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Abstract

Cholera is virulent disease that affects both children and adults and can kill within hours. It has long been, and continues
to be, a global threat to public health regardless of the advancement of medical science and health care service available.
In this paper we formulate and analyze a mathematical model of the dynamics and optimal con- trol strategies for cholera
epidemic. We present and analyze a cholera model with controls: u1 for vaccination of the human population, u2 for
treatment and u3 for health education campaigns. The basic reproductive number R0; the effective reproductive number
Re; as well as disease free equilibrium and endemic equilibrium points are derived. We establish the conditions for optimal
control of the cholera disease using the Pontryagin’s maximum principle and simulate the model for different control
strategies. The results show that vaccination and education campaigns should be applied from start of the epidemic in any
community faced with cholera disease.

Keywords: cholera epidemic, optimal control, Pontryagin’s maximum principle, Basic and effective reproductive num-
bers

1. Introduction

Cholera is an acute, infectious illness caused by infection of the intestine with the bacterium referred to as Vibrio cholera
(Vogt et al., 2010). The disease affects both children and adults. An estimated 3-5 million cases and over 100,000 deaths
occur each year around the world.

Cholera was discovered in 1883 by the great German bacteriologist Robert Koch (1843 -1910). As head of a commission
investigating the disease, Koch went to Egypt where an epidemic was taking place and there he found some sort of
bacterium in the intestines of those dead of cholera but could not differentiate between animals infected with the disease
and those without.

Vogt et.al. (2010) also cited that Koch later in 1883 went to India, where he wrote that he succeeded in isolating ”a little
bent bacilli, like a comma’. He had then discovered that the bacteria thrived in damp dirty linen and moist earth and in
the stools of patients with the disease.

Al-arydah et.al. (2014) noted that in recent years there have been a strong trend of cholera outbreaks in developing
countries, including Haiti (2010 - 2011), Cameroon (2010 - 2011), Kenya (2010), Vietnam (2009), Zimbabwe (2008 -
2009), Iraq (2008), the Democratic Republic of Congo (2008), India (2007) among others.

In Uganda the most recent information on cholera suggest that between (4th - 10th January 2016) the ministry of health
reported 32 cases in Hoima, 2 cases in Moroto and 2 cases in Nebbi districts. Hoima district reported two cholera
related deaths, amounting to 6.3 %. Almost half of the people infected with Cholera were children. Younger children are
reportedly exposed to Cholera during recreation activities such as swimming in water bodies where the health conditions
are below standard levels (Bashiru and Asokan, 2016).

Ali et.al. (2012) cited out that the cholera bacterium is usually found in water or food sources that have been contaminated
by feaces from a person infected with cholera. Cholera is most likely to be found and spread in places with inadequate
water treatment, poor sanitation, and inadequate hygiene. One can get cholera by drinking water or eating food contam-
inated with the cholera bacterium. In an epidemic, the source of the contamination is usually the feaces of an infected
person that contaminates water or food. The disease can spread rapidly in areas with inadequate treatment of sewage and
drinking water. The disease is not transmitted through contact in most cases (Barzley et.al., 2013).
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Gleick and Ajami, (2014) cited out that the symptoms of cholera are not easily noticed but can be severe and the main
features of the disease are; profuse watery diarrhea, vomiting, and leg cramps. In these people, rapid loss of body fluids
leads to dehydration and shock. Without treatment, death can occur within hours. Symptoms typically appear in 2-3
days or even in hours. Also Wang and Modnak (2011) modeled cholera dynamics with controls were they applied the
optimal control theory to seek the cost-effective solution of multiple time-dependent intervention strategies against cholera
outbreaks.

Further more different mathematical models have been developed to predict how best cholera can be controlled by various
researchers, for example, Devipriya and Kalaivani, (2012) worked on the optimal control of multiple transmission of
water-borne diseases; Isere et al. (2014) formulated a model for Optimal control of outbreaks of cholera in Nigeria.
Miller (2009) formulated a general optimal control system applied to population and disease models. Chao (2011) also
carried out research on mathematical modeling of cholera dynamics basically based in Bangladesh and Haiti. He used the
analytic approach by applying the observed cholera outbreak values on the basic SIR model for modeling the infection of
diseases.

Neilan et al. (2010) in their work, they incorporated essential components such as hyper infections, short-lived bacterial
state, a separate class for mild human infections, and waning disease immunity. They also applied optimal control theory,
did numerical simulations and parameter sensitivity analysis to investigate the best combination of different cost-effective
strategies with multiple intervention while Zhou and Cui (2011) investigated stability analysis of a cholera model with
vaccination. In this paper, we improve the work done by Zhou and Cui (2011) to understand the optimal control of
cholera disease under the interventions of vaccination, treatment, and awareness education as our control parameters. By
applying the optimal control theory we want to derive the best optimal solution to mitigate the risk of cholera spread in
our communities.

2. Model Formulation

We consider an SVIRB model, where S (t) denotes the number of susceptible individuals, V(t) denotes the number of
vaccinated individuals, I(t) denotes the number of infected individuals, R(t) denotes the number of recovered individuals
and B(t) denotes the pathogen environment at time t. We include three control interventions, that is: vaccination, treatment
and education awareness. Some of the individuals are vaccinated while others are not.

A proportion of the unvaccinated join the susceptible group while the remaining fraction joins the vaccinated class. Some
of the individuals that are exposed and acquire the disease are treated and at recovery they join class R(t) . Vaccination
does not give permanent immunity to those that are vaccinated.

In this model, we assume a recruitment rate A into S (t) through birth or immigration. Individuals at S (t) can get infected
either through contact with the infected individuals or through contact with the infected environment. Let β be the rate of
contact that is sufficient for transmission of the disease between classes. The infected individuals I(t) join the recovery
class R(t) at a rate α and die due to the disease at a rate d. Due to the nature of the disease, individuals can lose immunity
and become susceptible again at a rate b. A proportion ρ of the susceptible population is vaccinated. All the classes
experience a natural death at a rate µ. We further note that, the pathogen infected population is generated at a rate γ while
the contribution rate of infected individuals to the pathogen growth in environment is η and the cholera virus die naturally
at a rate µ1. Table 1 shows the description of the variables used in the model.

Table 1. State Variables of the Model

Variables Description
S (t) Number of susceptible at time t
V(t) Number of vaccinated people at time t
I(t) Number of infectious at time t
R(t) Number of recovered children time t
B(t) The pathogen population in the contaminated environment at time t
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2.1 Model Assumptions

The following are the assumptions made when formulating the model:

(a) Vaccination, treatment and education are implemented continuously.
(b) Susceptible individuals are vaccinated at a rate of u1 so that u1S (t) individuals are added to the vaccinated class
(c) All infected individuals are treated at a rate of u2 so that u2I(t) individuals move to the recovered class.
(d) Educating the population about the disease reduces the degree of infection from the environment at a rate of u3

Figure 1. Dynamics of cholera model with vaccination, treatment and health education campaigns as controls

The dynamics of cholera as described above is summarized in the model flow diagram in Figure 1. The parameters are
summarized in Table 2.

Table 2. Parameters of the Model

Parameters Description
ρ The fraction of the susceptible recruited individuals to be vaccinated
α The constant recovery rate
β The rate of contact that is sufficient to transmit the disease
b The rate at which the vaccine wears offs
d The death rate due to cholera disease
η The rate at which infected contribute to the concentration of vibrios
γ The rate at which the pathogen population is generated
µ The rate of natural death.
µ1 The natural death rate of the cholera disease
u1 The rate at which the susceptible population is vaccinated
u2 The rate at which infected people are treated
u3 The rate at which the population is educated
A Recruitment rate by birth or immigration

In this model, we derive the optimal control strategy such that the total infection burden is reduced to minimum cost within
a period of 100 days. From the description of the dynamics of cholera as depicted in Figure 1, we have the following set
of ordinary differential equations system.
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dS
dt
= (1 − ρ)A − βS (t)B(t) + bV(t) − u1S (t) − µS (t), (1)

dV
dt
= ρA + u1S (t) − bV(t) − µV(t), (2)

dI
dt
= βS (t)B(t) − (d + α + µ)I(t) − u2I(t), (3)

dR
dt
= αI(t) − µR(t) + u2I(t), (4)

dB
dt
= γB(t) + ηI(t) − µ1B(t) − u3B(t) (5)

with initial conditions
S (0) = S 0, V(0) = V0, I(0) = I0, R(0) = R0, B(0) = B0.

2.2 Model Analysis

Under this Subsection, we start by first establishing the existence of an invariant region and showing that all solutions of
the model (1)-(5) are non-negative and bounded for all t ≥ 0.

2.2.1 Invariant Region

The solutions of equation (1)-(5) are positive for all t > 0 if they enter the invariant region Ω

Proof
Let Ω = (S ,V, I,R, B) ∈ R5

+ be the solutions of the model with non-negative initial conditions. From the interactions the
total population is given by:

NH = S + V + I + R

That is:
dNH

dt
=

dS
dt
+

dV
dt
+

dI
dt
+

dR
dt

Adding the equations (1)-(5), we obtain
dNH

dt
= A − µN − dI (6)

In the absence of the disease d = 0 and (6) becomes

dNH

dt
≤ A − µN (7)

We integrate (7), with eµt as the integrating factor and we obtain

NHeµt ≤ A
µ

eµt +C

C is a constant of integration. Applying initial conditions, when t = 0 and N(0) = N0, this gives

NH ≤
A
µ
+ (N0 −

A
µ

)e−µt (8)

For NH(0) < A
µ

, we have from (8)

0 ≤ NH(t) ≤ A
µ
, f or all t > 0 (9)

This implies that NH(t) is bounded above. That is,

NH(t) ≤ N∗H = max{N0,
A
µ
}. (10)

Similarly, considering (5), we let the total population of the pathogen be B(t), we have

dB(t)
dt
= γB(t) + ηI(t) − µ1B(t) − u3B(t)

dB(t)
dt
= γB(t) + ηI(t) − µ1B(t) − u3B(t) ≤ (γ − µ1 − u3)B(t) + ηNH

dB(t)
dt
=≤ (γ − µ1 − u3)B(t) + ηNH

(11)
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From (10) we have NH(t) ≤ N∗H which implies that

dB(t)
dt
=≤ (γ − µ1 − u3)B(t) + ηNH ≤ (γ − µ1 − u3)B(t) + ηN∗H (12)

Integrating both sides of (12), we have

B(t) ≤
ηN∗H

(−γ + µ1 + u3)
[1 − e−(−γ+µ1+u3)t] (13)

Thus the pathogen population size B(t) ≤
ηN∗H

(−γ + µ1 + u3)
provided (µ1 + u3) > γ. Therefore the feasible solution set of

the pathogen population of the system (1)-(5) enters the region{
ΩB = B(t) ∈ R1

+|B(t) ≥ 0
ηN∗H

(−γ + µ1 + u3)

}
.

Thus the invariant region of the system (1)-(5) is given by{
Ω = (S ,V, I,R, B) ∈ R5

+|(S ,V, I,R, B) ≥ 0;

NH(t) ≤ N∗H; B(t) ≤
ηN∗H

(µ1 + u3 − γ)
}
.

where NH(t) is the total population of individuals and B(t) is the pathogen population. Thus every solution with initial
condition inΩ remains inΩ for all t ≥ 0. The proposed model with equations (1)-(5) is biologically feasible and positively
invariant.

2.2.2 Positivity of Solutions

Let the initial data be
{(S (0),V(0), I(0),R(0), B(0)) ≥ 0} ∈ R5

+.

Then, the solution set
{S (t),V(t), I(t),R(t), B(t)}

of the system (1)-(5) is non-negative for all t > 0.

Proof:

From (1)

dS
dt
= (1 − ρ)A − βS (t)B(t) + bV(t) − u1S (t) − µS (t),

dS (t)
dt
≥ −(βB(t) + u1 + µ)S

By integrating on both sides with respect to τ for τ = 0 to τ = t and applying initial conditions, we have,

S (t) ≥ S (0)e
∫ τ=t
τ=0 −(β(τ)+u1+µ)dτ ≥ 0

Considering (2)

dV
dt
= ρA + u1S (t) − bV(t) − µV(t) ≥ −(b + µ)V(t)

Integrating on both sides with initial conditions, we get,

V(t) = V(0)e−(b+µ)t ≥ 0

Similarly from the other equations (3), (4) and (5) respectively are derived and we have the following results:

I(t) ≥ I(0)e−(d+α+µ+u2)dt ≥ 0

R(t) ≥ R(0)e−µt ≥ 0

B(t) ≥ B(0)e
∫ τ=t
τ=0 (−γ+u3+µ1)dτ ≥ 0.
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2.2.3 Disease Free Equilibrium (DFE)

Let the disease free equilibrium (DFE) point be denoted by X0 = (S 0,V0, 0, 0, 0). The disease free equilibrium point is
obtained by equating the right hand of system (1)-(5) to zero.

(1 − ρ)A − βS (t)B(t) + bV(t) − u1S (t) − µS (t) = 0,
ρA + u1S (t) − bV(t) − µV(t) = 0,
βS (t)B(t) − (d + α + µ)I(t) − u2I(t) = 0,
αI(t) − µR(t) + u2I(t) = 0,
γB(t) + ηI(t) − µ1B(t) − u3B(t) = 0,

In the absence of the disease, (I,R, B) = 0. Therefore the disease free equilibrium is given as

X0 =
{A
µ

(b + (1 − ρ)µ
(u1 + b + µ)

)
,

A(u1 + ρµ)
µ(u1 + b + µ)

, 0, 0, 0
}

2.3 Reproduction Number, R0

Under this Subsection, we derive the expression for the basic reproduction number of the model (1)-(5) using the next
generation method as by Van den Driessche and Watmough (2002). The basic reproduction number is one of the most
useful threshold parameters that characterizes mathematical problems concerning infectious diseases. This parameter is
useful because it helps determine whether an infectious disease will spread through a population or not. We consider

(i) Fi(x) be the rate of appearance of new infections in compartment i.

(ii) V+i (x) be the rate of transfer of individuals into compartment i by all other means, other than the epidemic.

(iii) V−i (x) be the transfer of individuals out of the compartment i.

The disease transmission model consists of the system of equations

x′i = fi(x) = Fi(x) −Vi(x)

where
Vi = V−i (x) −V+i .

From the disease-free equilibrium point X0, we then compute matrices F and V which are m × m matrices defined by

F =
[
∂Fi

∂x j
(S 0)

]
and

V =
[
∂Vi

∂x j
(S 0)

]
with 1 ≤ i, j ≤ m,

where m represents the infected classes and F is nonnegative, V is a nonsingular M-matrix, V−1 is nonnegative and also
FV−1 is non-negative (Van den Driessche and Watmough, 2002).

We then compute matrix FV−1 referred to as the next generation matrix (Diekmann et al., 1990). The effective re-
productive number Re is then defined as

Re = ρ(FV−1)

where ρ(A) is the spectral radius of matrix A (or the maximum real part of the eigenvalues of A).

We now derive Fi andVi of our model system (1)-(5) as:

Fi =


βS B

0
0
0
0

 (14)
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and

Vi =


(d + α + µ + u2)I

(µ1 + u3 − γ)B − ηI
−(1 − ρ)A + βS B − bV + u1S + µS

−ρA − u1S + (b + µ)V
µR − (u2 + α)I

 (15)

At equilibrium point, B =I =0 and the initial conditions are assumed to be positive. Evaluating the equation (14) and
(15) we obtain;

F =
[

0 βS 0

0 0

]
(16)

Similarly, the Jacobian matrix of (15) is found and gives;

V =

 (d + α + µ + u2) 0
−η (µ1 + u3 − γ)

 (17)

We then find the inverse of (17) which is used to compute FV−1 and we get;

FV−1 =

 ηβS 0

(µ1 + u3 − γ)(d + α + µ + u2)
βS 0

(µ1 + u3 − γ)
0 0

 (18)

Therefore the effective reproductive ratio Re is obtained by taking the spectral radius (dominant eigenvalue) of the matrix
FV−1 is given by

Re =
ηβS 0

(µ1 + u3 − γ)(d + α + µ + u2)
Substituting the equivalent of S 0 we have;

Re =
ηβA(b + (1 − ρ)µ)

µ(µ1 + u3 − γ)(d + α + µ + u2)(b + u1 + µ)

The basic reproductive ratio R0 is obtained from the effective reproductive number Re computed when all the control
parameters are equal to zero

R0 =
ηβA(b + (1 − ρ)µ)

µ(µ1 − γ)(d + α + µ)(b + µ)

2.3.1 Endemic Equilibrium Point (EEP)

According to Ugwa et.al. (2013) an endemic point is the state where the disease cannot totally be eradicated but remains
in the population. For the disease to persist in the population, the immunized class, the susceptible class, the infected class,
the infectious class and the recovered class must not be zero at equilibrium state. Let the endemic point be denoted by
E∗ = (S ∗,V∗, I∗,R∗, B∗) and also let the right hand side of model system (1)-(5) be equal to zero. Computing algebraically
the EEP, E∗ is given as:

S ∗ =
A(b + (1 − ρ)µ)
µRe(b + u1 + µ)

V∗ =
A
µ

(
ρA(b + u1 + µ) + u1(b + (1 − ρ)µ)

Re(b + µ)(b + u1 + µ)

)
I∗ =

β(A(b + (1 − ρ)µ))((1 − ρ)A + b(AρARe(b + u1 + µ) + u1(b + (1 − ρ)µ))
Φ

+

(µ + u1)A(b + (1 − ρ)µ)(µRe(b + u1 + µ))
Φ

R∗ =
β(A(b + (1 − ρ)µ))2((1 − ρ)A + b(AρARe(b + u1 + µ) + u1(b + (1 − ρ)µ)))

∆
−

(µ + u1)A(b + (1 − ρ)µ)(µRe(b + u1 + µ)(ρ + u2))
∆

B∗ =
(1 − ρ)A + b(AρARe(b + u1 + µ) + u1(b + (1 − ρ)µ))

Ψ
+

(µ + u1)A(b + (1 − ρ)µ)(µRe(b + u1 + µ))
Ψ
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where

Φ = (d + α + µ + u2)(µRe(b + u1 + µ))(βA(b + µ)(b + u1 + µ)(b + (1 − ρ)µ))
∆ = (µRe(b + u1 + µ))(d + α + µ + u2)βA(µRe(b + µ)(b + u1 + µ)(b + (1 − ρ)µ))
Ψ = βA(µRe(b + µ)(b + u1 + µ)(b + (1 − ρ)µ))

3. Optimal Control Analysis

In this Section we use the optimal control theory to investigate the behavior of the model system (1)-(5). Our main goal
is to vaccinate as many susceptibles as to minimize the number of infected individuals due to cholera and the cost of this
strategy. We fix the terminal time T , the problem is to minimize the objective functional J given as:

J(u1 , u2 , u3 , u4) = min
(u1, u2, u3, u4)

∫ T

0
{L1S (t) + L2I(t) +

1
2

(M1u2
1 + M2u2

2 + M3u2
3)}dt (19)

where L1 and L2 are the weight constants of the susceptible and the infected groups respectively, whereas M1, M2 and M3
are the constant relative cost weight parameters for vaccination, treatment and education campaigns efforts respectively
which regulate the optimal control. We further assume that due to uncontrollable reasons, the cost of vaccination, treat-
ment and education campaigns is nonlinear and quadratic as seen in the cost function (19). M1u2

1 represents the cost of
vaccination, M2u2

2 represents the cost of treatment and M3u2
3 represents the cost of the education awareness.

Thus the Lagrange for the optimal control problem (19) is given by:

L(NH ,NB , ui) = {L1S (t) + L2I(t) +
1
2

(M1u2
1 + M2u2

2 + M3u2
3)} (20)

where NH is the total population of people, NB is the free pathogen environment and ui representing controls with i = 1, 2, 3
as defined in Table 2. The Hamiltonian function H for our control problem is:

H =L1S (t) + L2I(t) +
1
2

(M1u2
1 + M2u2

2 + M3u2
3)+

λS (t)((1 − ρ)A − βS (t)B(t) + bV(t) − u1S (t) − µS (t))+
λV (t)(ρA + u1S (t) − bV(t) − µV(t))+
λI(t)(βS (t)B(t) − (d + α + µ)I(t) − u2I(t))+
λR(t)(αI(t) − µR(t) + u2I(t))+
λB(t)(γB(t) + ηI(t) − µ1B(t) − u3B(t))

(21)

We therefore need to numerically solve our optimal control functions u∗1, u∗2, and u∗3 that satisfy our optimal control
condition:

J(u∗1, u∗2, u∗3) = min{J(u1, u2, u3) : (u1, u2, u3) ∈ U)}
where U is the set of admissible controls defined by

{(u1, u2, u3) : 0 ≤ u1, u2, u3 ≤ 1, t ∈ [0,T ], u1, u2, and u3 are lebesgue measurable}

3.1 The Optimal Control Solution

Here we apply the Pontryagins maximum principle (PMP), (Pontryagin et.al., 1962). We use this principle to identify
the adjoint functions of the optimal system and represent the optimal control solution in terms of the state and co-state
functions. The main goal of this principle (PMP) is to minimize the objective function. Thus depending on the constraints
in the objective function, we will minimize the Hamiltonian function, H with respect to the controls and define the co-state
functions as λS , λV , λI , λR and λB associated with the state equations defined for S, V, I, R and B. We further note that
from (21) Theorem 3.1 holds.

Let S, V, I, R and B be the optimal state solutions with associated optimal control variables u1, u2, u3 for the optimal
control model system (1)-(5), there exist co-state variables λS , λV , λI , λR and λB. Thus to achieve the optimal control, our
co-state functions must satisfy:

dλS

dt
= −∂H
∂S
,

dλV

dt
= −∂H
∂V

dλI

dt
= −∂H
∂I
,

dλR

dt
= −∂H
∂R
,

dλB

dt
= −∂H
∂B
.
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Where

∂H
∂S
= L1 − λS (βB(t) + u1 + µ) + λVu1 + λIβB(t)

∂H
∂V
= λS b − λV (b + µ)

∂H
∂I
= L2 − λ1(d + α + µ + u2) + λR(α + u2) + λBη

∂H
∂R
= −λRµ

∂H
∂B
= −λS βS (t) + λIβS (t) + λB(γ − µ1 − u3)

Thus

dλS

dt
= λS (βB(t) + u1 + µ) − L1 − λVu1 − λIβB(t)

dλV

dt
= λV (b + µ) − λS b

dλI

dt
= λ1(d + α + µ + u2) − L2 − λR(α + u2) − λBη

dλR

dt
= λRµ

dλB

dt
= λS βS (t) − λIβS (t) − λB(γ − µ1 − u3)

With transversality or final time conditions;

[λS (T ), λV (T ), λI(T ), λR(T ), λB(T )] = 0.

The characterization of the optimal controls u∗1(t), u∗2(t), u∗3(t), that is the optimality equations are based on the conditions:

∂H
∂u1

=
∂H
∂u2

=
∂H
∂u3

= 0

for

∂H
∂u1

= M1u1 − S (t)λS + λVS (t) = 0

∂H
∂u2

= M2u2 − λI I(t) + λRI(t) = 0

∂H
∂u3

= M3u3 − λBB(t) = 0

Subject to the constraints with 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, 0 ≤ u3 ≤ 1 and solving for u1 = u∗
1
, u2 = u∗

2
, u3 = u∗

3
from the

above set of equations, the optimality conditions are obtained as follows:

u∗
1
=

(λS − λV )S (t)
M1

u∗
2
=

(λI − λR )I(t)
M2

u∗
3
=
λB B(t)

M3

Thus using the bounds of the control its optimal control u1(t) is given by

u∗1 =


(λS −λV )S (t)

M1
if 0 ≤ (λS −λV )S (t)

M1
≤ 1

0 if
(λS −λV )S (t)

M1
≤ 0

1 if
(λS −λV )S (t)

M1
≥ 1.

(22)
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Control u1(t) can be written in compact form as

u∗1 = min{max{0, (λS − λV )S (t)
M1

, 1}}

Also using the bounds of the control u2(t) , its optimal control is given by;

u∗2 =


(λI−λR )I(t)

M2
if 0 ≤ (λI−λR )I(t)

M2
≤ 1

0 if (λI−λR )I(t)
M2

≤ 0

1 if (λI−λR )I(t)
M2

≥ 0.

(23)

Again control u2(t) can be written in compact form as

u∗2 = min{max{0, (λI − λR )I(t)
M2

, 1}}

Using the bounds of the control u3(t) , its optimal control is given by;

U∗3 =


λB B(t)

M3
if 0 ≤ λB B(t)

M3
≤ 1,

0 if λB B(t)
M3
≤ 0

1 if λB B(t)
M3
≥ 0

(24)

In compact form, control u3(t) can be written as

u∗3 = min{max{0, λB B(t)
M3
, 1}}

From equations (22), (23) and (24) we obtain the following optimality system

dS
dt
= (1 − ρ)A − βS (t)B(t) + bV(t) − min{max{0, (λS − λV )S (t)

M1
, 1}}S (t) − µS (t),

dV
dt
= ρA + min{max{0, (λS − λV )S (t)

M1
, 1}}S (t) − bV(t) − µV(t),

dI
dt
= βS (t)B(t) − (d + α + µ)I(t) − min{max{0, (λI − λR )I(t)

M2
, 1}}I(t),

dR
dt
= αI(t) − µR(t) + min{max{0, (λI − λR )I(t)

M2
, 1}}I(t),
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dB
dt
= γB(t) + ηI(t) − µ1B(t) − min{max{0, λB B(t)

M3
, 1}}B(t),

dλS

dt
= λS (βB(t) + min{max{0, (λS − λV )S (t)

M1
, 1}} + µ) − L1

− λVmin{max{0, (λS − λV )S (t)
M1

, 1}} − λIβB(t)

dλV

dt
= λV (b + µ) − λS b

dλI

dt
= λ1(d + α + µ + min{max{0, (λI − λR )I(t)

M2
, 1}}) − L2

− λR(α + min{max{0, (λI − λR )I(t)
M2

, 1}}) − λBη

dλR

dt
= λRµ

dλB

dt
= λS βS (t) − λIβS (t) − λB(γ − µ1 − min{max{0, (λS − λV )S (t)

M1
, 1}})

with S (0) = S 0, V(0) = V0, I(0) = I0, R(0) = R0, B(0) = B0 and

λS (T ) = λV (T ) = λI(T ) = λR(T ) = λB(T ) = 0 (25)

We note that the optimality system consists of the state equations with the initial conditions, the co-state equations plus
the final time conditions and the optimal control solution. All these are solved numerically in Section 4.

4. Numerical Simulations

Under this section, we numerically solve the model system (1)-(5) together with the control systems. We apply the
Forward Runge-Kutta fourth order scheme, Devipriya and Kalaivani (2012) to compute the optimality control solution as
well as the transversality conditions given in (25). The state equations are solved using the initial values given in Table 3,
for the different simulations. Various constant parameters used in the objective function are; L1 = 0.02, L2 = 10, M1 =

10, M2 = 10, M3 = 20 . The parameter values used in the simulation are stated in Table 3 with the set initial conditions
and we consider the entire period T = 100 days.
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Table 3. State variables and parameters of the Model with control strategies

Variables Description Value Reference
S (0) Number of the susceptible at

time t = 0
100 Assumed

V(0) Number of the vaccinated at
time t = 0

25 Assumed

I(0) Number of infected at time
t = 0

50 Assumed

R(0) Number of recovered at time
t = 0

10 Assumed

B(0) Free pathogen environmen-
t at time t = 0

100 Assumed

Parameters
A Recruitment rate 10 per day Assumed
β Contact rate to transmit the

disease
0.2143 per
day

[22]

ρ Proportion of infants with
maternal immunity

0.6 [15]

ρ Proportion of vaccination 0.85 Assumed
α Recovery rate 0.2 per day [15, 23]
b Rate at which the vaccine

wears off
0.005 per day Assumed

d Disease induced death rate 0.015 [23]
η Contribution of the infected

to environment
10 cell/L per
day

Assumed

γ Generation of the pathogen
population

0.073 per day Assumed

µ Natural death rate of human 0.0000548
per day

[23]

µ1 Rate of death of the cholera
disease

1.06 per day [23]

4.1 Optimal Vaccination Only

Under this strategy, we use the control u1 to optimize the objective function while u2 and u3 are set to zero. From Figure
2(a) control u1 is maximum from t = 0 to t = 64 days and drops rapidly to zero. This implies that vaccination is
effective from the beginning and should be fully implemented. When there is vaccination, the susceptible individuals
take longer to leave the susceptible class because their degree of susceptibility is low than when there is no vaccination.
Furthermore infected individuals take less time to recover in the presence of vaccination (7 days) compared to when there
is no vaccination (15 days) as shown in Figure 2(b)

4.2 Optimal Health Education Campaigns Only

Under this strategy we use control u3 to optimize the objective function while u1 and u2 is set to zero. From Figure 3(a)
controls u3 is maximum from t = 0 to t = 74 days and drops rapidly to zero. This implies that education campaigns
are effective from the beginning and should be fully implemented like in the case of vaccination. In 3(c) it is clearly
shown that the control reduces on the number of the free pathogen to 400 cell/L as compared to 1800 cell/L when there
is no health awareness and it greatly reduces the pathogen existence. We further note that in figure 3(b) health education
campaigns have no effect on the vaccinated class.
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(a) u1 control (b) u1 profile

(c) u1 profile on environment

Figure 2. A curve showing the influence of vaccination on the dynamics of cholera disease

(a) u3 control (b) u3 profile

(c) u3 profile on pathogen environment

Figure 3. A curve showing the influence of health education campaigns on cholera disease

4.3 Optimal Vaccination and Health Campaigns Only

Under this strategy we use two controls u1 and u3 to optimize the objective function while u2 is set to zero.
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(a) u1 and u3 controls (b) u1 and u3 profiles

(c) u1 and u3 profile on pathogen environment

Figure 4. A curve showing the influence of vaccination and health education campaigns on cholera disease

Figure 4(a) shows that u1 is maximum from t = 0 to t = 61 days and the control is maximum from t = 0 to t = 66 days
and they both gradually decrease to zero, this implies that vaccination and education campaigns should be administered
fully from the start. With these two controls applied, the disease will disappear within the first 15 days as shown in Figure
4(b) and with both these controls in place the pathogen population will reduce from 1800 cell/L to 290 cell/L as shown in
Figure 4(c) hence these two controls are effective in eliminating cholera disease.

4.4 Optimal Vaccination, Treatment and Health Education Campaigns

Under this strategy, we use all controls, that is, u1, u2 and u3 to optimize the objective function. In Figure 5(a), u1 and u3
are maximum from t = 0 to t = 61 and t = 0 to t = 66 days respectively and drop rapidly to zero. u2 is low throughout the
time. This implies that vaccination and education campaigns should be applied right away from the beginning. Treatment
is low because if more people are vaccinated then a few will get sick. With all the controls applied the disease will
disappear within 18 days as shown in Figure 5(b). With no controls the disease will persist for about 22 days and the
pathogens for about 16 days as shown in Figure 5(c).

5. Conclusion

The main purpose of this work was to formulate and analyze a mathematical model of the dynamics and optimal con-
trol strategies of cholera disease. We have presented and analyzed a cholera model with controls, u1 for vaccination of
the human population, u2 for treatment and u3 for health education campaigns. We derived and analyzed the conditions
for optimal control of the cholera disease using the Pontryagin’s maximum principle, and simulated for different control
strategies. The results show that vaccination and education campaigns should be applied from the start followed by treat-
ment. The purpose of education campaigns were to let individuals understand the risks in the contaminated environment,
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(a) u1, u2 and u3 controls (b) u1, u2 and u3 profiles

(c) u1, u2 and u3 profile on pathogen environment

Figure 5. A curve showing the influence of vaccination, treatment and health education campaigns on cholera disease

the need of vaccination was to ensure that the degree of susceptibility is as low as possible and treatment was to reduce
the number of infected individuals.
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