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Abstract

In this paper we will present a new algorithm to solve the nonlinear equation f (x) = 0 where x is a scalar, indeed using
the theory of distributions, we will be able to construct a sequence with an explicit formula that converges to the solution
of f (x) = 0.
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1. Introduction

Many methods have been developed in order to solve a nonlinear equation ( f (x) = 0) and find its solution, we can cite for
example the Newton’s method. Many of these methods lead to an iterative sequence that converges to the solution, the
disadvantage of these methods is the dependency of the first value of the sequence, in other words the sequence converges
to the solution if the first value is close enough to the solution.

The goal of this paper is to create a sequence with an explicit formula, which converges to the solution of a given
nonlinear equation where the solution is a scalar. Therefore in the following we will present a brief recall of the theory
of distributions, and by manipulating the distributions we will be able to create this sequence which converges to the
solution, and we will also present an example to illustrate the algorithm.

In addition to the explicit formula of the sequence, the advantage of this method is that it requires only a few conditions
for the function f in a neighborhood of the solution.

1.1 Brief Recall of the Theory of Distributions (Dreyfuss, 2012), (Schwartz, 1963), (Schwartz, 1966)

1.1.1 Test Functions

Let Ω ⊆ Rd be an open set where d ∈ N∗, and let ϕ an application ϕ : Ω→ R, then ϕ is a test function if and only if:

1. The support of ϕ: supp(ϕ) is compact in Ω

2. The function ϕ is infinitely differentiable: ϕ ∈ C∞(Ω)

The space of the test functions on Ω is calledD(Ω).

Let ϕn be a sequence inD(Ω) and let ϕ ∈ D(Ω) then we say that ϕn converges to ϕ inD(Ω): ϕn
D(Ω)−→ ϕ if and only if:

1. There exist a compact K of Ω such that supp(ϕn) ⊂ K ∀n ∈ N.

2. supx∈K(|∂αϕn(x) − ∂αϕ(x)|) −→
n→+∞

0 ∀α = (α1, . . . , αd) ∈ Nd, where ∂αϕ = ∂|α|ϕ

∂xα1
1 ...∂x

αd
d

and |α| = α1 + . . . + αd.

Example

The function ϕ defined by:

ϕ(x) =
{

e
−1

1−x2 i f |x| < 1
0 otherwise

belongs toD(R) and supp(ϕ) = [−1, 1].
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1.1.2 Distributions

Let Ω ⊆ Rd be an open set, a distribution is a linear application

T : D(Ω)→ R such that:

If ϕn ∈ D(Ω) and ϕn
D(Ω)−→ ϕ⇒ T (ϕn) −→

n→+∞
T (ϕ)

< T, ϕ > denotes T (ϕ), andD′(Ω) denotes the space of the distributions on Ω.

Example

Let Ω ⊆ Rd be an open set, and let f a function f : Ω→ R such that f is locally integrable on Ω: f ∈ L1
loc(Ω) . If T is an

application such that:

< T, ϕ >=
∫
Ω

fϕ dλ ∀ϕ ∈ D(Ω)

Where λ is the Lebesgue measure, then T is a distribution: T ∈ D′ (Ω). Otherwise T is also noted by f , in other words
< f , ϕ >=< T, ϕ >.

2. Creating a Sequence of Distributions that Converges to a Dirac

We consider in the following a function g : Ī → R where I is a non-empty, bounded and open interval I ⊂ R. We suppose
that g is a positive function g(x) ≥ 0 ∀x ∈ Ī. Using some additional properties on g we will be able to create a sequence
of distributions which converges to the Dirac distribution, this creation is done by the theorem 1.

The following lemma is used in the proof of the theorem 1.

Lemma 1 Let I0 ⊂ I be an open interval. We suppose that g ∈ C2(I0), g(x) ≥ 0 ∀x ∈ I0 and there exists a zero x∗ ∈ I0 for
the function g: g(x∗) = 0, let g′ denotes the derivative of the function g, we suppose in addition that there exists a finite
number of zeros for the function g′ in a neighborhood of x∗. Then there exists a neighborhood of x∗: [x1, x2] such that
g′(x) ≤ 0 ∀x ∈ [x1, x∗] and g′(x) ≥ 0 ∀x ∈ [x∗, x2].

Proof. First we will prove that ∃ r > 0 such that ∀x ∈ [x∗ − r, x∗[⇒ g′(x) ≤ 0. In order to prove this we will proceed by
contradiction, in other words we suppose that: ∀r > 0 ∃ x ∈ [x∗ − r, x∗[⇒ g′(x) > 0.

Let the interval J ⊂ I0 be the neighborhood of x∗ which contains a finite number of zeros of the function g′, and let N be
the number of these zeros. we take r∗ > 0 such that [x∗ − r∗, x∗[⊂ J and such that [x∗ − r∗, x∗[ contains no zeros of g′.

Therefore ∃X ∈ [x∗ − r∗, x∗[⇒ g′(X) > 0, if we suppose that g′(x) > 0 ∀x ∈ [X, x∗[ then g is a strictly increasing function
on [X, x∗[ and g(x∗) > 0 which is absurd. Thus we conclude that ∃ y ∈]X, x∗[ such that g′(y) = 0 because g′ is a continuous
function.

Therefore there exist a N + 1 zeros of g′ in the neighborhood J of x∗, which contradicts our hypothesis.

With the same manner we prove that ∃ r2 > 0 such that ∀x ∈]x∗, x∗ + r2]⇒ g′(x) ≥ 0.

We conclude that there exist a neighborhood of x∗: [x1, x2] such that g′(x) ≤ 0 ∀x ∈ [x1, x∗] and g′(x) ≥ 0 ∀x ∈ [x∗, x2].

Theorem 1 Let the function g have only one zero x∗ in Ī and x∗ ∈ I such that g is C2 in a neighborhood of x∗ and
g′′(x∗) > 0, we suppose in addition that there exists a finite number of zeros for the function g′ in a neighborhood of x∗, if
we consider the sequence of functions gn defined by: gn(x) = 1I(x) n√

π
e−n2g(x) then:

gn −→
n→+∞

1
√

c
δx∗ In the sense of distributions

Where c = g′′(x∗)
2 , δx∗ the Dirac distribution at x∗. The convergence in the sense of distributions means that:

< gn, ϕ >=

∫
R

gn(x)ϕ(x) dλ(x) −→
n→+∞

1
√

c
ϕ(x∗) ∀ϕ ∈ D(R)

.

Proof. First the function g reaches its minimum at x∗ because g ≥ 0 thus g′(x∗) = 0. Using the Taylor’s theorem we can
express g by:

g(x) = c(x − x∗)2 + (x − x∗)2ϵ(x − x∗)

Where c = g′′(x∗)
2 and ϵ a function ϵ : R→ R such that: ϵ(x) −→

x→0
0.
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Let fn denotes the sequence of functions defined by: fn(x) = n√
π
e−cn2(x−x∗)2

. In the following of this proof we will prove
that:

∥ fn − gn∥L1(R) =

∫
R
| fn − gn| dλ −→

n→+∞
0

In order to prove this convergence we will study it on a different intervals, thus we begin by the interval In = [x∗− 1√
n , x
∗+

1√
n ]: ∫

In

| fn − gn| dλ =
n
√
π

∫ x∗+ 1√
n

x∗− 1√
n

e−cn2(x−x∗)2 |1 − e−n2(x−x∗)2ϵ(x−x∗)| dλ(x)

We make a substitution: z = x − x∗:∫
In

| fn − gn| dλ =
n
√
π

∫ 1√
n

− 1√
n

e−cn2z2 |1 − e−n2z2ϵ(z)| dλ(z)

Using another substitution: y = nz we obtain:∫
In

| fn − gn| dλ =
1
√
π

∫ √
n

−
√

n
e−cy2 |1 − e−y2ϵ( y

n )| dλ(y) (1)

Otherwise we know that ϵ(x) −→
x→0

0 therefore:

Let 0 < η < c⇒ ∃A > 0 /∀x ∈] − A, A[⇒ |ϵ(x)| ≤ η

From the integral we have: −
√

n ≤ y ≤
√

n⇒ 1
−
√

n ≤
y
n ≤

1√
n thus:

∃N1 ∈ N /∀n ≥ N1 ⇒
y
n
∈] − A, A[ ∀y ∈ [−

√
n,
√

n]

Therefore:
∀n ≥ N1 |ϵ( y

n
)| ≤ η ∀y ∈ [−

√
n,
√

n]

For n ≥ N1 we have two cases to treat:

1. If 0 ≤ ϵ( y
n ) ≤ η⇒ 1 − e−y2ϵ( y

n ) ≤ 1 − e−y2η, and because y2ϵ( y
n ) ≥ 0:

|1 − e−y2ϵ( y
n )| = 1 − e−y2ϵ( y

n ) ≤ 1 − e−y2η

2. If −η ≤ ϵ( y
n ) ≤ 0⇒ e−y2ϵ( y

n ) − 1 ≤ ey2η − 1, and because −y2ϵ( y
n ) ≥ 0:

|1 − e−y2ϵ( y
n )| = e−y2ϵ( y

n ) − 1 ≤ ey2η − 1

We conclude that:

∀n ≥ N1 ⇒ |1 − e−y2ϵ( y
n )| ≤ Max(1 − e−y2η, ey2η − 1) ≤ (1 − e−y2η) + (ey2η − 1)

⇒ ∀n ≥ N1 |1 − e−y2ϵ( y
n )| ≤ ey2η − e−y2η

The term in integral in the equation (1) is majored by:

1
√
π

1[−
√

n,
√

n](y)e−cy2 |1 − e−y2ϵ( y
n )| ≤ 1

√
π

e−cy2
(ey2η − e−y2η) ∀y ∈ R,∀n ≥ N1

⇒ 1
√
π

1[−
√

n,
√

n](y)e−cy2 |1 − e−y2ϵ( y
n )| ≤ 1

√
π

(e−y2(c−η) − e−y2(c+η)) ∀y ∈ R,∀n ≥ N1

Let hn(y) = 1√
π
1[−
√

n,
√

n](y)e−cy2 |1 − e−y2ϵ( y
n )| ∀y ∈ R, by the choice that we made: c − η > 0 and c + η > 0 then:∫

R
| 1
√
π

(e−y2(c−η) − e−y2(c+η))| dλ(y) ≤ 1
√
π

∫
R

e−y2(c−η) dλ(y) +
1
√
π

∫
R

e−y2(c+η) dλ(y)
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⇒
∫
R
| 1
√
π

(e−y2(c−η) − e−y2(c+η))| dλ(y) ≤
√

1
c − η +

√
1

c + η
< ∞

In the other hand if we fix y then ϵ( y
n ) −→

n→+∞
0 ⇒ hn(y) −→

n→+∞
0. Therefore using the dominated convergence theorem we

obtain: ∫
R

hn(y) dλ(y) −→
n→+∞

0

As
∫

In
| fn − gn| dλ =

∫
R hn(y) dλ(y) thus: ∫

In

| fn − gn| dλ −→
n→+∞

0

From lemma 1 we conclude that there exist a neighborhood of x∗: [D, E] such that g′(x) ≤ 0 ∀x ∈ [D, x∗] and g′(x) ≥
0 ∀x ∈ [x∗, E]. In addition ∃N2 ≥ 0 such that ∀n ≥ N2 ⇒ x∗ − 1√

n ∈]D, x
∗[ and x∗ + 1√

n ∈]x∗, E[.

Let Jn = [D, x∗ − 1√
n ] and Kn = [x∗ + 1√

n , E] then gn is an increasing function on Jn and a decreasing function on Kn, same
thing for fn.

Now we study the quantity: ∫
Jn

| fn − gn| dλ =
∫ x∗− 1√

n

D
| fn − gn| dλ(x)

Therefore: ∫
Jn

| fn − gn| dλ ≤
∫ x∗− 1√

n

D
fn dλ(x) +

∫ x∗− 1√
n

D
gn dλ(x)

Because gn and fn are an increasing functions on Jn then:∫
Jn

| fn − gn| dλ ≤ (x∗ − 1
√

n
− D)(

n
√
π

e−cn2(− 1√
n )2

+
n
√
π

e−cn2(− 1√
n )2−n2(− 1√

n )2ϵ(− 1√
n ))

⇒
∫

Jn

| fn − gn| dλ ≤
n
√
π

(x∗ − 1
√

n
− D)e−cn(1 + e−nϵ(− 1√

n ))

We have ϵ(− 1√
n ) −→

n→+∞
0, let 0 < η1 < c thus ∃N3 ≥ 0 such that ∀n ≥ N3 ⇒ |ϵ(− 1√

n )| < η1 < c. Therefore ∀n ≥ N3 ⇒

e−nϵ(− 1√
n ) ≤ eη1n

⇒
∫

Jn

| fn − gn| dλ ≤
n
√
π

(x∗ − 1
√

n
− D)(e−cn + e−(c−η1)n) ∀n ≥ Max(N2,N3)

As c − η1 > 0 we conclude that: ∫
Jn

| fn − gn| dλ −→
n→+∞

0

The same procedure is used for the quantity:∫
Kn

| fn − gn| dλ =
∫ E

x∗+ 1√
n

| fn − gn| dλ(x)

Indeed gn and fn are an decreasing functions on Kn then:∫
Kn

| fn − gn| dλ ≤
n
√
π

(E − x∗ − 1
√

n
)e−cn(1 + e−nϵ( 1√

n ))

We have ϵ( 1√
n ) −→

n→+∞
0, let 0 < η2 < c thus ∃N4 ≥ 0 such that ∀n ≥ N4 ⇒ |ϵ( 1√

n )| < η2 < c. Therefore ∀n ≥ N4 ⇒

e−nϵ( 1√
n ) ≤ eη2n

⇒
∫

Kn

| fn − gn| dλ ≤
n
√
π

(E − x∗ − 1
√

n
)(e−cn + e−(c−η2)n) ∀n ≥ Max(N2,N4)

As c − η2 > 0 we conclude that: ∫
Kn

| fn − gn| dλ −→
n→+∞

0
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In this final part of the proof we know from the hypothesis of this theorem that g > 0 on Ī\{x∗}, in order to finish the proof
it remains to compute the 2 quantities:

∫ D
−∞ | fn − gn| dλ(x) and

∫ ∞
E | fn − gn| dλ(x). Let [x1, x2] denotes Ī then:∫ D

−∞
| fn − gn| dλ(x) =

∫ x1

−∞
fn dλ(x) +

∫ D

x1

| fn − gn| dλ(x)

⇒
∫ D

−∞
| fn − gn| dλ(x) ≤

∫ D

−∞
fn dλ(x) +

∫ D

x1

gn dλ(x)

And: ∫ ∞
E
| fn − gn| dλ(x) ≤

∫ ∞
E

fn dλ(x) +
∫ x2

E
gn dλ(x)

Let L1 be the minimum of g on [x1,D] then L1 > 0 and:∫ D

x1

gn dλ(x) ≤ n
√
π

(D − x1)e−n2L1

⇒
∫ D

x1

gn dλ(x) −→
n→+∞

0

Let L2 be the minimum of g on [E, x2] then L2 > 0 and:∫ x2

E
gn dλ(x) ≤ n

√
π

(x2 − E)e−n2L2

⇒
∫ x2

E
gn dλ(x) −→

n→+∞
0

Otherwise: ∫ D

−∞
fn dλ(x) =

∫ D

−∞

n
√
π

e−cn2(x−x∗)2
dλ(x)

⇒
∫ D

−∞
fn dλ(x) =

∫ D−x∗

−∞

n
√
π

e−cn2z2
dλ(z)

⇒
∫ D

−∞
fn dλ(x) =

1
√
π

∫ n(D−x∗)

−∞
e−cy2

dλ(y)

As D − x∗ < 0 thus: ∫ D

−∞
fn dλ(x) −→

n→+∞
0

As before E − x∗ > 0 then: ∫ ∞
E

fn dλ(x) −→
n→+∞

0

Finally we conclude that:
∥ fn − gn∥L1(R) −→n→+∞

0

We know that fn converges in the sense of distributions to 1√
c δx∗ then:

∀ϕ ∈ D(R) < gn, ϕ >=

∫
R

gnϕ dλ =
∫
R

(gn − fn)ϕ dλ+ < fn, ϕ >

Otherwise if ϕ ∈ D(R) then ϕ is bounded:
∃K ≥ 0⇒ ∥ϕ∥∞ ≤ K

Therefore: ∣∣∣∣∣∫
R

(gn − fn)ϕ dλ
∣∣∣∣∣ ≤ K

∫
R
|gn − fn| dλ = K∥ fn − gn∥L1(R)

⇒
∫
R

(gn − fn)ϕ dλ −→
n→+∞

0
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In conclusion:
lim

n→+∞
< gn, ϕ >=

1
√

c
ϕ(x∗) ∀ϕ ∈ D(R)

In general case if g has several zeros in I we have the following theorem:

Theorem 2 If the function g has only k zeros x∗1, . . . , x
∗
k in Ī and x∗1, . . . , x

∗
k ∈ I such that g satisfies the hypotheses of the

theorem 1 at xi ∀i = 1, . . . , k , and if we consider the sequence of functions gn defined by: gn(x) = 1I(x) n√
π
e−n2g(x) then:

gn −→
n→+∞

k∑
i=1

1
√

ci
δx∗i In the sense of distributions

Where ci =
g′′(x∗i )

2 .

Proof. It’s enough to write I =
k∪

i=1
Ii and gn(x) =

∑k
i=1 1Ii (x) n√

π
e−n2g(x) where Ii are disjoints and x∗i ∈

◦
Ii.

3. Application

Let a function f : Ī → R where I ⊂ R is an open and bounded interval. We suppose that the function f has only one zero
x∗ in Ī and x∗ ∈ I such that f is C2 in a neighborhood of x∗ and f ′(x∗) , 0, let g(x) = f 2(x) we suppose in addition that
there exists a finite number of zeros for the function g′ in a neighborhood of x∗ , then we can apply the theorem 1.

Indeed f (x) = 0 ⇐⇒ g(x) = 0 , g′(x∗) = 2 f ′(x∗) f (x∗) = 0 and finally:

g′′(x∗) = 2( f ′′(x∗) f (x∗) + ( f ′(x∗))2) = 2( f ′(x∗))2 = 2c > 0

4. Algorithm to Find the Solution

In this section we will present an algorithm to find the zero x∗ of the function g which satisfies all conditions presented in
the theorem 1.

We consider then the sequence of functions gn(x) = 1I(x) n√
π
e−n2g(x) where I =]X1, X2[ with X1, X2 ∈ R . From theorem 1

we know that:
lim

n→+∞

∫
R

gn(x)ϕ(x) dλ(x) =
1
√

c
ϕ(x∗) ∀ϕ ∈ D(R)

Let X0 be the midpoint of I: X0 =
1
2 (X1 + X2), and R the radius of I:R = 1

2 (X2 − X1), let y1 = X2 − X.R and y2 = X2 + X.R
where X is a positive real value such that X ≥ 2, we can choose for example X = 3.

From the spaceD(R) we will consider the function:

ϕ(x) =

 e
−1

( y1−y2
2 )2

−(x− y1+y2
2 )2

i f y1 < x < y2
0 otherwise

Because ϕ and ϕ2 belong toD(R) and because x∗ ∈ I ⊂]y1, y2[ therefore:

lim
n→+∞

∫
R gnϕ

2 dλ∫
R gnϕ dλ

=
ϕ2(x∗)
ϕ(x∗)

= ϕ(x∗)

Considering the 2 sequences yn =

∫
R gnϕ

2 dλ∫
R gnϕ dλ

and ρn =

√(
y1−y2

2

)2
+ 1

Ln(yn) , the sequence x∗n will be defined by: x∗n = X2 − ρn.

The important result is that:
lim

n→+∞
x∗n = x∗

Proof. First we have :

lim
n→+∞

yn = ϕ(x∗) = e
−1

( y1−y2
2 )2

−(x∗− y1+y2
2 )2

then

lim
n→+∞

ρn =

√(
x∗ − y1 + y2

2

)2
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Otherwise y1+y2
2 = X2 therefore x∗ − y1+y2

2 < 0 we obtain then:

lim
n→+∞

ρn = −x∗ +
y1 + y2

2
= −x∗ + X2

We conclude that:
lim

n→+∞
x∗n = x∗

In other words we only have to compute yn for a big value of n in order to have an approximation of the solution x∗.

This approximation can be used for another algorithm for solving nonlinear equation.

Remark 1 If we don’t know the properties of the function g at the solution x∗, in other words if we don’t know if g is C2

in the neighborhood of x∗ and g′′(x∗) > 0, then we apply the algorithm for a big value of n and we verify these properties
at the neighborhood of the approximated solution x∗n.

4.1 Example

Let us take a simple equation:
ln(x) − 1 = 0

The exact solution of this equation is: x = 2.7182.

In order to apply our algorithm we take the function g(x) = (ln(x) − 1)2 and its corresponding sequence of functions
gn(x) = 1I(x) n√

π
e−n2g(x) where I =]2, 4[, and for the test function ϕ we take y1 = 4 − 3 = 1 and y2 = 4 + 3 = 7. The

function g satisfies all conditions presented in the theorem 1 therefore by taking n = 10 we obtain:

x∗10 = 2.7138

5. Algorithm to Localize the Solutions

In the case of the existence of several zeros x∗1, . . . , x
∗
k of a function g which satisfies all conditions of the theorem 2, then

the following algorithm helps to localize the zeros of this function.

As before we consider the sequence of functions gn(x) = 1I(x) n√
π
e−n2g(x) where I =]X1, X2[ with X1, X2 ∈ R. We will take

a test function ϕ ∈ D(R) centered on X2, in other words y1+y2
2 = X2, and we will also suppose that Ī = [X1, X2] ⊂]y1, y2[.

We suppose in addition that:
Max(g”(x∗1), . . . , g”(x∗k)) ≤ S where S > 0

Then using the same notation in the theorem 2 we have 1√
ci
≥
√

2
S ∀i = 1, . . . , k.

The test function ϕ is chosen such that ϕ ≥ 0 and ϕ(X1) = η
√

S
2 where η is a strictly positive value which helps for

precision, for example we can choose η = 10. A candidate for the test function is:

ϕ(x) =

 η
√

S
2Φ1e

−1

( y1−y2
2 )2

−(x− y1+y2
2 )2

i f y1 < x < y2

0 otherwise

Where Φ1 = e
1

( y1−y2
2 )2

−(X1−
y1+y2

2 )2

. We obtain then that ϕ(x) ≥ η
√

S
2 ∀ x ∈ I. From theorem 2 we obtain:

lim
n→+∞

∫ X2

X1

gn(x)ϕ(x) dλ(x) =
k∑

i=1

1
√

ci
ϕ(x∗i ) ≥ kη

Let the sequence zm such that z0 = X1 and zm+1 ∈]zm, X2], then we define the quantityHn
m by:

Hn
m =

∫ X2

zm

gn(x)ϕ(x) dλ(x)

⇒ Hn
m −Hn

m+1 =

∫ zm+1

zm

gn(x)ϕ(x) dλ(x)
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If lim
n→+∞

(Hn
m −Hn

m+1) = 0 then there is no zero in [zm, zm+1].

If lim
n→+∞

(Hn
m − Hn

m+1) ≥ η2 then there is minimum a zero in [zm, zm+1]. Indeed the value η2 is reached when we have only
one zero in this interval and this zero is equal to zm or zm+1.

The algorithm consists to take a big value for n and if Hn
m − Hn

m+1 is close to 0 then there is no zero in [zm, zm+1], if not,
there is at least a zero in [zm, zm+1]. The η guarantees that Hn

m − Hn
m+1 is not close to 0 when a zero exists in [zm, zm+1].

After we can take zm+2 ∈]zm+1, X2] to localize the other zeros or we can take zm+2 ∈]zm, zm+1[ to more localize the zeros in
this interval if they exist.

5.1 Example

Let the function f be defined on I =] − 2π, 0[ by: f (x) = cos(x), theoretically f has 2 zeros x∗1 = −3 π2 and x∗2 = −
π
2 .

Using the previous algorithm we want to localize the zeros of the function f . Let the function g be defined on I =]−2π, 0[
by: g(x) = f (x)2 = cos(x)2, its corresponding sequence of functions is defined by:

gn(x) = 1]−2π,0[(x)
n
√
π

e−n2g(x)

Otherwise if x∗i is a zero of g then g”(x∗i ) = 2. We choose η = 20 and we consider the test function ϕ ∈ D(R):

ϕ(x) =
 20Φ1e

−1
(3π)2−(x)2 i f − 3π < x < 3π

0 otherwise

Where Φ1 = e
1

(3π)2−(2π)2 .

For n big (n = 10):

By choosing z0 = −2π and z1 = −π we obtain:
Hn

0 −Hn
1 = 20.15

By choosing z2 = − π4 we obtain:
Hn

1 −Hn
2 = 20.22

By choosing z3 = 0 we obtain:
Hn

2 −Hn
3 = 0

Therefore we conclude that there exist zeros in ] − 2π,−π] and in [−π,− π4 ], and there is no zeros in [− π4 , 0[.

6. Conclusion

The method and the algorithm developed above request only to do an integration in order to find the solution of the
nonlinear equation, and it presents a new advantages regarding some other methods. The generalization of this method
for big dimensions was developed and will be published.
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