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Abstract 
Factors determining forest species distribution include, in addition to external factors such as human interference 
and environmental management strategies, also soil and hydrological characteristics and climate conditions in 
any given areas. Modelling distribution has practical application in forest conservation and management, and 
help decision makers to develop strategies aimed at forest restoration, development of mountainous areas and the 
continuous and sustainable provision of forest-related services. Species distribution modelling (SDM) can be 
used for predicting species distribution based on tree presence records and on a number of environmental 
predictors. In this study we used MaxEnt for niche modelling in predicting carob (Ceratonia siliqua L.) trees 
spatial distribution in the Province of Azilal in Morocco. The results obtained show that a large area of the 
mountain regions is suitable for the expansion of Ceratonia siliqua stands. These findings will help decision 
makers in forest planning to better identify suitable sites for carob tree plantations and assess the potential of the 
exiting populations. 

Keywords: Carob, Ceratonia silique L., spatial distribution modelling, maximum entropy, GIS, Azilal, Morocco, 
MaxEnt 

1. Introduction 
The carob tree (Ceratonia siliqua L.) is an angiosperm belonging to the Fabaceae family which can reach fifteen 
meters in height and live over 200 years (Ait Chitt et al., 2007). Due to its inherent qualities and multiple uses, 
the carob tree has been cultured and exploited for many millennia with records dating back 4000 BC. More 
recently, due to its high tolerance to drought, the carob tree has been used to restore marginal semi-arid and arid 
areas in numerous areas around the Mediterranean basin (Ozturk et al., 2010; Osorio et al., 2011, Bakry et al., 
2013).  

The carob tree plays an important role from economic, ecological and social stand. The entire plant (i.e. leaves, 
flowers, fruits, wood, bark and roots) is in high demand and hence heavily exploited. Parts of the plant are 
suitable as food for human as well as forage for livestock. The tree also serves for other uses including for 
ornamental purposes, industry, carpentry, beekeeping and traditional medicines (Batista et al., 1996; Tous et al., 
1996; Barracosa et al., 2007). 

In the Kingdom of Morocco, data and information related to the distribution of the carob tree is scares, scattered 
and rather inaccurate. The estimated national coverage area of 30 000 ha quoted in the literature appears as a 
grossly underestimated value (Ait Chitt et al., 2007). Carob stands are widely distributed and found in the 
provinces of Agadir, Essaouira, Azilal, Beni Mellal, Meknes, Taza and El Hoceima. They consist of natural 
sparse formations or artificial plantations. Natural carob stands fit in the order of Pistacio–Rhamnenalia (Achhal 
et al., 1980), which includes matorrals, clear wooded or shrubby groups in association with olive (Olea europea), 
mastic (Pistacia lentiscus), cedar (Junepurus phoenicea) and argan (Argania spinosa) trees. The carob tree is 
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spontaneous and remarkably present in the thermo- and meso-Mediterranean zones: semi-arid to sub-humid 
bioclimate except in the very arid areas (Sidina et al., 2009; El Kahkahi et al., 2014). 

The carob is qualified as a mid-slope tree. Environmental factors limiting its distribution in Morocco are 
principally the absolute minimum temperature (>3°C) and altitude with its maximum reach at around 1 150m 
and exceptionally up to 1 600m (Gharnit et al., 1996). A limited number of studies have discussed the influence 
of these factors on the spatial distribution of the carob through empirical research. This paper is an attempt to 
highlight this issue. The Province of Azilal was selected as study area for the spatial distribution of carob 
populations. 

Moroccan carob stands are found mostly in marginal and hilly terrains. Based on current Moroccan forest 
regulations, local inhabitants have the right to collect wood from the forests under the jurisdiction and 
management of the state to be utilized as fuel. These activities are difficult to monitor and control and they often 
lead to exploitation levels that often exceed the carrying capacities of the forests. Nonetheless, as the carob is a 
prized fruit tree, it is generally more protected by the local inhabitant compared to other native species as it 
contributions to local income. Furthermore, the carob tree plays a crucial role in protecting soils and regulating 
the water-cycle. In addition, carob stands are also home to a large number of other organisms hence increasing 
local biodiversity. Thus, the conservation of existing carob stands and promoting new plantations would almost 
certainly contribute to combat desertification as well as to improve local biodiversity. There is therefore a need to 
adequately assess carob land suitability in Morocco through modelling of its current spatial distribution. To 
achieve this goal, the use of species distribution modelling (SDM) is recommended as a useful tool for 
characterizing the natural distribution of carob tree within their current range particularly as SDM has a practical 
application in the development of forest management strategies. Species distribution modelling, or ecological 
niche modelling (Peterson, 2006), also provides valuable information required in support of nature conservation 
actions (Lemos et al., 2014). Furthermore, SDM contributes to a better understanding of landscapes variations as 
a result of climate changes and/or human activities (Saatchi et al., 2008). The principle of SDM is to link species 
locations with the environmental characteristics in order to predict species occurrence likelihood (response 
function) and to assess the contribution of each environmental variable to that function (Austin et al., 2006). 

In SDM, many statistical models could be used (Hegel et al., 2010; Franklin, 2009). In addition to classical 
regression methods, machine learning based modeling is widely used including: Artificial Neural Networks 
(Ripley 1996); Maximum Entropy MaxEnt (Phillips et al., 2004); Random Forest (Lahssini et al., 2015); 
Classification and Regression Trees CART (Breiman et al., 1984). MaxEnt algorithm is the most popular and 
widely used and qualified as most efficient in handling complex interactions between response and predictor 
variables (Elith et al., 2011; Elith et al., 2006) and less sensitive to small sample sizes (Wisz et al., 2008). 

The present study aims to highlight the likely occurrence of the carob tree in the Azilal Province, using 
maximum entropy and GIS-based modelling. 

2. Method 
2.1 Study Area 

This study concerns Azilal Province which extends over an area of 10 758 km² (Figure 1). Approximately 80% 
of province’s terrain is mountainous with peaks exceeding 1 000 m in height. Annual rainfall level varies 
between 300 and 750 mm. The region is frequently exposed to storms with resulting heavy flood events, 
particularly during summer and fall. Summer months are usually very torrid due to the southwestly winds known 
locally as “Chergui” and with temperatures often exceeding 40°C. The climate is Mediterranean, 
semi-continental, with an arid bioclimate in the lower altitudes, while semi-arid to sub-humid fresh to cold as the 
altitude increases. 

The orographic, lithological and bioclimatic conditions are quite diverse. Thus, forest ecosystems covers almost 
35.4% of the province territory or an area of about 354 430 ha. Among the leading plant species, carob 
formations thrive at the mid slopes (locally called “Dir”). 

2.2 Modelling Approach 

Based on species presence data and environmental predictor maps, spatial distribution modelling was used to 
predict the likelihood distribution for a species’ occurrence as function of environmental limitations. Further, 
MaxEnt software was used to process the existing maps of environmental factors and the collected species 
occurrence data. 
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Figure 1. Study area in Morocco 

 

2.2.1 Data Used  

Carob tree populations’ occurrence data were recorded in Azilal Province (-7°20’ 31°20’, -5°50’ 32°40’) through 
field surveys along 600 km of roads and in areas where the carob tree is expected to be found (either in disturbed 
environments or forest formations). 

A global positioning system (GPS) device (Trimble Juno) was used to record spatial location (longitude and 
latitude) for each population/tree. In case of specific carob population, the registered location was the latitude 
and longitude taken from the centre of the population. 587 points was recorded (Figure 2). 
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Figure 2. Localization of sampling points within study area 

 

Nineteen bioclimatic variables (Table 1) were extracted from WorldClim database (http://www.world- clim.org; 
Hijmans et al., 2005) to characterize occurrence area. These predictors represent biologically meaningful 
variables for characterizing species distribution (Lehmann et al., 2011). 

In addition, as the carob is qualified as a mid-slope tree, Topographic Wetness Index (TWI) was also used. It is a 
steady state wetness index which quantifies the topographic control on hydrological processes (Sørensen et al., 
2006). The Topographic Wetness Index is a function of slope and upstream contributing area per unit width. The 
index was described as highly correlated with several soil attributes such as horizon depth, silt percentage, 
organic matter content, and phosphorus (Moore et al., 1993). The index is defined in equation 1, where “a” is the 
local upslope area and “tan(b)” is the local slope in radians. 

TWI=ln(a/tan(b))  Equation 1 

 

Table 1. Predictors used in the modelling process 

code variable signification code variable signification 
BIO1 Annual Mean Temperature BIO11 Mean Temperature of Coldest Quarter 
BIO2 Mean Diurnal Range (Mean of monthly [max temp - min 

temp]) 
BIO12 Annual Rainfall 

BIO3 Isothermality (BIO2/BIO7) (× 100) BIO13 Rainfall of Wettest Month 
BIO4 Temperature Seasonality (standard deviation ×100) BIO14 Rainfall of Driest Month 
BIO5 Max Temperature of Warmest Month BIO15 Rainfall Seasonality (Coefficient of 

Variation) 
BIO6 Min Temperature of Coldest Month BIO16 Rainfall of Wettest Quarter 
BIO7 Temperature Annual Range (BIO5-BIO6) BIO17 Rainfall of Driest Quarter 
BIO8 Mean Temperature of Wettest Quarter BIO18 Rainfall of Warmest Quarter 
BIO9 Mean Temperature of Driest Quarter BIO19 Rainfall of Coldest Quarter 
BIO10 Temperature of Warmest Quarter   
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2.2.2 Method and Used Software  

Species distribution modelling tools are used to predict the most suitable areas for a species and infer likelihood 
of its presence in regions where no systematic data are available (Elith & Burgman, 2002). They can also assess 
the potential expansion of introduced species in newly colonized areas (Jimenez-Valverde et al., 2011; Jeschke & 
Strayer, 2008), estimate the future range of a species under climate change (Sinclair et al., 2010) or assist in 
reserve management (Thorn et al., 2009). Furthermore, linking carob tree occurrence in some well-known 
locations with environmental data from their landscape and projecting it onto the geographical space (Deblauwe 
et al., 2008; Elith et al., 2006; Elith et al., 2011) allows to assume the likelihood of carob distribution within the 
study area.  

The principle of maximum entropy, used in the scope of this work, has its origins in information theory 
(Shannon, 1948) and is incorporated commonly in a Bayesian framework (Jaynes, 2003), where inference using 
probability distributions requires a prior distribution to represent the current state of knowledge. MaxEnt utilizes 
a predictive algorithm to maximize the entropy of the observed sample distribution (i.e. species locations), 
maximize the distribution of the background sample, and minimize the relative entropy of the ratio between 
these two distributions (Elith et al., 2011). MaxEnt is able to create complex models from presence-only data 
with low sample sizes (Dudík et al., 2007; Phillips, Anderson & Schapire, 2006; Phillips & Dudık, 2008; Phillips, 
Dudík & Schapire, 2004; Wisz et al., 2008). 

MaxEnt algorithm is implemented within the MaxEnt platform (Phillips et al., 2006). The software version used 
was 3.3.3k. It is a standalone Java program. Elith et al. (2011) provide an explanation of the algorithm (and 
software) geared towards ecologists. The MaxEnt software modelling outputs include assessments of model 
performance, tabulated contributions of each covariate to the models, and mapped probabilities of species at each 
pixel in the study area (the logistic output). 

Furthermore, the free and open source geographic information system, QGIS (http://www.qgis.org), was used to 
prepare the data, to calculate TWI (using geoprocessing plugin and SAGA extension) and to compile the MaxEnt 
results. R (R Core Team, 2014) was used to analyse the results and to get zonal statistics. 

2.2.3 Modelling Process 

Data preparation 

Environmental predictors were assembled into raster brick of values. Furthermore, a location file of observed 
points on which carob tree exists across the study area was established. Prior to conducting analysis in MaxEnt, 
all locational and predictor grids were clipped to the same geographic extent and interpolated to a common 
resolution and to same geographic dimensions. As MaxEnt requires same pixel size of all rasters, a common 
spatial resolution of a 90 m per pixel was chosen. In addition, only one occurrence sampling point per 90 m pixel 
was used for model building and evaluation in order to reduce sampling and autocorrelation bias (Webber et al., 
2011). Elith et al. (2011) found that even in the case of correlated variables, MaxEnt performs better than most of 
other modelling methods. Therefore, all described covariates were retained for the final model. Jackknifing was 
used to assess relative importance of each variable.   

Model building  

As recommended by Phillips & Dudık (2008), default settings for MaxEnt software were validated over a range 
of tests. Used settings have other adaptations (Galleti et al., 2013) such as: 

• Response curves were produced in order to evaluate the model’s performance as function of each 
environmental variable. 

• Jackknife test determined the prediction power of each variable. For each variable, model has been 
trained with that variable as the sole variable and without that variable in order to assess its relative 
contribution to the model. 

• Cross-validation was used to examine the variability in model building. The leaved part concerned 15% 
of the sample size. 

• Different random seed was selected for each run. The sample data were divided randomly into different 
partitions for training and testing, and different random subsets of background samples were selected.  

• As noticed by the same authors, adding data for observed sample locations to the background data 
raised model performance; all samples were added to the background. 
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Model performance 

Area under the curve. The receiver-operating characteristic (ROC) plot’s area under the curve (AUC) is a 
threshold-independent measure of model prediction accuracy. The AUC of the ROC plot is constructed by 
plotting the false-positive error rate (1-Specificity) on the x-axis versus the true positive rate (Sensitivity) along 
the y-axis for every probability value predicted by the model. The AUC is the sum of the area occurring under 
the ROC curve (Hanley & McNeil, 1982). According to Araújo et al. (2005), the model is excellent where: AUC > 
0.90, good: 0.80 < AUC ≤ 0.90; acceptable: 0.70 < AUC ≤ 0.80; bad: 0.60 < AUC ≤ 0.70; and invalid for 
values ranging between 0.50 < AUC ≤ 0.60. In addition, AUC may be used for fine tuning model settings by 
comparing results based on different sample sizes and predictors (Franklin, 2009). 

Model gain. The algorithm within MaxEnt generates the optimum distribution that satisfies all constraints. Each 
unique model begins with a uniform distribution, which guarantees the maximum possible entropy for that 
model, and over a set number of iterations the algorithm increases the probability of correctly predicting the 
locations of the phenomena modelled. The increase in probability is displayed as the model gain, which is 
calculated as the log of the number of grid cells minus the average of the negative log probabilities of the sample 
locations (log-loss). The gain increases with each iteration of the model until it falls below the convergence 
threshold or until the model performs the maximum number of iterations allowed. Smaller log-loss values 
indicate a higher likelihood of suitable conditions necessary for species occurrence (Phillips & Dudık, 2008).  

Predicted distribution map. MaxEnt software produces a map that displays the probability of carob occurrence as 
a value from 0 to 1 for each pixel (logistic output). From this logistic output, three thresholds were evaluated. 
The first evaluation was made for a threshold of 0.50 because it is an intuitive cut-off point for high and low 
probability of occurrence. The second is based on transition between the most suitable areas to unsuitable area 
with levels of: 0.2, 0.4, 0.6 and 0.8. The third allows a comparison of area strictly unsuitable with those with a 
small probability. Furthermore, maps realism has been verified with the help of forest managers who worked a 
long time on the study area. 

3. Results 
The main output of SDM is a continuous probability map showing the most suitable area for Ceratonia siliqua L. 
(Figure 3). As presented on the receiver operating characteristic (ROC) curve (Figure 4), the AUC value is 0.926 
which indicates excellent model predictions of carob tree distribution. This value falls in the upper range of the 
possible AUC. Thus, the adjusted MaxEnt model is excellent and able to discriminate clearly between random 
points and the environment associated with locations that are the most suitable for Ceratonia siliqua.  

Using the predefined thresholds sets, the continuous probability map could be filtered to show the likely area of 
carob tree distribution. Based on these thresholds and for the most intuitive cut-off of 0.5, Ceratonia siliqua is 
predicted to occur in an environment that consists of a cumulative area of about 1 006 km2.  

Based on probability thresholds of 0.01, 0.2, 0.4, 0.6 and 0.8, suitability classes correspond, respectively, to 58%, 
15%, 10%, 13%, 4% and 0.04% of study area. Furthermore, using 0.5 cut-off thresholds, carob trees were 
predicted to occur on 9.35% of study area whereas 90.6% of the same area was considered as unsuitable for the 
species. 

Contributions for each predictor were assessed during the process of model building in order to evaluate the gain 
in model performance with and without each covariate, providing a measure of its relative importance. In carob 
tree distribution modelling, the contribution of the various predictors differed considerably in both rank and 
magnitude. Indeed, temperature variables provide high contributions, followed by the rainfall during the warmest 
quarter. Five covariates provided negligible contributions: TWI, rainfall during the coldest quarter and during the 
wettest quarter, and annual mean rainfall. 
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Figure 3. Map of the logistic output showing the probability of occurrence for Ceratonia siliqua in Azilal 

Province 

 

 
Figure 4. Receiver operating characteristic curves for the occurrence localities of carob trees 
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Moreover, according to the Jackknife test (Figure 5), the environmental variable which shows the highest gain 
when used as the sole variable is the Temperature Annual Range (BIO5-BIO6). This predictor seems to have the 
most useful information for model building. On the other hand, when the temperature seasonality and the mean 
diurnal range are omitted the model gain decreases. These two predictors seem to hold the most information that 
is missing from other variables. These statements shows that the two later predictors are necessary for MaxEnt 
model building in order to achieve a good fit to the training data. Further, the temperature annual range variable, 
when used as sole variable, gives comparatively better results than other predictors. 

Analysing observed pixels value for suitable area (with an occurrence probability > 0.5) and for unsuitable area 
(with an occurrence probability < 0.1) shows that carob tree distribution varied throughout different bioclimatic 
locations. Summary statistics are given in Appendix A. The most suitable area seems to be confined to an area 
with a higher minimum temperature during coldest quarter (BIO 6 and BIO 11) and a low rain during the 
warmest quarter. Furthermore, compared to unsuitable locations, suitable areas are also characterized by: 

- a relative homogeneity for predictors’ values - for each predictors, the standard deviation is lower compared 
to unsuitable area, except for TWI where the two values are similar (1.8 for suitable vs. 1.53 for 
unsuitable);    

- higher values of BIO1, Bio 6 and Bio 11;   

- lower value of BIO 18; and 

- for the TWI, mean and median values are higher. It means that pixels with higher TWI values are likely to 
become saturated before those of lower values. Furthermore, negative TWI values are abundant and seem 
to be among the driest locations. 

 

 

Figure 5. Variable importance in modelling process assessed through Jackknifing 

Where: preds_multi_bio.1 to preds_multi_bio.19 = are respectively the BIOCLIMATIC predictors BIO1 to 
BIO 19 (defined in Table 1); twi_sampled_def_2 = topographic wetness index.   
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4. Discussion 
The occurrence likelihood map of the carob tree (Ceratonia silique) in the Province of Azilal, Morocco, has cell 
values ranging from 0.1% to 100%. Reclassifying these values according to the thresholds leads to the 
identification of a suitability map. The AUC evaluation leads to an excellent predictive ability of the model 
which is concurred by forest managers through their positive feedback on the produced suitability map (using a 
threshold of 0.5). Moreover, the trained model could be extrapolated to the whole of Morocco (data not shown 
due to the lack of samples covering the whole of Morocco).  

Identification of environmental covariates that are noteworthy for their substantial modelling contributions 
shows that temperature predictors (temperature range: max T° of warmest season – min T° of coldest season, T° 
seasonality, Min T° of the coldest month) in addition to rainfall levels during the warmest quarter were the most 
important bioclimatic variables related to Ceratonia siliqua occurrence in our niche modelling analysis. These 
four bioclimatic variables are related to the presence/absence of frost which is a limiting factor and to reduced 
rains during the drought season. Soil fertility has not been used in the modelling analysis due to the lack of 
information. The TWI, which is closely related to soil fertility, does not have a high contribution to the fitted 
model further indicating that the carob tree is indifferent to soil composition. 

The highlighted predictors interfere with forest establishment and expansion. This is not surprising, since carob 
stands occur on hilly and mountainous sites which are arid and warm. Thus, the absence of a cold season (frost) 
during the year is considered as the main factor enabling carobs’ establishment and development in the Province 
of Azilal. 

5. Conclusion 
This study provides the first predicted potential map for spatial distribution of carob tree in Morocco. The use of 
MaxEnt modelling shows an exceptional performance in predicting accurately the carob tree distribution in the 
Province of Azilal, using a few number of occurrence records of carob tree. The application of this approach can 
be an effective tool for forest conservation, monitoring and management in the context of climate change.   

The carob is a multifunctional tree, appreciated by rural communities, due to its products of high value. The 
expansion of the carob plantations is highly recommended by local communities and the forest administration. 
Therefore, carob stands should be expanded in suitable areas with a human interference and on marginal lands. 

This study can help decision maker to identify suitable land to implement carob plantation programs and 
optimize their effort in order to ensure forest conservation and restoration. 
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Appendix A  
Summary statistics of the main predictors used in the modelling process 
Predictors summary statistics in the suitable area (with an occurrence probability > 0.5) and in unsuitable area 
(with an occurrence probability < 0.1) are characterized in Table A1. This table has been constructed through 
analysing predictors observed pixels value for each suitability level. 

 

Table A1. Summary statistics of the main predictors used in the modelling process in the suitable and unsuitable 
cases 

Area 
Stat 

     
twi 

     
bio1 

     
bio2 

     
bio4 

     
bio6 

     
bio7 

    
bio11 

    
bio18 

 
bio19

Suitable to carob 

tree 

Min.  -15.28  147   162 5619  -8  332   74.00   12.00   138.0  

Med.  -13.01  169  166 6015  14  350   95.00   19.00   184.0  

Mean  -12.52 168.3 166.2 6046 13.55 350.2  93.91   19.34   184.5  

Max.  -5.81  184  170 6443  36  360  113  31.00   246.0  

Sd  1.8 7.17  1.14 130.62 8.56 4.65 7.62 3.57 22.87

Unsuitable 

Min. -15.7   34 156 5569 -132  329 -51.00  10 125.0  

Med. -13.65  121  166 6741  -41 373  42.00  39.00  185.0  

Mean -13.24  121.7 165.6 6714  -39.19 371  42.42  39.88  186.1  

Max.  -5.36  195 170 7439   48  394 122  93.00  276.0  

Sd 1.53 31.1 2.76 340.52 35.35 13.12 34.23 13.93 23.87

Where: Min.= minimum; Med.= median value; mean= mean of observed values; Max.= maximum observed 
value; sd= standard deviation of pixels value within the suitability class. 
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