p(x) dA(x) = —1 o(x*) Vo e DRY)
n—+co Jpd c
Where ¢ = det(Hess,~(g)).

We consider a several test functions for this algorithm, the idea is to trap the solution each time in a sphere to finish
in the intersection of these spheres, where we will have in the end 2 points where one is the solution and the other is
outside the domain.

We will consider the following test function from the space D(RY):

= _
e?-l-a? if x € B(a,r)
0 otherwise

¢r,a(x) = {

For each test function ¢,, and for each n € N* we call Sy _(a,p,) the sphere of center a and of radius p, where
N [ - _ Juwgidradd
Pn = T oo and y, = —J@ P ERTE

Besides if we have 2 spheres S(¢,7) ¢ RY and S(p,R) ¢ R? of centers respectively & and 7, of radius respectively
rand R such that £ # n and S(&,7) N S, R) # @, then S(&,7) N S(1,R) is a sphere in RY"! with a radius equal to

2 _ 2,2
r2— (%) and with a center y belongs to the line (£, 77) such that y = x; "—LE +¢&, where L = ||n—¢|| and x; = L*’—L‘Rz.

Now we begin the algorithm, let n € N* a bit big, let a € Q and R* > 0 such that Q C B(a,R*). Let (ey,...,ey) the
orthonormal basis of R, we choose 19 such that 1) — a = Ke; where K > R*.

We take the test function ¢, 5, such that Q C B(ro, ro) we obtain then the sphere § $romo (M0, Pon)-
We choose xo such that o — 179 = pose2 = llxo = 70ll = pon = x0 € S, . (0. pos). We take also a test function ¢, ,, such
that Q C B(xo, 1) we obtain then the sphere Sy, . (x0,01n)-

Next we consider the intersection of the 2 spheres:

S 600 10-000) N S g, (0. p1) = S (1, Ry) € R

Where 7; and R, are easily obtained from before and 1; € (179, x0).

Next we choose y; such that y; — 7 = Ries = |ly1 —mill = Ri = x1 € S(1,R;1). Then

Iy —mll = Ry
<x1—Milxo—1m>=0

The symbol < .|. > denotes the scalar product in R
We take also a test function ¢,, ,, such that Q C B(y{, r,) we obtain then the sphere § Srom (Y1,020)

We consider the intersection of the 2 spheres:

SR NSy, (x1,p2) = S, Ry) € R

10
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With 772 € (71, x1)

By recurrence for 1 < k < d — 2 we choose y; such that y; — nx = Riersz = Xk = Nk + Reerra = xr € Sk, Ry).
Then

e — mell = Ry

< Xk — Mer-1 — M1 >=0

<Xk —Mxo—1m0>=0

Where Ry and 1 are calculated from the intersection:

SOu-1,Ric)) N Sy, ket Prn) = S (i, Ri) € R

Where S Sritis (Xx-1, Pn) corresponds to the test function ¢,, ,, , such that Q C B(y-1, rr).

In conclusion VO <k <d-3
Xk+1 = Tis1 + Repr€x43

2R2—p2 2
= ’ 2 _ | 22k Dkebn
Rk+1 = Rk ( 2R, )

2R§_p%k+l)n
Mt =2 )k =) + M

With Ry = pg, and where yo = 19 + pone2 and p(+1), corresponds to the test function ¢, ,, such that Q C B(yx, rx+1).

Otherwise 14-1 — 174-2 is collinear to ey, 179 — a is collinear to e; and V1 < i < d — 2, ; — ;1 is collinear to e;;;.
Therefore V1 <k <d -1
= all® = 03 = 1) + .+ (n = 10) + (g0 = @I
=l = alf® = b = mea P+ -+ lbno = al®

llno — all > R* = ||lnx — all > R*. Therefore n;, ¢ Q.

When k = d — 3 then 4o — 74-2 = Ryneq = Sa-2,Rss) € R% 15,1 and Ry corresponds to the intersection
S (Ma-2,Ra—2) N S¢'¢171~X¢/72 (Xa-25P@-1n) which is a two points H; and H,. Hy = —Ry_1e1 + 14-1 and Hy = Ry_jeq + 1n4-1.
Therefore
IHy = all® = 1Hs = a1l + lIna-1 = al* +2 < Hy = na-1lpg —a >
We have Hy, —n4-1 = Ri—1e1 , a—1 —a = (g—1 —Na—2) + ...+ (11 —no) + (o — a), and iy — a is collinear to e, o —a = Ke;
thus:
< Hy = ng-1l4-1 —a >=< Ry_1e1|1Ke; >= KRy > 0

Therefore
IHz = all* > 4=t — all* > (R*)?

=>H2¢Q

In conclusion we consider the sequence x, = Hy = —Ry_je; + 14-1-

-1
Let r > 0 and ¢ € RY, let ¢(x) = e 1. 5(x) , we take two sequences r, > 0 and ¢, € R? such thatr, — r

n—+oo

and ¢, — c therefore:

n—+oo

~1
Gn(x) = €T e,y (X)) — $(x) Vx € R

If we take the same notations as in the proof of the theorem 1. then:

<& n >= f (Ga(x) = Fu(x))$(0™ x + 57 dA(x) + f Fy()$a(0™" x + x7) dA(x)
R4 R4
And
Gu(07'x +x) = (PO x + X°) = (O x + X)) + $(O ' x + x¥)
As ¢, and ¢ are bounded and by using the Dominated Convergence theorem, we obtain
1

<G n > = Jdei(Hess,(3)) e

11
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If x* € B(c, r) then
< > N
< gnr @y > nokeo

_ <8n.Pn>
Leté, = e and

H,= [r*- !
Ln(&,)

Therefore

lim H, = ||x* — ¢||
n—-+oo

= |x*-cl|= limH,=H
n—+oo

Thus x* € S (c, H). Back to the algorithm we have: YO <k <d -3

Xi+1 = Mis1 + Ripr€x43

2R2—p2 2
_ [p2 _ [ RPenn
Rk+l = Rk ( 2Ry )

2R2—p?
_ & Py
Mk+1 —( w )(Xk"]k)""]k

With Ry = Po alld)(() = 1o + poez. Where

po = lim po,
pr= limpyu, V1<k<d-1
n—+o0o

Ry = lim (R),VY1<k<d-2
n—+oo

e = lirf(nk)nVISde—Z

Xk = lim (i), V1 <k<d-2
n—+oo

Therefore x* € S (170, Rp) and x* € S (xo,p01) = x* € S (10, Ro) NS (xo0, 1) = S (11, R1). We repeat the procedure to obtain:

x* € S(Ma—2,Ra—2) NS (xa-2,pa-1)

Therefore x* = —Ry_je; + Nd-1 OT x" = Ry_i1e; + Nd-1- Otherwise we have (H), = (Rj_1e; + T]d_1)n ¢ Q thus x* =
—R4_1€1 + 14-1. We conclude that:
lim x, = x*

n—+oo

In other words we can obtain an approximation of the solution x* by only computing x, for a big value of n.
Otherwise we can use this approximation for another algorithm for solving nonlinear systems of equations.

4.1 Examples
4.1.1 Example in 2D

Let us take a simple system of equations:

ey =1
(S)'{ x—-y=0

The exact solution of this system is: (x,y) = (0, 0).

In order to apply our algorithm we consider the function g(x,y) = (¢** — 1)> + (x — y)? and its corresponding sequence of
2

functions g,(x,y) = 1p(0,0)2)(X, ) (\;1_27) ~°8(y)

Let Jac(,,)(S ) be the Jacobian of the system (S) at (x, y) thus:

Ly L@y (err e

JClC(x,y)(S) = af df = 1 -1

g(x’ ) 0—y(x,y)

Where fi(x,y) = e — 1 and fo(x,y) = x —y.

The determinant of Jac(y)(S) is equal to: det(Jac(,y)(S)) = —2e** # 0. Thus the function g satisfies all conditions
presented in the theorem 1.

12
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First we take the test function:

-1
From(@ = { T if 2 € Bow, o)

0 otherwise
Where 19 = (3,0) and ry = 6.

Therefore by taking n = 7 we obtain the sphere S bromo (170, Ro) where Ry = 3.011 , then we choose yo = 179 + Roex =
(3,3.011). By choosing the second test function:

-1

brine(2) = { e if 2 € Blyo, )

0 otherwise

Where r; = 7, we obtain then the sphere S%m (x0,p1) where p; = 4.26. Then the approximate solution z7 is at the
intersection of S, (170, Ro) N Sy, . (xo.p1), thus

Z7=—Rie1 +m

2 2\2 p
Where R = R} - (%5220 = 3.0 and = (%5 ) o = m0) + 0 = G, -0.01)
0
We conclude that z; = (-0.01, -0.01).

74 L —
e ’ ~
8 yd AN
/e AN
54 / S(Xo,P1) \
{ Y
! \
44 { \
f
X |
34 | .
a /
24 \ /
\ / /
14 \ ’u‘ f
NS 4
0 Z; * "lo ”
1 \,_\ . e
1 \ L -
24 ‘ rd ’
B B((0,0),2) - &
( ( ™~ e 7 S( No, Ro)
34 - —
-4 T T T T T T T T T T T 1
4 3 2 4 0 1 2 3 4 5 6 7 8

Figure 2. The approximate solution z7

4.1.2 Example in 3D

Let us take a simple system of equations:

Ln(y) = Ln(2)

Ln(x) = Ln(2)
S): {
Ln(z) = Ln(2)

The exact solution of this system is: (x,y,2) = (2,2,2).

In order to apply our algorithm we will search for a solution in Q = B((3, 3, 3), 2), thus we take the function:

g(x,y,2) = (Ln(x) — Ln(2))* + (Ln(y) — Ln(2))* + (Ln(z) — Ln(2))*

3 2
and its corresponding sequence of functions g,(x,y,z) = 1p(333)2)(*,,2) ( \727) e~ 8y,
Let Jac(y,,;(S) be the Jacobian of the system () at (x, y, z) thus:

.IClC(X’y,Z)(S) =

S OxI=
O=i— O
ni—= O O

13
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The determinant of Jac(y,;(S) is equal to: det(Jac(yy;(S)) = ﬁ # 0V (x,y,z) € Q. Thus the function g satisfies all
conditions presented in the theorem 1. '

First we take the test function: .

¢ro,flo(w) = e lf we B(UOs rO)
0 otherwise
Where 1y = (6,3,3) and ry = 6.
Therefore by taking n = 9 we obtain the sphere S bromo (10, Ro) where Ry = 4.23 , then we choose yo = 19 + Roex =
(6,7.23, 3). By choosing the second test function:

-1
¢V|,)(0(Z) — { e l=xo lf Z € B(XO, rl)

0 otherwise
Where r; = 8, we obtain then the sphere S v (xo0,p1) where p; = 6.64. Then we consider the intersection of § Brom (1m0, Ro)N
S¢,]_m (xo0,p1) = S(n1,Ry), which is a circle.

>
2R3 —p7
2R,

2 2
2Ry—py

2
) :4.11andm:( = )(Xo—no)+n0=(6,2.01,3).

Where Ry = [R} —(

We choose y1 =11 + Rje3 = (6,2.01,7.11). By choosing the third test function:

-1

Gy (2) = { ertioal if z€ B(x1,72)

0 otherwise

Where r, = 9, we obtain then the sphere S¢,r2 “ (x1,p2) where p, = 6.47. Then the approximate solution zgy is at the
intersection of S%M (x1,02) N S(11,Ry), thus
9 = —Rrey + 12
2 (283 203
Where R, = [R] - 3R =399andn = | 52 |(vi —m) +m = (6,2.01,2.02).
1
We conclude that zg = (2.01,2.01,2.02).

5. Conclusion

The method presented above is a generalization of (Houssein, 2018) and it demands only to make an integration in order
to find the solution of the nonlinear equation, it presents an advantages compared to some other methods. Otherwise the
approximate solution can be used as a starting point for iterative methods.
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