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Abstract 

This paper investigates the dynamics for a class of nonlinear higher-order coupled Kirchhoff equations with strong linear 

damping. By means of the method proposed by Eden et al., the Lipschitz continuity and the discrete squeezing property of 

its solution semigroup are proved, and thus the existence of the exponential attractor is obtained. 
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1. Introduction 

In 1990, an exponential attractor for a continuous map S  which conducts on a compact invariant set B  was defined by 

Eden et al. As an inertial set, and as a compact, invariant finite dimensional subset M  of B  containing the global 

attractor A , which is the  -limit set of B , and all points of B are attracted at least exponential rate. The recently 

developed exponential attractor theory retains many aspects of the global attractor and inertial manifold. The exponential 

attractor and global attractor, the main difference is that, once they are in an absorbing ball, all the solutions converge to 

the exponential attractor in an exponential rate, so the exponential attractor contains the global attractor, and the stable 

manifold convergence is only polynomial; but comparing to the inertial manifold, it also has finite dimension and attracts 

the solution exponentially, while the exponential attractor is not needed to have a manifold structure. The simple 

constructive way for exponential attractor is to restrict the inertial manifold to an absorbing set. But anyway, in general, 

when all the sets exist, they have the following relationship: A M B B   , set M B , M  is an 

exponential attractor.  

Initially, we recall the exponential attractors of some equations that have been certified. 

In cooperation with Eden, (Milani, 1992) obtained some conclusions on the existence of exponential attractors for the 

semi-linear damped wave equation, especially considering the case of nonlinear term in three-dimensional space: 

( )tt tu u u g u f    . 

Next, (Brochet et al., 1994) considered the system of equations with simultaneous order-disordered and phase separation 

dynamics in 3N  , the existences of the inertial set and the maximum attractor were proved and the upper bound of the 

fractal dimension of the attractor was obtained. Subsequently, the existence of exponential attractors was established by 

(Eden & Rakotoson, 1994), that is, there is a sufficient condition for DSP to guarantee its existence. (Eden & Kalantarov, 

1996) simplified the framework by introducing a unified method to both the existence of exponential attractor by   

contraction and the construction of exponential attractor by some Lipschitizianity condition of nonlinear operator. (Eden 

et al., 1998) had an improvement in the original construction of exponential attractor. 

In recent years, an exponential attractor for second-order lattice dynamical system with nonlinear damping was 

constructed by (Fan & Yang, 2010). Secondly, the strongly damped wave equation: ( ) ( )tt tu u u u f x    , its 

exponential attractor was studied in (Yang & Sun, 2010; Li & Yang, 2013). By using a method based on weak 

quasi-stability estimation, the existence of exponential attractor for the Kirchhoff equation with strong nonlinear damping 

and supercritical nonlinearity was proved by (Yang & Liu, 2015): 

2 2
( ) ( ) ( ) ( )tt tu u u u u f u h x         . 

Ma, Q. Z and her students considered the existence of exponential attractor with method proposed by Eden et al. Through 
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non-classical diffusion equation, Kuramoto-Sivashinsky equation, nonlinear beam equation, dissipative MKdV equation, 

nonlinear reaction-diffusion equation with derivative term, drawbridge equation, and nonlinear stretchable beam equation, 

see (Ma & Liu, 2011; Gao & Ma, 2011; Wang et al., 2011; Han & Ma, 2011; Kang & Ma, 2012; Wang & Ma, 2016; Jia & 

Ma, 2017). 

Authors in (Shang & Guo, 2005) considered the global fast dynamics of the generalized symmetric regularized long wave 

equation with damping term and got the squeezing property of nonlinear semigroup and the existence of the exponential 

attractor. (Lin et al., 2017) studied the global dynamics of a nonlinear generalized Kirchhoff-Boussinesq equation with 

damping term and proved the existence of its exponential attractor: 
22 ( ( ) ) ( ) ( )tt t tu u u u div g u u h u f x          

.
 

The exponential attractors of higher-order nonlinear Kirchhoff equation were analyzed by (Chen et al., 2016): 

2

( ) ( )( ) ( ) ( )m m m

tt tu u u u g u f x      
.
 

Inspired by the above, this article arranges as follows. In Part 2, some of the main preliminaries are stated, and in Part 3, 

the Lipschitz continuity and discrete squeezing property of semigroup are acquired, thereby exponential attractor is 

established. 

 
2 2

1 1( )( ) ( ) ( , ) ( ),    in [0,+ )m m m m

tt tu M D u D v u u g u v f x         ,  (1.1) 

 
2 2

2 2( )( ) ( ) ( , ) ( ),     in [0,+ )m m m m

tt tv M D u D v v v g u v f x         , (1.2) 

 0 1( ,0) ( ),       ( ,0) ( ),       tu x u x u x u x x   ,    (1.3) 

 0 1( ,0) ( ),        ( ,0) ( ),       tv x v x v x v x x   , (1.4) 

 0,      0,      0,1,2, , 1,     ,  0
i i

i i

u v
i m x t

n n

 
     

 
, (1.5) 

where   is a bounded domain in 
nR  with smooth boundary  , 0   is real number and 1m   is positive integer, 

( )M s  is a nonnegative 1C  function, ( , )jg u v  and ( )( 1,2)jf x j   are nonlinear terms and external force terms 

respectively. 

2. Preliminaries 

For convenience, we need the following notations in subsequent article. Considering a family of Hilbert spaces 

2( ),V D A R

   , whose inner product and norm are given by 2 2( , ) ( , )V A A


    and 
2

V
A



   . Apparently 

2 1 2 1

0 0 2 0( ),   ( ) ( ),   ( ) ( )m m

m mH V L V H H V H H        
, 

0 1 2 2,   m m m m m mE V H V H E V V V V       
. 
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We make the following hypotheses: 

(H1) 
1( ) ( )M s C R  and for positive constants 0 1,m m , 

 (1) 0 10 ( )m M s m   , 

 (2) 

2 2

0
*

2 2

1

, ( ) 0.

, ( ) 0.

m m

m m

d
m D u D v

dt
m

d
m D u D v

dt


 

 
  


 

(H2) 
1( , )( 1,2) ( )jg u v j C R   such that 

1 1

1 1

1 1

2 2

( , ) (1 ), ( , ) (1 ).

( , ) (1 ), ( , ) (1 ).

r r r r

u v

r r r r

u v

g u v C u v g u v C u v

g u v C u v g u v C u v

 

    

      


       

Where 
2

2 ( )
2

n
r r

n m
 


. 

Definition 1 (Eden et al., 1994) A compact set M  is called an exponential attractor for  ( ),S t B  if 

1) A M B  , where A  is the global attractor; 

2) ( )S t M M , for all 0t  , that is, M  is positively invariant under ( )S t ; 

3) M  has finite fractal dimension; 

4) There exist universal constants 1 2,c c , such that for every u B ,for every natural number t , 
2

1( ( ) , ) c tdist S t u M c e . 

Definition 2 (Eden et al., 1994) A solution semigroup  
0

( )
t

S t


 is said to satisfy the discrete squeezing property (DSP) 

if there exists * 0t   such that the map * *( )S S t  satisfies: there exists an orthogonal projection P  of finite rank 

N  such that, for every u  and v  in B , either 

* * * *( ) ( )N NX X
Q S u S v P S u S v   , 

or 

* *

1

8X X
S u S v u v  

.
 

Where N NQ I P  . 

Definition 3 (Eden et al., 1994) We say ( )S t  is Lipschitz continuous in the compact set B , if there exists a local 

bounded function ( )L t  such that 

( ) ( ) ( )
X X

S t x S t y L t x y   . 

for all ,x y B . Here ( )L t  does not depend on x  and y . 

Theorem 1 (Eden et al., 1994) If the solution semigroup  
0

( )
t

S t


 satisfies the discrete squeezing property on B  and 

if the map * *( )S S t  is Lipschitz with Lipschitz constant L , then there exists an exponential attractor M  for the 

solution semigroup satisfying 

0

ln(16 1)
( ) 1,

ln 2
F

L
d M N

 
  

 
.  
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3. The Existence of Exponential Attractor 

In this section, we prove equations (1.1)-(1.2) admit an exponential attractor, we verify the Lipschitz continuity and the 

discrete squeezing property of the dynamical system ( )S t  in 0E .  

First, we introduce A  , since A  is self-adjoint, positive operator and has a compact inverse. Let  
1i i





 be the 

sequence of the eigenvalues and  
1i i





 the corresponding sequence of eigenvectors, 

1 2  (0 ,   )i i i iA i            . 

Set  1 2span , , ,N NH    , Np  is the orthogonal projection onto NH  and Nq  is the orthogonal projection onto 

the orthogonal complement NH , that is 

: ,     N N N Np H H q I p   , 

and by the definition of projection 

2 2 2 2

1 1,   ,     ( , )m m m m

N N N NA u u A v v u v q H q H       . 

Make 

0: ( ) ( ) ( ) ( ),      N N m N N m N N NP E p V p H p V p H Q I P      , 

then 

0( , , , ) ( , , , ),      ( , , , )N N N N NP u p v q p u p p p v p q z u p v q E   . 

For each 0( , , , ) ,  ,  t tz u p v q E p u q v    , we construct functions as following 

2 2 2 2* 2 2( ) ( ) ( )m mG z m A u A v p q    ,                           (3.1) 

 
2 2 2 2* 2 2( ) ( )( ) ( ) ( , ) ( , )

2

m mF z m A u A v p q u p v q


       . (3.2) 

Lemma 1 1) Assume  0min 1,a m  and  1max 1,b m , then the norm derived from ( )G z  is equivalent to the 

norm on 0E . Namely, 0( , , , )z u p v q E   , 

 
0 0

2 2
( )

E E
a z G z b z  . (3.3) 

2) Assume *

1 11,(4 2 3) 4m m

N Nm        and 
*

1

1
max ,2

2 4 m

N

d m


 

 
   

 
, then the norm derived from ( )F z  is 

equivalent to the norm on 0E . Namely, 0( , , , ) Nz u p v q Q E   , 

0 0

2 23
( )

4 E E
z F z d z  .                (3.4) 

Proof. 1) According to (H1), we can get the conclusion easily. 

2) Due to 0Nz Q E , applying Holder and Young inequality, and noticing the result of the projection, we get 

0

2 2 2 2* 2 2

2 2 2 2* 2 2

1

2

( ) ( )( ) ( ) ( , ) ( , )
2

1 3
        ( )( ) ( )

2 4

3
        .

4

m m

m m

m

N

E

F z m A u A v p q u p v q

m A u A v p q

z
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0

2 2 2 2* 2 2

2 2 2 2* 2 2

1

2

( ) ( )( ) ( ) ( , ) ( , )
2

1
       ( )( ) 2( )

2 4

       .

m m

m m

m

N

E

F z m A u A v p q u p v q

m A u A v p q

d z





 

      

     



 

Lemma 1 is proved completely. 

Lemma 2 Suppose (H1)-(H2) hold, ,  u v  and ,  u v  are two solutions of problem (1.1)- (1.5), let k b a , then we 

have 

 
0 0

2 2
0,      ( ) (0)ct

E E
t Z t ke Z   . (3.5) 

Where c  is a constant depending only on the data *

1 2 3 1 2( , , , , , )m C C C K K . 

Proof. Set ,  ,  ,  ,  ( , , , )t t t tu u p p v v q q Z                , since ,     satisfy the following equations 

(3.6), that is 

1 1

2 2

( )( ) ( )( ) ( ) ( , ) ( , ) 0,

( )( ) ( )( ) ( ) ( , ) ( , ) 0.

m m m

tt t

m m m

tt t

M s u M s u g u v g u v

M s v M s v g u v g u v

  

  

        

        
                 

(3.6) 

Taking the inner product of (3.6) with t  and t  respectively, and adding them, we obtain 

 

 
   

2 22 2

1 1 2 2

1
( ) ( )

2

  ( )( ) ( )( ) ,

  ( )( ) ( )( ) ,

  ( , ) ( , ), ( , ) ( , ), 0.

m m

t t t t

m m

t

m m

t

t t

d
D D

dt

M s u M s u

M s v M s v

g u v g u v g u v g u v

    





 

  

   

   

    

 

Further 

 

 
2

  ( )( ) ( )( ) ,

( )
+ ( ) ( ) ( ) ( ) ,

2

m m

t

m m m m m m m m

t

M s u M s u

M s d
D M D u D u D D v D v D u

dt



    

  

    
 

and 

 
2

2 2

1

   ( ) ( ) ( ) ( )

( ),
2

m m m m m m m

t

tm m

M D u D u D D v D v D u

C D D

   


 

    

  

  

similarly 

 

 
2

  ( )( ) ( )( ) ,

( )
+ ( ) ( ) ( ) ( ) ,

2

m m

t

m m m m m m m m

t

M s v M s v

M s d
D M D u D u D D v D v D v

dt



    

  

    
 

and 

 
2

2 2

2

   ( ) ( ) ( ) ( )

( ).
2

m m m m m m m

t

tm m

M D u D u D D v D v D v

C D D
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Then by the assumption (H2), there exist constants 1 2,K K , such that ,  iu i iv ig K g K  , for ( 1,2)i  , we get 

 

 

 

1 1 1 1

1 1 1

1 1 1

2
2 2

1 1 1 1

   ( , ) ( , ), ( , ) ( , )

( ), ( ) ( )

        ( ), ( ) ( )

( ) ( ),
2

t t

u

v t

tm m m m

t t

g u v g u v g u v g u v dx

g u u u v v v u u

g u u u v v v v v dx

K K D D

 

 

  


       





 

  

      

    

    




 

similarly 

 

 

 

2 2 2 2

2 2 2

2 2 2

2
2 2

2 1 1

   ( , ) ( , ), ( , ) ( , )

( ), ( ) ( )

       ( ), ( ) ( )

( ).
2

t t

u

v t

tm m m m

g u v g u v g u v g u v dx

g u u u v v v u u

g u u u v v v v v dx

K D D

 

 

  


   





 

  

      

    

  




 

From above, we can conduct  

 
 

2 2 2 22 2*

2 2

1 2 1 1 2 1

2 2

1 1 2 2

   ( ) ( ) 2 ( )

2 2 2 2 ( )

   ( ) ( ) , 

m m m m

t t t t

m m m m

t t

d
m D D D D

dt

C C K K D D

C K C K

      

   

 

 

    

     

  

 

here, let 

 *

3 1 2 1 1 2 3 1 1 2 22( ) 2 ( ),   max , ,mC C C K K c C m C K C K        , 

so 

   
2 2 2 22 2 2 2* *( ) ( ) ( ) ( )m m m m

t t t t

d
m D D c m D D

dt
              . 

By formula (3.1) 

( ( )) ( ( ))
d

G Z t cG Z t
dt

 . 

Using Gronwall inequality 

( ( )) ( (0))ctG Z t e G Z . 

Further, by (3.3) the equivalence of norm 

 
0 0

2 2
( ) (0)ct

E E
Z t ke Z . (3.7) 

Lemma 2 is proved completely. 

Lemma 3 Suppose (H1)-(H2) hold, ,  u v  and ,  u v  are two solutions of problem (1.1)- (1.5), let N  be such that 

( , ) ( , )Nq     and ( , , , )t t NQ Q Z     , then we have 

 
0

2* *

* 1

( ( )) ( ( )) ( )
4 m E

N

Cd
F Q t F Q t Z t

dt



  

  . (3.8) 
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Where 0

* 1*
min ,2 1 (0,1)

2

m

N

m

m
 




 
   

 
, and *C  is a constant depending only on the data 4 1( , , )C R K . 

Proof. Apply Nq  to (3.6), we get 

 
   

   

1 1

2 2

( ) ( )( ) ( )( ) ( , ) ( , ) ,

( ) ( )( ) ( )( ) ( , ) ( , ) .

m m m

tt t N N

m m m

tt t N N

q M s u M s u q g u v g u v

q M s v M s v q g u v g u v

  

  

        

        
 (3.9) 

Multiplying (3.9) by 2 ,  t   and 2 ,  t   respectively and integrating over  , we have 

 

    

  

  

2 2 2 2*

2 2 2 2

0 1 *

*

1 1

  ( + )( ) ( ) ( , ) ( , )
2

   ( ) (2 1)( ) ( , ) ( , )

( , ) ( , ) ( ) ( ) ( ) , 2

  ( ) ( ) ( ) , 2

  ( , ) ( , ) , 2

m m

t t t t

m m m

N t t t t

m

t t N t

m

N t

N t

d
m D D

dt

m D D

q M s M s u

q M s M s v

q g u v g u v


       

         

      

 

 



 
      

 

     

      

   

     

 

2 2

* 1 2

3 4

( , ) ( , ) , 2

( , ) ( , ) ( , 2 ) ( , 2 )

   ( , 2 ) ( , 2 ).

N t

t t t t

t t

q g u v g u v  

        

   

 

        

    

 (3.10) 

Owing to (H1), we estimate 

 

 

1

4

2

1

2

4 1

2

1

( ) ( ) ( ) ( ) ( )

     ( ) ( )

2
     ( ),

m m m m m m m m

m m m m m m m m

m

N

m m

m

N

M D u D u D u D v D v D u

C
u u u D D v D v u D

C R
D D

  

 


 


 





      

       

 

 

analogously 

2

4 1

2 2

1

2
( )m m

m

N

C R
D D 

 

  

. 

Further 

 

 

3 1 1 1

1 1 1

1

1 2

1

( ), ( ) ( )

          ( ), ( ) ( )

     ( ) ( ),

u

v

m m

m

N

g u u u v v v u u

g u u u v v v v v

K
K D D

 

 

   
 

       

    

   

 

analogously 

2

4 2 2

1

( ) ( )m m

m

N

K
K D D   

 

     . 

So, the right side of (3.10) is estimated from the above 
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2

4 1 1
* 2

1

2

4 1 2

2

1

2 22 2* *

1

2 2
2 2 24 1 1 *

* 1

2

4 1 1

2
   ( ) ( )(2 )

2
                                ( )(2 )

( ) ( )
2 2

32(2 )
  ( )

16

8(2
  

m m

t t tm

N

m m

tm

N

m m

t t m

N

m m

tm

N

C R K
D D

C R K
D D

D D

C R K
D D

C R K

        


   


 
   




  

 










   


  

    


  

 2
2 2 2

*

* 1 1

2 2
2 2 24 1 2 *

* 1

2 2
2 2 2

4 1 2 *

* 1 1

2 2 2 22 2* *

1 * 1

)
( )

16

32(2 )
  ( )

16

8(2 )
  ( )   

16

3 3 3
( ) ( ) ( ).

4 44

m m m

m m

N N

m m

tm

N

m m m

m m

N N

m m m m

t tm m

N N

D D D

C R K
D D

C R K
D D D

C
D D D D


  

  


  

 


  

  


     

  

 



 

 

  


  


 

 
      

 

 (3.11) 

Where  2 2

* 4 1 1 240(2 ) ,  max ,C C R K K K K   , 1R  is related to Theorem 2.2 of (Lin & Hu, 2017). 

Bring (3.11) into (3.10), we obtain  

 
0

2* *

* 1

( ( )) ( ( )) ( )
4 m E

N

Cd
F Q t F Q t Z t

dt



  

  . (3.12) 

Proof of Lemma 3 is accomplished. 

Lemma 4 There exists 0C   such that 
0

0

sup ( ) ,  0t E
z B

z t C t


   . 

Proof. Differentiating equations (1.1)-(1.2) with respect to time t, we have 

 
1 1

2 2

( )( ) 2 ( )(( , ) ( , ))( )

    ( ) ( , ) ( , ) 0,

( )( ) 2 ( )(( , ) ( , ))( )

     + ( ) ( , ) ( , ) 0.

m m m m m m

ttt t t t

m

tt u t v t

m m m m m m

ttt t t t

m

tt u t v t

u M s u M s D u D u D v D v u

u g u v u g u v v

v M s v M s D u D u D v D v v

v g u v u g u v v





    

    

    

   

 (3.13) 

Taking the inner product of (3.13) with ttu  and ttv  respectively, we obtain 

 

 

  
   

2 2 2 22 2

2 2

1 1 2 2

  ( )( ) 2 ( )

2 ( )(( , ) ( , ))

 ( ) 2 (( ) , ) (( ) , )

 ( ( , ) , ) ( ( , ) , ) ( ( , ) , ) ( ( , ) , ) .

m m m m

t t tt tt tt tt

m m m m

t t

m m m m

t t tt tt

u t tt v t tt u t tt v t tt

d
M s D u D v u v D u D v

dt

M s D u D u D v D v

D u D v u u v v

g u v u u g u v v u g u v u v g u v v v

    

 

     

  

 

From Theorem 2.1 and Theorem 2.2 of (Lin & Hu, 2017), we know, there exist 0 1( , ) 0c R R   and 0  suitably small, 

 
 

 

2 2 2 2

2 2 2 2

0 1

( )( )

    (2 ) ( )( ) ( , ),

m m

t t tt tt

m m

t t tt tt

d
M s D u D v u v

dt

M s D u D v u v c R R
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therefore, Lemma 4 is certified by Gronwall inequality.  

Lemma 5 For 0T  , the map ( , ) ( )t z S t z  is Lipschitz continuous on  0,T B . 

Proof. For 0 1 0 1, ,  , [0, ]z z B t t T  , 

0 0 0
0 0 1 1 0 0 0 1 0 1 1 1( ) ( ) ( ) ( ) ( ) ( )

E E E
S t z S t z S t z S t z S t z S t z     . 

The first term on the right side of the above formula is easily handled by Lemma 2, for the second item, by virtue of 

Lemma 4, we obtain 

1

0 0 00
0 1 1 1 1 0 1 1 1 0 1( ) ( ) ( ) ( ) ( )

t

tE E Et
S t z S t z z t z t z d C t t       . 

So 

  
0 0

0 0 1 1 0 1 0 1( ) ( )
E E

S t z S t z L t t z z     , (3.14) 

it is set up for ( ) 0L L T  . 

Proof of Lemma 5 is completed. 

Theorem 1 Select *t , and satisfy 

 * * 42 1 128tde   , (3.15) 

and 

 **

2

* 1

8 1

128

ct

m

N

kC
e

  

 , (3.16) 

then the solution operator  
0

( )
t

S t


 on the bounded subset B  in 0E  satisfies Lipschitz continuity and discrete 

squeezing property. If 

 
0 0

* *( ( )) ( ( ))N NE E
P Z t Q Z t , (3.17) 

then 

 
0 0

2 2

*

1
( ) (0)

64E E
Z t Z . (3.18) 

Where 0 1 0 1 0 1 0 1( ) ( ) ( ) ,  ( , , , ),  ( , , , )Z t S t U S t U U u u v v U u u v v    . 

Proof. By Lemma 2 and Lemma 3, we get 

0 0

2 2* * *

* 1 * 1

( ( )) ( ( )) ( ) (0)
4

ct

m mE E

N N

C kCd
F Q t F Q t Z t e Z

dt



    

   . 

By Gronwall inequality and Lemma 1 2), the following holds true 
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  . 

From (3.15), (3.16), and N  so large,  
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 (3.19) 

That is to say 

 
0

*

1
( ) (0)

8 E
Z t Z . (3.20) 

Proof of Theorem 1 is completed. 

4. Conclusions 

In this paper, we study a class of high-order Kirchhoff-type equations. By using the method proposed by Eden et al. and 

combining our assumptions given in advance, we obtain the Lipschitz property and the discrete squeezing property, which 

prove its the existence of exponential attractor. Among them, we have maximum and minimum values in the bounded 

closed region according to the continuous function of mathematical analysis, we have made a limitation on ( )M s , which 

needs further improvement. In later studies, I hope that I can deeply explore its greater possibilities. 
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