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Abstract

In this work, it is shown that a set of holomorphic functions, normal in any set, remains normal in the same set under the
action of another holomorphic function. And therefore, we verify that Julia’s sets of two-function composition (no matter
the order of composition) coincide, up to a rescaling.
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1. Introduction

In 2005, Professor SHERETOV Vladimir Gueorguevich in (Grigorief, 2005), proposes to generalize the sets of Fatou and
Julia on the case of a system of holomorphic functions on the sphere of Riemann C.

By applying the classical results of the complex analysis (notably the convergence of a sequence of elements, notion of
a normal family (cf. for example (Shabat, 1969) and (Goluzin, 1966)), the stability of the set of Julia or of Fatou by
composition with a holomorphic function is verified.

This article is dedicated to the study of some properties of such a system. Indeed, we study the influence of a holomorphic
function on a holomorphic family.

Let f ◦n be the n-th iteration of the holomorphic function f (which is different to any constant) of a surface of Riemann S
defined in itself, so we call the set of Fatou for this function, the set on which the iterations family { f ◦n} will be normal (a
pre-compact family of continuous functions)(cf.(Grigorief, 2005)).

We consider the system { f1, f2, · · · , fk} of holomorphic functions, which induces the following series of compositions:

f1, f2 ◦ f1, f3 ◦ f2 ◦ f1, · · · , fk ◦ fk−1 ◦ · · · ◦ f1, · · · (1)

For a good understanding of this article, note the following definition:

Definition 1 System (1) is normal at the point z0 ∈ C, if there exists a neighborhood U of this point such that, from
every infinite sequence of elements of (1), we can determine a subsequence, locally and uniformly convergent, either to a
holomorphic function or to infinity.

We conclude that , system (1) is normal on a set, if it is normal in every point of this set. This set will be denoted Fatou
{ f1, · · · , fk} (set of Fatou for system (1)) and its complementary C \ Fatou{ f1, · · · , fk}, will be denoted Julia { f1, · · · , fk}
(set of Julia for system (1)).

In this paper we will limit to the study of holomorphic systems.

The following theorem plays a vital role in this present work:

Theorem 1 Consider the holomorphic applications fν, ν = 1, ..., k, on C. If the family {( fk ◦ fk−1 ◦ ... ◦ f1)◦n}, n ∈ N,
is normal to the neighborhood of z0, so for any holomorphic function h, the family {h ◦ ( fk ◦ fk−1 ◦ ... ◦ f1)◦n} it is also
normal in this same neighborhood.

Proof. Let U be the neighborhood of this point z0, such that the family {( fk ◦ fk−1 ◦ ... ◦ f1)◦n} be normal in U.

We prove that, {h ◦ ( fk ◦ fk−1 ◦ ... ◦ f1)◦n} is normal in U.

Let’s put g = fk ◦ fk−1 ◦ ... ◦ f1. It is clear that g is holomorphic.According to the hypotheses of the theorem, g◦n is locally
and uniformly convergent in U, either to a holomorphic function, or to infinity.

1st case. Supposose that, g◦n(z) locally and uniformly convergent to a function f in U. So we have:

153



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 5; 2018

a) if h is bounded near the point f (z0), therefore in a neighborhood of z0, the compound h ◦ f (z) , ∞ and
continue.
Let’s analyze the expression h ◦ f ◦n − h ◦ f :
h being holomorphic function and bounded near the point f (z0), then asymptotically, one can write

h(w + ∆w) = h′(w)∆w + o(|∆w|).
h′ is also holomorphic at the point g(z0), then ∃M ∈ R such that, M = sup |h′| in the neighborhood of f (z0).
We will have the following increase:

|h ◦ ( f )◦n − h ◦ f | = |h′ ( f (z)) (g◦n(z) − f (z)) + o (g◦n(z) − g(z)) |
≤ M|g◦n(z) − f (z)| + o (| g◦n(z) − g(z)|) . (2)

The right hand side of system (2) tends to zero when n → ∞ , because g◦n locally and uniformly converge
towards f ;

b) Assume that h ◦ f (z0) = ∞.

Let’s take pn(z) =
1

h ◦ g◦n(z)
. pn is well defined because, h ◦ f (z0) = ∞ is different to zero. Plus, pn → 0

when n→ ∞.
The family of functions pn is holomorphic and bounded in a neighborhood of zero. So for the function

p(w) =
1

h(w)
, there exist a real k ∈ R such that, k = sup |p′| < ∞ in the neighborhood of f (z0).

We have

| pn ◦ g◦n(z) − p ◦ f (z) | = | p′ ( f (z)) (g◦n(z) − f (z)) | +o (| g◦n(z) − f (z) |)
≤ K | g◦n(z) − f (z) | +o (| g◦n(z) − f (z) |) . (3)

The right hand side of system (3) tends to zero locally and uniformly in U(z0), when n tend to∞. It is for this
reason that h ◦ g◦n locally and uniformly in U(z0) converge to∞.

2nd case. Suppose the g◦n locally and uniformly tends to∞ in the neighborhood U(z0) of the point z0.

Let’s take G◦n =
1

g◦n
.

It is clear that for n → ∞, the G◦n locally and uniformly tends to zero. As before, we prove the local and uniform

convergence of the sequence h
(

1
G◦n

)
, either to a holomorphic function or to the constant∞.

The Theorem 1 is then proved.

Consequence.

Let f1 and f2 be two holomorphic functions, then Julia sets for the functions f1 ◦ f2 and f2 ◦ f1 are coincident.

The corresponding Pyzo program: Julia’s set for the function f1(z) = z2 + c

Figure 1. Pyzo program Figure 2. Julia set for the function f1(z) = z2 + c
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Figure 3. Julia’s set for the function f2(z) = z3 + c Figure 4. Julia’s set for the function f1 ◦ f2.

Figure 5. Julia’s set for the function f2 ◦ f1.

Remark 1 It may be noted that Figures 4 and 5 are similar to the difference of scales. So the consequence is true.

Taking inspiration from Theorem 1, we can state the following result:

Theorem 2 The Fatou { f1, · · · , fk} set of the system (1) coincides with the Fatou set of the compound f = fk ◦ · · · ◦ f1.

Proof.

1. Let us first show that Fatou ( f1, · · · , fk) is contained in Fatou ( fk ◦ · · · ◦ f1) =Fatou( f ).

Let z0 ∈ Fatou( f1, ..., fk). Then the family f1, f2 ◦ f1, ... is normal in a neighborhood U(z0) of point z0. In particular,
from the sequence , fk◦...◦ f1, ( fk◦...◦ f1)◦n, functions of this family,we can extract a convergent subsequence, that is
to say the family of iterations ( fk ◦ ... ◦ f1)◦n is normal in the same neighborhood of z0. Therefore Fatou( f1, ..., fk) ⊂
Fatou( f ).

2. Suppose now that, z0 ∈ Fatou( fk ◦ ... ◦ f1) = Fatou( f ). So any family sub-sequence (1) is constituted by the
elements of the form f ◦n, f1 ◦ f ◦n, f2 ◦ f1 ◦ f ◦n, ..., fk ◦ ... ◦ f1 ◦ f ◦n. It is also clear that we can choose a subsequence
fl ◦ ... ◦ f1 ◦ f ◦n, 1 ≤ l ≤ k. Taking h = fl ◦ ... ◦ f1, the family { f ◦n} is normal, so according to Theorem 1, {h ◦ f ◦n}
is also normal. Thus, from the elements of the family (1), it is possible to extract a subset locally and uniformly
convergent, that is (1) is normal.

The theorem 2 is proved.

Remark 2 Theorems 1 and 2 could be stated relatively to Julia sets.
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