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Abstract 
This study evaluated some morphometric parameters with a view to assessing the infiltration potential of Osun 
Drainage Basin, Southwestern Nigeria. Input data were derived from SPOT DEM using ArcGIS 10.3 platform. 
The basin has an area extent of 2,208.18 km2, and is drained by 1,560 streams with total length of 2,487.7 km. 
Drainage Texture (0.52), Stream Number (1,560), Total Stream Length (2,487.7 m) and Main Stream Length 
(119 m) indicate that larger percentage of annual rainwater would leave the basin as runoff. Infiltration Number 
increases with increasing Stream Frequency (r = 0.95) and Drainage Density (r = 0.78). Length of Overland 
Flow increases with decreasing Drainage Density (r = -0.83), Stream Frequency (r = -0.51) and Infiltration 
Number (r = -0.45). Regression analysis show that Stream Frequency accounts for 97.43% of the strength of the 
overall regression model. Thus, Stream Frequency is a strong variable that can solely give meaningful 
explanation of infiltration potential. However, Basin Perimeter, Length of Overland Flow and Drainage Density 
also have significant influence on infiltration potential at varying degrees. The overall relationship explains  
93.4% of the regression plain. Thus, Stream Frequency, Basin Perimeter, Length of Overland Flow and Drainage 
Density constitute a set of strong variables that can predict Infiltration Number and consequently, give 
meaningful explanation to infiltration potential within a basin. The study concluded that infiltration potential is 
moderate within Osun Drainage Basin as suggested by the mean Infiltration Number.  
Keywords: morphometric analysis, infiltration potential, Osun Drainage Basin 
1. Introduction 
Drainage basin can be defined as a geographically delimited finite area on the earth surface that is drained by a 
network of streams through a single pore point (Akinwumiju, 2015). Drainage basin is an ideal unit for the 
interpretation and analysis of fluvial originated landforms where they exhibit an example of open system of 
operation. Thus, a drainage basin is a fundamental unit of virtually all catchment-based fluvial investigations. 
The continuous interaction between climate and geology often result to the evolution of landform pattern across 
a given basin, which can be qualitatively (morphology) and quantitatively (morphometry) analyzed. This 
topographic expression is known as terrain analysis (Jones, 1999; Obi-Reddy et al., 2002). Terrain analysis is the 
study of elements relating to the geometric form, the underlying materials, geomorphogenesis and the spatial 
pattern of landforms (Schmidt and Dikau, 1999). Early studies on terrain analyses were mostly qualitative in 
approach, which were devoid of numerical analysis of drainage basin (Gregory and Walling, 1973; Ajibade et al., 
2010). As a result, detailed understanding of drainage evolution as well as the mechanics of surface runoff was 
lacking (Ajibade et al., 2010). However, notable scientific approaches to terrain analyses were evident in the 
literature as far back as 17th Century (Penck, 1894, 1896; Passarge, 1912). Since its introduction by Horton 
(1940), morphometric analysis has been providing elegant description of basin-scale landscape as well as 
quantitative parameterization of the earth surface (Easterbrook, 1993; Ajibade et al., 2010). Usually, 
morphometric analysis is undertaken in many hydrologic investigations such as groundwater potential 
assessment, pedology, water resource management, flood control, environmental impact assessment and 
pollution studies among others (Jayappa and Markose, 2011). Furthermore, morphometric analysis could be 
undertaken with the aim of assessing the impacts of tectonic activities across a drainage basin (Hurtex and 
Lacazeau, 1999; Sinha-Roy, 2002; Singh, 2008; Walcott and Summerfield, 2008). Thus, morphometric 
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parameters have earlier been observed as crucial indices of surface processes within a given basin. Consequently, 
these parameters have been determined and analyzed in many geomorphological and surface hydrological 
studies such as sediment deposition, flood parameterization as well as the evolution of basin morphology (Jolly, 
1982; Adejuwon et al., 1984; Anyadike and Phil-Eze, 1989; Lifton and Chase, 1992; Moglen and Bras, 1995; 
Chen et al., 2003; Haung and Niemann, 2006). More recently, morphometric analyses have been playing a major 
role in modeling of surface processes such as soil erosion and flooding (Nogami, 1995; Singh et al., 2008; 
Ajibade et al., 2010; Sumira et al., 2013). 
Until recently, scientists usually rely on data garnered from field measurements and or extracted information 
from existing topographic maps as major inputs in morphometric analyses. Currently, remotely sensed data and 
Geographic Information System (GIS) have gained recognition as preferred data source and analytical platform 
for morphometric analyses respectively. For example, multi-resolution Digital Elevation Models have been 
extensively utilized in various morphometric analyses (Nag and Anindita, 2011; Somashekar and Ravikumar, 
2011). Today, many GIS platforms are embedded with various types of morphometric-specific algorithms that 
enable scientists to determine many morphometric parameters automatically, thereby increasing efficiency as 
well as reducing rigor and time (Schmidt and Dikau, 1999). Recently, a comprehensive inter-disciplinary-based 
groundwater potential assessment was undertaken within Osun Drainage Basin, involving terrain analyses. In 
this study therefore, we present and analyze the adopted morphometric parameters with the aim of evaluating the 
geomorphometric characteristics; particularly in relation to infiltration potential of the basin. 
2. Materials and Methods 
2.1 The Study Area 
Osun Drainage Basin (ODB) lies within Latitudes 7°35' and 8° 00' north of the Equator; Longitudes 4°30' and 
5°10' east of the Greenwich Meridian; in the forested undulating Yoruba Plain of Southwestern Nigeria (Figure 
1). Osun Catchment extends from the upland area of Ekiti State to the low lying area of Osun State, covering 21 
Local Government Areas with projected population of 6.2 million as at December, 2014 (Akinwumiju, 2015). 
ODB is a watershed that is drained by a sixth order river network, comprising various perennial rivers that take 
their courses from Ekiti-Ijesa mountainous region. The basin constitutes the upland northeastern watershed, 
which is a major donor sub-basin of the much larger Osun-Ogun Drainage Basin in Southwestern Nigeria. 
Osun-Ogun River Network is one of the few drainage systems in the Southwestern Nigeria that empties its 
contents directly into the Gulf of Guinea. The climate of the study area is characterized by long rainy season 
from March to November. The basin lies within the Humid Tropical Climatic Zone that normally experience 
double maximal rainfall that peaks in July and October. Precipitation is relatively high across the basin (1,500 – 
1,700 mm per annum) and the only dry months are January and February. Relative humidity rarely dips below  
60% and fluctuates between 75% and 90% for most of the year. In the rainy season, cloud cover is nearly 
continuous, resulting in mean annual sunshine hours of 1,600 and an average annual temperature of 
approximately 28oC. The vegetation of the study area is characterized by disturbed rainforest, light forest and 
patches of thick forest. Experience from change detection analysis showed that the heavily disturbed vegetation 
has the potential to rejuvenate under sustainable natural resources utilization and management (Akinwumiju, 
2015). The study area is underlain by the Precambrian Basement Complex that is characterized by both foliated 
and non-foliated rocks such as quartzite/quartz schist, amphibole schist, mica schist, migmatite, porphyritic 
granite, biotite granite, pegmatite, granite gneiss, banded gneiss and charnockite (De Swardt, 1953; Elueze, 1977; 
Boesse and Ocan, 1988; Oluyide, 1988; Odeyemi et al., 1999; Awoyemi et al., 2005). A unique attribute of Osun 
Drainage Basin is it’s been located at the heart of Ilesa Schist Belt, which is a zone of regional metamorphism 
that is characterized by notable geological structures such as the  Efon (psammite formation) Ridge and 
Zungeru-Ifewara Mega Fault Line (Akinwumiju, 2015). 
2.2 Analytical Procedure 

This study relied on the medium resolution Digital Elevation Model (SPOT DEM, 20 m resolution) of Osun 
Drainage Basin that was acquired from the Office of the Surveyor-General of the Federation in Abuja, Nigeria. 
Digital spatial data (such as sub-basin and river network maps) were extracted from Akinwumiju (2015). 
Analyses were undertaken in three stages. The first stage involved the determination of independent 
morphometric variables such as basin area, basin perimeter, basin relief, stream length, basin length, basin width, 
maximum order of streams, and number of streams in each order. Thus, automated feature attribute extraction 
(Add Geometry Attributes) module was adopted to derive the independent morphometric parameters on ArcGIS  
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Table 1. Morphometric Parameters and Formula 

 

  S. No. Parameters Formula Reference

1 Linear Morphometric parameters

1.1 Stream Order (Sμ) Hierarchical rank Strahler (1964)

Rb = Nμ / Nμ +1

Where, Rb = Bifurcation ratio, Nμ = No. of stream segments of a given order and Nμ +1= No. of stream
segments of next higher order.

1.3 Mean Bifurcation Ratio (Rbm) Rbm = Average of bifurcation ratios of all orders Strahler (1964)

1.4 Stream Number (Sn) Sn = Total Number of Stream Segments

1.5 Stream Length (Lμ) Length of the stream (kilometers) Horton (1945)

Lsm = Lμ/Nμ

Where, Lμ = Total stream length of order ‘μ’ Nμ = Total no. of stream segments of order ‘μ’

RL= Lsm / Lsm-1

Where, Lsm=Mean stream length of a given order and Lsm-1= Mean stream length of next lower order

Lg=1/2D Km

Where, D=Drainage density (Km/Km2)

1.9 Basin Perimeter (P) P=Outer boundary of drainage basin measured in kilometers. Schumm (1956)

Basin Length (Lb)

SSI = CL/Lv

Where, CL = Channel length (Kms) and Lv = Valley length (Kms)

2 Areal Morphometric parameters

2.1 Basin Area (A) Area from which water drains to a common stream and boundary determined by opposite ridges Strahler (1969)

Dd = Lμ/A

Where, Dd = Drainage density (Km/Km2), Lμ = Total stream length of all orders and A = Area of the
basin (Km2).

Fs = Nμ/A

Where, Fs = Stream frequency. Nμ = Total no. of streams of all orders and A = Area of the basin (Km2).

Dt = Nμ /P

Where, Nμ = No. of streams in a given order and P = Perimeter

(Kms) Rf = A/Lb2

Where, A = Area of the basin and Lb = (Maximum) basin length Horton (1932)

Re= √A /π / Lb

Where, A= Area of the Basin (Km2) Lb=Maximum Basin length (Km)

Rc = 4πA/ P2

2.7 Where, A = Basin Area (Km2) and P= Perimeter of the basin (Km) Or Rc = A/ Ac

Where, A = Basin Area (Km2) and Ac = area of a circle having the same perimeter as the basin

3 Relief Morphometric Parameters

Cg = Cc - Epp

Where, Cc = Channel Crest and Epp = Elevation of Pour Point

Rb = Eh - Ebm

Where, Eb = Highest Elevation of Basin and Ebm = Elevation of Basin Mouth

Rr = Rb/Lb

Where, Rb = Maximum Basin Relief and Lb = Maximum Length of the Basin

Rn = RbDd

Where, Rb = Basin Relief and Dd = Drainage Density

4 Tectonic Morphometric Parameters

(h/H):(a/A)

Where, h = Lower Interval Elevation – Basin Elevation, H = Basin Relief, a = Area above bottom of
Interval and A = Basin Area

T = Da/Dd

Where, Da = the distance from the main stream channel to the midline of its drainage basin and Dd = the
distance from the basin margin (divide) to the midline of the basin

AF = 100 (Ar/At)
Where, Ar = Area of the basin part to the right of the main drainage channel and At = Area of the entire

basin.
LP = The Graph of Dc (X axis) and Ec (Y axis)

Where, Ec = Elevation Values along main Drainage Channel and Dc = Distance (in kilometer) along main
Drainage Channel

Strahler (1950, 1957)

Strahler (1952)

Cox (1994)

Hare and Gardner (1985)

Smith (1939) & Horton (1945)

Schumm (1956)

Miller (1953)

Strahler (1964)

Horton (1945); S trahler (1964)

Schumm (1956)

4.4 Longitudinal Profile

Schumn (1956)

Strahler (1964)

Horton (1945)

Horton (1945)

Gregory and Walling (1973)

Muller (1968)

Horton (1932)

Horton (1932)

4.1 Hypsometric Integral

4.2 TTSF

4.3 Asymmetry Factor

3.2 Maximum Basin Relief

3.3 Relief Ratio

3.4 Ruggedness Number

2.5 Form Factor Ratio (Rf)

2.6 Elongation Ratio (Re)

Circularity Ratio (Rc)

3.1 Channel Gradient

2.2 Drainage Density (Dd)

2.3 Stream Frequency (Fs)

2.4 Drainage Texture (Dt)

1.8 Length of Overland Flow (Lg)

1.1 Lb=1.312*A0.568

1.11 Standard Sinuosity Index (SS)

1.2 Bifurcation Ratio (Rb)

1.6 Mean Stream Length (Lsm)

1.7 Stream Length Ratio (RL)
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sub-basins. The interpretation is that runoff would have relatively moderate time-lag to infiltrate before it will be 
finally confided into main drainage channels. Drainage Density of the sub-basins range from 0.58 km/km2 to 
3.27 km/km2 with a mean of 1.23 km/km2. The computed standard deviation (0.36) and coefficient of variation 
(29.65) indicate that Drainage Density is less heterogeneous across the sub-basins. Thus, infiltration potential is 
generally moderate in the study area. Stream Frequency of the sub-basins range from 0.01 to 9.09 with a mean of 
1.19. The values of standard deviation (1.04) and coefficient of variation (87.49) show that Stream Frequency 
varies heterogeneously across the sub-basins. However, the computed mean value revealed that Stream 
Frequency is generally low across the study area, which is an indicator of enhanced infiltration potential. 
Infiltration Number of the sub-basins range from 0.01 to 29.72 with a mean of 1.77. Values of standard deviation 
(3.06) and coefficient of variation (173.22) show that Infiltration Number varies significantly across the 
sub-basins. Analysis indicates that infiltration potential is high in 44% of the sub-basins (with IN < 1) while 32% 
of the sub-basins was adjudged to be of moderate infiltration potential (with IN ranging from 1 to 2). Analysis 
showed that infiltration potential was heterogeneously low in 24% of the sub-basins with Infiltration Number 
ranging from 2 to 30. However, the computed mean indicates that infiltration potential is generally moderate in 
the study area.  
The correlation matrix of the morphometric parameters is presented in Table 7. Results reveal that Basin Order 
exhibit positive and strong relationship with basin area, basin perimeter, stream number, Drainage Texture and 
stream length with correlation values of 0.72, 0.81, 0.70, 0.77 and 0.74 respectively at α = 0.01. Results showed 
that Length of Overland Flow exhibit inverse but significant relationship with Drainage Density, Stream 
Frequency and Infiltration Number with correlation values of -0.83, -0.51 and -0.45 respectively at α = 0.01. In 
this case, when the Length of Overland Flow increases, Drainage Density, Stream Frequency and Infiltration 
Number will decrease. The interpretation of this is that high Length of Overland Flow is an indicator of high 
infiltration potential. Results show that Infiltration Number exhibits positive and significant relationship with 
Drainage Density and Stream Frequency with correlation values of 0.78 and 0.95 respectively at α = 0.01. Thus, 
Infiltration Number increases with increasing Drainage Density and Stream Frequency and decreasing Length of 
Overland Flow in the study area. This is expected since Infiltration Number is function of Drainage Density and 
Stream Frequency. Results also showed that Stream Frequency exhibits an inverse but weak relationship with 
Basin Perimeter and Basin Order with correlation values of -0.23 and -0.20 at α = 0.05. Thus, Stream Frequency 
decreases with increasing Basin Perimeter and Basin Order. However, these associations are weak and might not 
hold. Results reveal that Length of Overland Flow, Drainage Density, Stream Frequency and Infiltration Number 
do not have any relationship with Basin Area. 
 

Table 7. Correlation Matrix of Morphometric Parameters 
 Area Perimeter BO SN DT SL LOF DD Sf IN

Area 1.00          
Perimeter 0.714 1.00         

BO 0.723 0.809 1.00        
SN 0.981 0.619 0.700 1.00       
DT 0.800 0.501 0.769 0.871 1.00      
SL 0.997 0.739 0.742 0.980 0.811 1.00     

LOF 0.015 -0.013 -0.069 -0.011 -0.176 -0.005 1.00    
DD -0.099 -0.080 -0.086 -0.076 0.094 -0.084 -0.827 1.00   
Sf -0.160 -0.234 -0.203 -0.126 0.070 -0.158 -0.509 0.7995 1.00  
IN -0.107 -0.149 -0.154 -0.088 0.059 -0.105 -0.446 0.781 0.954 1.00

 
However, it was observed that Stream Frequency and Infiltration Number exhibit inverse but weak relationships 
with Basin Perimeter at α = 0.05. The above facts imply that Infiltration Number is controlled by Stream 
Frequency, Drainage Density and Length of Overland Flow in the study area. And that it (Infiltration Number) 
does not depend on basin area and basin order. The relationship between morphometric parameters and 
Infiltration Number is presented in Table 8 and explained by the equations that follow.  
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Table 8. Relationship between Morphometric Parameters and Infiltration Number 
 
Model 

 
R 

 
R2 

 
Adjusted 
R2 

 
S.E. of 
the 
Estimate

Change Statistics 
R2 
Change 

F 
Change 

df1 df2 Sig. F 
Change

1 0.954a 0.910 0.909 0.92159 0.910 1073.143 1 106 0.000 
2 0.957b 0.916 0.914 0.89542 0.006 7.287 1 105 0.008 
3 0.959c 0.919 0.917 0.88123 0.003 4.407 1 104 0.038 
4 0.966d 0.934 0.931 0.80343 0.014 22.117 1 103 0.000 

a. Predictors: (constant), Stream Frequency 
b. Predictors: (constant), Stream Frequency, Perimeter 
c. Predictors: (constant), Stream Frequency, Perimeter, Length of Overland Flow 
d. Predictors: (constant), Stream Frequency, Perimeter, Length of Overland Flow, Drainage Density  

Y = -1.570 + 2.800X1………………………………………………………………(2) 
(R = 0.95; R2 = 91.0%; SE = 0.92) 

Y = -1.767 + 2.854X1 + 0.009X2………………………………………...................(3) 
(R = 0.96; R2 = 91.6%; SE = 0.89) 

Y = -2.599 + 2.964X1 + 0.010X2 + 1.540X3……………………………………….(4) 
(R = 0.96; R2 = 91.9%; SE = 0.88) 

Y = -7.321 + 2.456X1 + 0.009X2 + 5.774X3 + 2.810X4………………………... .(5) 
(R = 0.97; R2 = 93.4%; SE = 0.80) 

Where, X1 = Stream Frequency, X2 = Perimeter, X3 = Length of Overland Flow, X4 = Drainage Density 
 
The results of the stepwise regression analysis showed that Stream Frequency accounts for 97.43% of the 
strength of the overall regression model (eq. 5). The interpretation of this is that Stream Frequency is a strong 
variable that can solely give meaningful explanation of infiltration potential in the study area. However, basin 
perimeter, Length of Overland Flow and Drainage Density also have significant influence on infiltration 
potential at varying degrees. The overall relationship (eq. 5) explains 93.4% of the regression plain, which is 
quite significant. Thus, it can be affirmed that Stream Frequency, Basin Perimeter, Length of Overland Flow and 
Drainage Density are strong parameters that can give meaningful explanation of Infiltration Number in Osun 
Drainage Basin. Therefore, infiltration potential can be predicted based on these parameters. 
Table 9 presents the values of some morphometric parameters for the present study area (ODB) and Calabar 
Drainage Basin in the South-southern Nigeria (Eze and Efiong, 2010). The values of Elongation Ratio, 
Circularity Ratio and Form Factor computed for the two basins revealed that they are both relatively elongated, 
which implies that the basin are at advanced stage of landform development. However, based on the 
classification of Chow (1964), these basins have the tendency of becoming more elongated in the process of time 
as fluvial processes proceed. Moreover, the values of Area-Perimeter Ratio showed that ODB has higher 
potential to expand in the process of time.  
 

Table 9. The values of some Morphometric Parameters of Osun Drainage Basin and Calabar Drainage Basin 
S/No. Parameter Osun Drainage Basin 

(Source: Authors’ Research)
Calabar River Basin [Source: 
Eze and Efiong, 2010] 

1 Basin Area (km2) 2,208.18 1,514.00 
2 Circularity Ratio 0.32 0.34 
3 Bifurcation Ratio 4.18 3.57 
4 Drainage Density (km/km2) 1.23 0.34 
5 Stream Number 1,560 223 
6 Elongation Ratio 0.66 0.64 
7 Form Factor 0.34 0.34 
8 Stream Frequency 0.71 0.15 
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9 Basin Length (km) 80.34 62.00 
10 Basin Width (km) 43.89 43.00 
11 Basin Perimeter (km) 294.14 235.00 
12 Total Stream Length (km) 2,487.7 516.34 
13 Main Stream Length (km) 119 68 
14 Relief Ratio 5.6 0.014 
15 Length of Overland Flow (km) 0.44 1.47 
16 Drainage Texture 0.52 0.05 
17 Area-Perimeter Ratio 7.53 6.44 

 
The values of Drainage Density, Stream frequency and Length of Overland Flow showed that infiltration 
potential is higher in Calabar Drainage Basin compared to Osun Drainage Basin. This is expected as the former 
is located within the sedimentary environment while the latter is located within the Basement environment. The 
values of Relief Ratio suggest that the basins are located in environments of contrasting topographic 
characteristics. While the relief of Calabar Drainage Basin is observed to be relatively gentle, the relief of ODB 
is characterized by extreme topographic high and topographic low. Consequently, infiltration potential would be 
higher in Calabar Drainage Basin as surface runoff would have more time to infiltrate compared to ODB where 
surface runoff is relatively rapid. In the same vein, the values of Drainage Texture, Stream Number, Total Stream 
Length and Main Stream Length recorded for the basin indicate that larger percentage of annual rainfall would 
infiltrate within Calabar Drainage Basin while contrastingly, larger percentage of annual rainwater would leave 
ODB as river discharge as a result of the basin’s relatively low infiltration potential.  
4. Conclusion 
This study has attempted to examine the morphometric characteristics of Osun Drainage Basin, Southwestern 
Nigeria, with a view to assessing its infiltration potential. Several parameters were determined and analyzed in 
order to have in-depth knowledge of the geomorphometric features as well as the infiltration potential of the 
study area. The study shows that the drainage network of the study area is partially structurally controlled. ODB 
tilts southwestward and the meandering main channel reflects the evidence of geological disturbance along its 
course. Results reveal that the basin is at advanced stage of landform development with the tendency to become 
more elongated in the process of time. Except for Length of Overland Flow and Drainage Density, other 
parameters (Basin Area, Basin Perimeter, Stream Number, Drainage Texture, Stream Length, Stream Frequency 
and Infiltration Number) vary heterogeneously across the sub-basins. Basin Order, Basin Area, Basin Perimeter, 
Stream Number, Drainage Texture and Stream Length exhibit positive and significant associations with one 
another. Infiltration potential-related parameters (Length of Overland Flow, Drainage Density, Stream Frequency, 
and Infiltration Number) do not exhibit significant association with other basin-scale morphometric parameters 
in the study area. Stream Frequency exhibits weak association with Basin Perimeter and River Order. The study 
shows that Stream Frequency is the strongest variable that influences infiltration potential. Basin Perimeter, 
Length of Overland Flow and Drainage Density also have significant influence on infiltration potential at 
varying degrees. Thus, Stream Frequency, Basin Perimeter, Length of Overland Flow and Drainage Density 
constitute a set of strong variables that can give meaningful explanation of infiltration potential. Analysis reveals 
that larger percentage of annual rainwater would leave ODB as runoff discharge as a result of its relatively low 
infiltration potential. Finally, results of the correlation statistics show that Infiltration Number increases with 
increasing Stream Frequency and Drainage Density; and Length of Overland Flow increases with decreasing 
Drainage Density, Stream Frequency and Infiltration Number. 
The study concluded that the basin’s infiltration potential is moderate as suggested by the value of Infiltration 
Number. However, there is the need to examine the characteristics of the basin’s vadose zones as well as the 
aquifers, which are the major determinant factors of groundwater percolation and accumulation. 
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