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Abstract 

Islands within the Caribbean region are frequented by heavy rains and strong winds, causing flooding and 
damage to infrastructure and the environment. The increasing availability of spaceborne RADAR data offers 
advantages over optical imagery for the mapping and mitigation of such hazards. RADAR data has the ability to 
penetrate cloud cover, making it capable of collecting data during virtually all weather conditions. In this study, 
the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture RADAR 
(PALSAR) was used to distinguish seasonally dynamic water bodies on New Providence Island in the Bahamas 
using an image thresholding technique. The threshold was determined by performing statistics on field-validated 
training sites. The accuracy of the RADAR data’s classification of water bodies was tested using a control 
dataset derived from GeoEye-1 imagery and GPS points collected during field work. The RADAR data was 
found to best classify large, static water bodies. It less accurately classified small, seasonally inundated water 
bodies and small ponds that are not spatially separated from vegetation. This study demonstrates a practical 
methodology which can be easily adapted by government and emergency management agencies within the 
Caribbean, as a preparation and mitigation tool. As such, it addresses the need for accessible data, techniques, 
and methods, designed to improve the understanding of dynamic natural phenomenon and assist government 
managers with decision making.  
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1. Introduction 

The Caribbean region is threatened by several types of natural hazards, most commonly tropical storms and 
hurricanes. The heavy rains and strong winds associated with such events have the potential to cause flooding 
and destroy infrastructural and environmental features. Flat, low-lying islands such as those within the Bahamian 
island chain are particularly vulnerable to the effects of flooding and storm surge.The islands of the Bahamas 
have suffered the effects of several tropical storms and hurricanes in the past decade. In October 2005, Hurricane 
Wilma passed through the northern islands of the Bahamas displacing approximately 1,500 people and damaging 
or destroying more than 200 homes. In September 2008, Tropical Storm Hanna swamped the Bahamas with 
heavy rain and strong winds. Days later, Great Inagua Island took a direct hit from Hurricane Ike, which again 
drenched the southeastern Bahamas. Most recently, in August 2011, Hurricane Irene struck the Bahamas as a 
category 3 storm, with the greatest amount of damage occurring on Acklins and Crooked Islands. 

Remote sensing and satellite image interpretation offer a methodology whereby hazard and mitigation programs 
benefit from an increased capability to map, monitor, plan for, and mitigate the effects of natural hazards (Joyce 
et al., 2009). Historically, remote sensing data used for land cover analysis, flood hazard mitigation and response 
efforts, and change detection have relied heavily upon optical satellite imagery. While optical spaceborne sensors 
have the advantage of being an established and well-developed technology, they are limited to sensing short 
wavelengths and rely on solar radiation as the energy source. For all stages of the hazards cycle, from mitigation 
to recovery, the use of passive remote sensing data is limited by atmospheric conditions such as heavy cloud 
cover. Radio detection and ranging technology (RADAR), however, is an active remote sensing system capable 
of collecting data day-and-night and in virtually all weather conditions (Herold et al., 2004). 

Few studies involving the application of remote sensing technologies for natural hazards and mitigation analysis 
exist in the Caribbean region. Many of the remote sensing studies that have been done in the Caribbean focus on 
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utilizing optical sensors to study coral reefs, near-shore marine vegetation, and bathymetry (Mumby & Harborne, 
1999).  

In this study, the Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture 
RADAR (PALSAR) data are used to distinguish areas of open water on New Providence Island in the 
Commonwealth of the Bahamas by creating training sites from optical satellite imagery, analyzing and 
classifying the backscatter coefficients of the PALSAR images, and using a combination of optical imagery and 
data control points to verify the results. This study tests the applicability of PALSAR data for identifying water 
features and uses raster-based GIS processing techniques to identify seasonally inundated areas as a tool for 
hazards mapping. While the ALOS satellite is no longer operational, data from the extensive PALSAR archive 
can be used as baseline pre-event imagery for the identification of seasonally inundated areas, as a component of 
flood hazard mitigation. This study demonstrates a practical methodology which can be easily adapted by 
government and emergency management agencies within the Caribbean, as a preparation and mitigation tool. As 
such, it addresses the need for accessible data, techniques, and methods, designed to improve the understanding 
of dynamic natural phenomenon and assist government managers with decision making.  

2. Background 

2.1 Sensor Development 

The historical use of remote sensing data in flood hazard analysis has largely relied upon optical satellite 
imagery and the capabilities of such sensors to assist with basic research on flood hazards is well established. 
Showalter et al. (1999) provide an annotated bibliography of literature published from 1972 to 1999 related to 
the application of remote sensing technologies for detecting and analyzing natural hazards.  

An alternative method of flood mapping relies onSynthetic Aperture RADAR (SAR) data. SAR systems operate 
by measuring the power of the radio wave signal sent to and received from the terrain surface from a satellite or 
airborne platform. The most commonly used wavelengths of imaging SAR systems are L-band (24 cm 
wavelength), C-band (5.6 cm wavelength), and X-Band (3 cm wavelength). Most SAR systems can transmit and 
receive signals in either one of two polarimetric configurations: horizontal waves (H) and vertical waves (V). 
The angle of the incident radio waves varies with each SAR sensor, but generally ranges from 20 ° off nadir to 
60 ° off nadir (Ulaby et al., 1986). The resulting images derived from SAR have a spatial resolution ranging from 
1 m to 100 m.  

2.2 RADAR 

The standard RADAR equation helps to explain the variables which influence the brightness of the pixels in 
output RADAR images (Campbell, 2007). Traditionally the equation is expressed as:  

Pr = (σG2Pt λ
2)/((4π)3R4)                 (1) 

Pr represents the energy returned to the RADAR sensor from the ground. R defines the range to the ground target 
from the RADAR antenna. The power transmitted is shown by Pt and the wavelength of the energy transmitted is 
expressed as λ. The RADAR sensor’s ability to focus its energy on the ground target is defined as the antenna 
gain and is represented by G. Finally, σ is the variable which is not set by the RADAR system itself and 
represents the backscatter coefficient. The backscatter coefficient is a measure of the scattering properties of 
features on the ground as compared to a cross-sectional area of a perfectly reflecting sphere (σ0) that would 
produce the same strength reflection as measured objects on the surface.  

The RADAR cross-sectional area of an object does not necessarily bear a direct relationship with the physical 
cross-sectional area of that object. Rather, it depends on other factors such as the material properties of the object, 
the angle of the incident RADAR energy, the shape of the object, the object’s relative size as compared to the 
wavelength (λ) of the RADAR system, and the angle of the reflected energy back towards the sensor. 

The backscatter coefficient is expressed in decibels (dB) and measures the interaction of the RADAR system and 
the complex features within the landscape observed (Townsend & Walsh, 1998). The observed ground surface is 
rarely uniform and is influenced by topography, soil moisture, vegetation, and other natural and man-made 
phenomenon. 

One of the most significant contributing surface properties to the backscatter coefficient value is the roughness 
of the surface. While there are differing definitions of surface roughness, Campbell (2007) defines a common 
formula to calculate roughness as: 

/ (8 cos )Sh                                       (2) 



www.ccsenet.org/jgg Journal of Geography and Geology Vol. 4, No. 3; 2012 

31 
 

As the standard deviation of the surface height (Sh) increases above one-eighth of the wavelength (λ) divided by 
the cosine of the incidence angle (cosθ), the surface is considered to be rough. In general, three basic types of 
surface scattering mechanisms can be defined: (1) diffuse reflectors which correspond to features of variable 
roughness and are represented in RADAR images as a speckled gray appearance (2) corner reflectors which are 
extremely strong reflectors of the RADAR signal and often are bright in appearance, and (3) specular reflectors 
which are smooth surfaces from which the incident RADAR signal is reflected away from the sensor, causing the 
values to appear dark. 

Interpretation of the RADAR backscatter coefficient is often best accomplished by interpreting the type of 
scattering present and correlating the scattering with the presence or absence of certain types or assemblages of 
land cover features.  

3. RADAR Remote Sensing Techniques 

SAR signals are ideally suited to determining the difference between land and water because flat water surfaces 
are often near perfect specular reflectors. RADAR signals have been successfully processed to map several types 
of land cover features, including open water, flooded forests, and coastal vegetation (Horritt et al., 2003). Fully 
polarimetric C, L, and P-band airborne RADAR were used to map forest, wetland, and agricultural ecosystems, 
but early studies showed limited utility with single polarization sensors (Pope et al., 1994). Studies using C-band 
and L-band spaceborne RADAR proved successful at delineating flooded and non-flooded forests in tropical 
environments (Hess et al., 1995). Further studies have demonstrated that RADAR can be used to discriminate 
between open water, bogs and alluvial and non-alluvial forests in tropical floodplains and the fact that both the 
RADAR backscatter values and the changes in backscatter values over time can be used to monitor flood 
dynamics (Martinez & Le Toan, 2007). Coastal plain forested wetlands and hydroperiods have been mapped 
using a Principle Component Analysis (PCA) applied to C-band HH and VV ERS-2 and ENVISAT images 
(Lang et al., 2008). Studies concerned with the mapping of mangroves have also experimented with using 
RADAR data as a means of identifying this feature, and positive results are demonstrated when mangroves are 
spatially separated from other forest types, thus eliminating any confusion between mangrove classes and other 
types of vegetation (Lucas et al., 2007). A thorough review of the integration of stage data, hydraulic models, and 
remote sensing techniques for riverine flood detection is provided by Schumann et al. (2009). Notably absent in 
the studies reviewed are those which focus on islands subjected to rainfall and coastal inundation effects. 

The integration of optical and RADAR remote sensing for land cover analysis has also been examined. By 
providing an additional portion of the electromagnetic spectrum, the integration of RADAR data can at times 
provide a clearer image, reduce the redundancy of optical bands, and improve classification accuracies (Haack et 
al., 2000; Haack & Bechdol, 2000; Herold et al., 2004). While the capabilities of RADAR technologies have 
been examined in several studies, the application and effectiveness of spaceborne L-band ALOS PALSAR data 
for hydrographic feature mapping in the Caribbean region has not been previously assessed. 

4. Study Area 

The Commonwealth of the Bahamas is composed of 700 islands and nearly 2,500 islets or cays. The country’s 
two most populous cities are the capital, Nassau, located on New Providence Island, and Freeport, located on 
Grand Bahama Island. Lying between 20º and 27º N and 72 º and 79º W, the islands of the Bahamas are spread 
over approximately 260 000 square kilometers (km²) of the Atlantic Ocean, between Florida and Hispaniola 
(Figure 1).  
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Figure 1. General location map of the Commonwealth of the Bahamas 

 

The climate is semi-tropical marine and is moderated by the warm waters of the Gulf Stream. Annual 
temperatures range from 15ºC to 32ºC, with high humidity and prevailing easterly winds. The annual rainfall 
average is 128.5 centimeters (cm), with the highest amounts of rainfall occurring between May and October.  

Two major influencing factors account for fluctuations in water levels on topographically flat coastal 
environments such as the Bahamas. The first phenomenon is tidal patterns, which affect water areas within the 
coastal zone. Due to the exceptionally flat, low-lying nature of these islands, a small increase or decrease in the 
tidal level results in the inundation or exposure of large horizontal areas (Figure 2). In addition, the pressure of 
high tides pushes the ground water table nearer to the surface. The second phenomenon is rainfall variations, 
which affect inland lakes and ponds. Such water bodies are particularly influenced by seasonal rainfall, the 
effects of which are more difficult to estimate (Figure 3). 

 

 

Figure 2. Profile and orthographic figures showing the effects of tidal fluctuations on coastal water bodies with 
mangrove vegetation 
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Figure 3. Profile and orthographic figures showing the effects of rainfall variations on inland lakes and ponds 
vegetated with marsh grasses 

 

Fluctuations in both coastal and inland water levels in the Bahamas are influenced by hazards such as hurricanes, 
storm surge, and heavy rains. In order to provide a more accurate understanding of the extent of coastal and 
interior water bodies, the tides and rainfall totals were recorded for the particular dates and times of the imagery 
and control datasets used in this study (Table 1). 

 

Table 1. Table detailing information on the PALSAR scenes, optical imagery, and data control points used in 
this study 

Data Type Coverage 
Spectral 

Resolution (cm) 

Spatial 

Resolution 

(m) 

Date 

(GMT) 

Time 

(GMT) 

Date 

(Local) 

Time 

(Local) 

Orbit 

Direction 

Off Nadir 

Angle 

Low 

Tidea,b 

Low 

Tide 

Height 

(m)c 

High 

Tide 

High 

Tide 

Height 

(m) 

ALOS 

PALSAR 

New Providence 

North 

L-band (23.6) 

FBD (HH, VV) 
12.655 

13 June 

2010 
03:45:05 

12 June 

2010 
22:45:05 Ascending 34.3 

02:26:00 -0.027 08:11:00 0.738 

14:14:00 -0.128 20:42:00 1.027 

ALOS 

PALSAR 

New Providence 

South 

L-band (23.6) 

FBD (HH, VV) 
12.655 

13 June 

2010 
03:45:57 

12 June 

2010 
22:45:57 Ascending 34.3 

02:26:00 -0.027 08:11:00 0.738 

14:14:00 -0.128 20:42:00 1.027 

                            

Data Type Coverage 
Spectral 

Resolution (µm) 

Spatial 

Resolution 

(m) 

Date 

(GMT) 

Time 

(GMT) 

Date 

(Local) 

Time 

(Local) 

Sun Angle 

Azimuth 

(º) 

Sun 

Angle 

Elevation 

(º) 

Low 

Tided,e 

Low 

Tide 

Height 

(m) 

High 

Tide 

High 

Tide 

Height 

(m) 

GeoEye-1 New Providence 0.450-0.900 (MSI) 1.7 (MSI) 
11 July 

2009 
15:49:00 

11 July 

2009 
10:49:00 94.7 70.6 

05:11:00 0.125 10:09:00 0.756 

17:11:00 0.180 23:21:00 0.664 

                            

Data Type Coverage - - 
Date 

(GMT) 

Time 

(GMT) 

Date 

(Local) 

Time 

(Local) 
- - 

Low 

Tidea 

Low 

Tide 

Height 

(m) 

High 

Tide 

High 

Tide 

Height 

(m) 

GPS Set 1 New Providence - - 

12 

March 

2010 

15:30:00 

12 

March 

2010 

10:30:00 - - 

11:52:00 0.091 05:29:00 0.762 

23:57:00 0.030 17:48:00 0.701 

GPS Set 2 New Providence - - 
10 June 

2010 
17:00:00 

10 June 

2010 
12:00:00 - - 

12:51:00 0.073 06:34:00 0.683 

12:39:00 -0.055 19:08:00 0.945 

a Tide times recorded in Local Standard Time 
b NOAA b, 2010 
c Tide heights referenced to Mean Lower Low Water (MLLW) 
d Mobile Geographics, 2000 
e NOAA a, 2009 
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4.1 New Providence Island  

This study focuses on the island of New Providence, in the northern Bahamas. New Providence Island is situated 
between Andros Island to its west and Eleuthera Island to its east (Figure 4). This island was selected as a study 
site because it is the most densely populated island in the Bahamas; consequently, the impacts from flooding on 
this island have the potential to affect a large population.  

 

 

Figure 4. Map showing New Providence and surrounding islands and PALSAR scene coverage 

 

5. Materials  

5.1 PALSAR Data Information 

The Japanese Aerospace Exploration Agency (JAXA) launched ALOS in 2006 and operated until 2011, when an 
electrical malfunction occurred rendering the satellite inoperable. The ALOS satellite carried three remote 
sensing instruments: the along-track 2.5 m resolution Panchromatic Remote-sensing Instrument for Stereo 
Mapping (PRISM), the 10 m resolution Advanced Visible and Near-Infrared Radiometer type-2 (AVNIR-2), and 
the variable resolution polarimetric PALSAR. PALSAR operated in four different observation modes: Fine Beam 
Single (FBS), collecting data in HH at a nominal resolution of 6.25 m; Fine Beam Dual (FBD), collecting data in 
HH and HV at 12.5 m resolution; Polarimetric mode (POL), collecting data in HH, HV, VV, and VH at between 
24 and 89 m resolution; and a wide-beam ScanSAR mode collecting data at 100 m (multi look) resolution. 
PALSAR was a fully polarimetric RADAR sensor, operating in L-band with a 1270-MHz center frequency, 23.6 
cm wavelength, and an incidence angle of 34.4° in FBS and FBD polarization modes. PALSAR’s temporal 
resolution was once approximately every 46 days.  

JAXA is currently in the testing and developmental phase of the PALSAR-2 sensor. PALSAR-2’s technological 
improvements will include higher spatial resolution of up to 1-3 m spotlight mode and a 3-10 m high resolution 
mode. Additionally, the temporal frequence of PALSAR-2 will improve with a data observable range and a 
pointable sensor, allowing for more frequent data collection. 

ALOS PALSAR RADAR data scene coverage of New Providence was acquired from JAXA via the Alaska 
Satellite Facility (ASF). Two FBD polarization PALSAR data scenes were purchased with coverage of New 
Providence Island (Figure 4). Both of these images were collected on 13 June 2010. This date was chosen 
because there had been no remarkable rainfall before or during the collection of the data, and it coincided with 
field work conducted on New Providence (Table 1). 

5.2 Optical Satellite Imagery 

Optical satellite imagery was incorporated and used as a baseline for identifying water features on New 
Providence Island. An image collected by the GeoEye-1 satellite was used to develop training sites for areas 
representing open water, to assist with the RADAR mapping technique (Table 1). At 1.7 m multispectral 
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resolution, this image provides a high-resolution natural color and near-infrared image of the island, from which 
different land cover features were identified. The image was also used to develop water control datasets, against 
which the accuracy of the RADAR mapping method was assessed.  

5.3 Data Control Points 

Datacontrol points were gathered to verify and validate the presence, type, and depth of water features visible in 
the optical satellite imagery.Field work was conducted on New Providence from 10-13 March 2010 and again 
from 7-13 June 2010 (Table 1). Twenty-five field sites composed of varying types of inland and coastal 
hydrographic features were visited (Figure 5). The data control points were regionally concentrated along the 
northeastern, western, and southwestern coasts, as well as throughout several interior locations near inland water 
bodies. At each location, data were collectedto document surrounding land cover features, current atmospheric 
conditions, water depth, and vegetation type and height.  

 

 

Figure 5. Map showing the location of data control points collected during field work on New Providence Island 

 

5.4 Water Control Datasets 

A two-step approach was used to compile a water bodies map for checking the accuracy of the PALSAR water 
mapping results. First, an unsupervised image classification was performed using the near-infrared band of the 
optical imagery, in which water areas appear as dark reflective surfaces. The second step was a manual photo 
interpretation to correct the classification, add known water bodies based on data control points which were not 
correctly classified, and correct areas obscured by cloud cover. Because the optical imagery used in this study 
was collected 13 months prior to the collection of the RADAR data, the data control points were used to validate 
the water bodies map to ensure that areas were correctly classified and temporally accurate. In this way, the final 
control datasets, based largely on the optical imagery, were assured to be accurate for the analysis of the RADAR 
data. 

Two separate control datasets were created. The first is a land-water mask of the entire island, its inland water 
bodies, and surrounding bays and ocean areas. The second control dataset was developed by clipping the 
complete control dataset to only inland water bodies, using a vector dataset of the coastline of New Providence. 
The former was used as an overall measure of the threshold technique’s ability to detect the presence of any type 
of water, while the latter was developed as a means of testing the approach’s ability to extract small and seasonal 
inland water bodies, without including large expanses of ocean which may bias the comparative statistical 
results.  

5.5 Tropical Rainfall Measuring Mission (TRMM) Data 

Due to the lack of available rainfall data and instrumentation on New Providence Island, data from the Tropical 
Rainfall Measuring Mission (TRMM) satellite were used to estimate the precipitation totals for New Providence 
during the time of PALSAR imagery collection. Launched on 28 November 1997, TRMM is a joint operation 
between the National Aeronautics and Space Administration (NASA) and JAXA, designed to improve estimates 
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of precipitation in the tropics and sub-tropics (JAXA). The TRMM data used in this study was collected between 
12 June 2010 and 13 June 2010, and recorded 1.6 millimeters (mm) of rainfall during this time period. 

6. Methodology 

6.1 Processing the RADAR Data 

ASF’s MapReady software Version 2.3.6 was used to pre-process the PALSAR data, geocode it into the UTM 
zone 18N projection (WGS84 datum), and apply radiometric corrections. The data were then converted into 
calibrated backscatter coefficient values (sigma) and scaled to dB, and the calibrated data were exported into a 
32 bit floating point GeoTiff format. 

6.2 Determining the Water Threshold for New Providence Island 

In order to classify the RADAR data into areas of water and land, a threshold value for water was identified 
based on the backscatter coefficients of the RADAR data. The thresholding approach is frequently used to 
distinguish flooded and non-flooded areas in RADAR imagery with reliable results (Martinis et al., 2009). To 
determine the threshold value, seven training sites for water were defined in a GIS using the GeoEye-1 imagery 
of New Providence Island as an image base layer. The training sites are approximately 10 000 meters squared 
(m²) in area or greater, and the edges of the selected water bodies were excluded during their delineation to 
further ensure that vegetation and edge effects were not present.Basic statistics of the backscatter values were 
calculated for each of the training sites in both the HH and HV datasets of New Providence. The statistical values 
were then averaged for all of the training sites. The result was a mean backscatter value for each statistic (Table 
2).  

The average mean plus the average standard deviation (x̄ mean+ x̄ std) provides the broadest interpretation of 
surface water by offering a wide range of RADAR backscatter values. This range of values accounts for water 
areas which have higher backscatter coefficients due to surface anomalies created by wind or wave action, which 
often affect open water areas, or the presence of emergent vegetation, often located at the edge of water bodies. 

 

Table 2. Table showing the calculated statistics used to determine the water threshold 

HH 

Training Site Min Max Range Median Mean STD Mean+STD 

1 -25.00 -14.00 11.00 -19.00 -18.89 1.72 -17.17 

2 -29.00 -8.00 21.00 -23.00 -23.45 2.42 -21.03 

3 -29.00 -17.00 12.00 -24.00 -23.41 2.24 -21.17 

4 -29.00 -21.00 8.00 -25.00 -24.72 1.65 -23.07 

5 -27.00 -12.00 15.00 -20.00 -19.81 2.18 -17.63 

6 -30.00 -20.00 10.00 -26.00 -25.64 1.69 -23.95 

7 -15.00 -3.00 12.00 -8.00 -8.26 3.15 -5.12 

Mean -26.29 -13.57 12.71 -20.71 -20.60 2.15 -18.45 

HV 

1 -30.00 -25.00 5.00 -29.00 -28.26 1.06 -27.20 

2 -30.00 -17.00 13.00 -28.00 -27.72 1.89 -25.83 

3 -30.00 -25.00 5.00 -28.00 -28.12 1.03 -27.09 

4 -30.00 -24.00 6.00 -28.00 -27.70 1.31 -26.39 

5 -30.00 -24.00 6.00 -28.00 -27.78 1.24 -26.54 

6 -30.00 -24.00 6.00 -29.00 -28.66 0.93 -27.74 

7 -27.00 -16.00 11.00 -23.00 -22.15 2.44 -19.71 

Mean -29.57 -22.14 7.43 -27.57 -27.20 1.41 -25.78 

 

For the HH image, x̄ mean+ x̄ std= -18.45, and for the HV image x̄ mean+ x̄ std= -25.78. These figures 
were further rounded down to create the most comprehensive threshold. Consequently, the water threshold value 
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applied to the HH image was -18, and the threshold value applied to the HV image was -25. The HH and HV 
images were classified, using these threshold values, into binary images in which an output value of 0 
represented land and an output value of 1 represented water. 

6.3 Image Classification of New Providence Island 

The binary HH and HV images were subsequently added together, generating a new dataset divided into three 
classes: 0, 1, and 2. The value 0 represented land, 1 represented areas classified as water in either the HH or HV 
image, and a value of 2 represented areas classified as water in both the HH and HV images. This image was 
then reclassified into a new binary image, in which the 1 and 2 value categories were merged to both represent 
water. Choosing to combine the 1 and 2 value categories provided the greatest retention of water areas in the 
classified dataset. Choosing to exclude the pixels reclassified as 1 would result in a more conservative selection 
of pixels classified as water. The reclassified raster image was converted to polygons, which produced a vector 
coverage of inundated areas, allowing for further analysis, such as flood mapping.  

6.4 Error Calculation 

The two water control datasets were resampled to a pixel size of 12.655 m to match the spatial resolution of the 
FBD PALSAR data and were converted to a raster. The datasets were reclassified so that areas defined as land 
were assigned a value of 50 and areas defined as water were assigned a value of 100. The reclassified RADAR 
image was subtracted from the control water dataset, yielding a new raster dataset in which pixels were classified 
into one of four categories: 49 (the pixel was defined as water in the RADAR image and land in the control 
dataset), 50 (the pixel was defined as land in both datasets), 99 (the pixel was defined as water in both datasets), 
or 100 (the pixel was defined as land in the RADAR image and water in the control dataset).  

7. Results and Discussion 

The accuracy of the classification of water was analyzed through the use of classification error matrices. Matrix 
A tests the results of the RADAR dataset containing the seven training sites, Matrix B tests the results of the 
RADAR dataset containing both inland and ocean water bodies, and Matrix C tests the results of the RADAR 
dataset containing only inland water bodies. The matrices compare the results of known control data extracted 
from the GeoEye-1 imagery to the results of the RADAR data classification, on a pixel by pixel basis. A 
producer’s accuracy, user’s accuracy, and overall accuracy were calculated for areas classified as land and areas 
classified as water, in each matrix (Jensen, 2004). In Matrix A, the producer’s, user’s, and overall accuracies for 
water features were each over 99%. In Matrix B, the producer’s accuracy for water was 91.51%, the user’s 
accuracy was 90.99%, and the overall accuracy was 93.88%. Meanwhile, in Matrix C, the producer’s accuracy 
for water was 72.00%, the user’s accuracy was 61.82%, and the overall accuracy was 92.98% (Table 3).  
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Table 3. Table showing the results of the classification error matrices A, B, and C 

Error Matrix A 

Training Sites Data Set 

  Land (pixels) Water (pixels) Row Total (pixels) 

Classification Data       

Land (pixels) 3 36 39 

Water (pixels) 5 4234 4239 

Column Total (pixels) 8 4270 4278 

  Land Cover Type 

  Land (%) Water (%) Combined (%) 

Accuracy Type       

Producer's  37.5 99.15 68.33 

User's  7.69 99.88 53.785 

Overall  99.04 

 

Error Matrix B 

  Control Set Data     

  Land (pixels) Water (pixels) Row Total (pixels) 

Classification Data       

Land (pixels) 1129427 53945 1183372 

Water (pixels) 57530 581160 638690 

Column Total (pixels) 1186957 635105 1822062 

  Land Cover Type 

  Land (%) Water (%) Combined (%) 

Accuracy Type       

Producer's  95.15 91.51 93.33 

User's  95.44 90.99 93.22 

Overall  93.88 

 

Error Matrix C 

  Control Set Data 

  Land (pixels) Water (pixels) Row Total (pixels) 

Classification Data       

Land (pixels) 1128292 34910 1163202 

Water (pixels) 57199 92620 149819 

Column Total (pixels) 1185491 127530 1313021 

  Land Cover Type 

  Land (%) Water (%) Combined (%) 

Accuracy Type       

Producer's  95.17 72.00 83.56 

User's  96.99 61.82 79.41 

Overall  92.98 
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After comparing the results of the RADAR data classification to the control dataset, it appears that the RADAR 
data thresholding methodology works best for large, static bodies of water with little emergent vegetation. Lake 
Killarney, located just east of the international airport on New Providence is roughly 900 000 m² in area and is 
surrounded by several smaller lakes (Figure 6). The RADAR data correctly classified 94.3% of the water’s 
surface area.  

 

 

Figure 6. A portion of Lake Killarney as classified by the RADAR data, compared to an oblique aerial 
photograph of the lake 

 

Lower accuracies were achieved for small, seasonally inundated areas with significant amounts of emergent 
vegetation, the extents of which fluctuate according to precipitation rates. As the surface area of water bodies 
decreases, the accuracy of the RADAR classification also decreases. For control water bodies with surfaces areas 
of 25 000 m² or greater, the accuracy of the RADAR classification ranges from 92% to 100%. For intermediate 
sized water bodies (10 000-25 000 m²), the classification accuracy is 85%. Small water bodies (2,500-10 000 m²) 
have a classification accuracy of 63%, and very small water bodies (less than 2,500 m²) have a classification 
accuracy of only 6%.Wilson’s Pond, centrally located on New Providence, is an example of a water body which 
exhibits fluctuations in surficial areal extent (Figure 7). At Wilson’s Pond, the RADAR data correctly classified 
only 28.9% of the surface area as compared to the control data. Field investigations conducted three days prior to 
the acquisition of the RADAR data showed open water present at Wilson’s Pond at a depth of greater than 15 cm 
and not obscured by vegetation. In contrast, Harold’s Pond (Figure 7), located 500 m to the east, is larger and 
less seasonally influenced than Wilson’s Pond, and the classification results show an accuracy rate of 80.7%.For 
water bodies with variable surface areas, it is ideal to have a control dataset acquired close to the date of the 
RADAR data. In this study, the water control dataset was derived from optical satellite imagery acquired nearly 
one year before the RADAR data; however, data control points collected on the ground within 1-3 days of the 
RADAR data were used as further verification of the accuracy of the optical image-derived control dataset.  
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Figure 7. A comparison of the RADAR data and control data’s classifications of Wilson’s and Harold’s Ponds 

 

The presence of vegetation poses another potential problem when using RADAR data to classify water. This is 
particularly true when dense terrestrial and wetland vegetation are present near a small water body. For example, 
Jaws Beach pond has a surface area of roughly 9,000 m², and is heavily vegetated with emergent marsh grasses 
(Figure 8). The RADAR data failed to classify any pixels within this area as water.  

 

 

Figure 8. The RADAR data and control data’s classifications of Jaws Beach Pond, as compared to a photograph 
of the pond 

 

When the standard deviation of surface height of the terrain increases above 3.575 cm due to PALSAR data’s 
23.6 cm wavelength and 34.4° incidence angle (Equation 2), the backscatter values increase. This limits 
PALSAR’s utility for mapping small water features containing emergent wetland vegetation and/or surrounding 
terrestrial vegetation. Such water features may contain “mixed pixels” of water and vegetation, and as the pixels 
are representative of an average backscatter value for the entire pixel (12.655 m), mixed pixels may be 
misclassified by the thresholding technique. The presence of vegetation within and surrounding water bodies 
contributes to higher backscatter values as well, due to a corner reflector effect, thus resulting in backscatter 
values that are higher than the threshold value.  

Additionally, in several cases, the RADAR data misclassified large tracts of land as water. Many of these 
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locations were visited during field work or examined using optical imagery and were verified as being land. 
Confusion occurs when the RADAR data detects other smooth landscapes with little to no variation in surface 
height. Such landscapes include golf courses, as well as land cleared for new development and transportation 
infrastructure such as roads and the airport’s runway and adjacent paved surfaces.  

8. Conclusion 

A need has been identified in the Caribbean region for a basic methodology to assist with the mitigation and 
response to flood hazards.The goal of this study was to test a simple, practical, and replicable methodology that 
could be used by governments and hazards managers in the region to develop pre-event baseline and post-event 
inundation maps. This study applied a thresholding methodology to map water bodies from ALOS PALSAR 
FBD RADAR data for two image scenes covering New Providence Island in the Commonwealth of the 
Bahamas.  

The thresholding algorithm proved to be over 99% accurate when classifying the training sites, and the 
classification accuracy of moderate to large perennial water bodies (greater than 10 000 m²) was consistently 
over 85%. However, small, ephemeral wetlands (less than 10 000 m²) are difficult to classify due to their small 
size and the frequent presence of emergent vegetation of variable height and density. 

The results demonstrate that PALSAR FBD mode data is an effective tool for the identification of coastal and 
inland water bodies in the Bahamas, for moderate resolution mapping purposes. In particular, this technique can 
be used to develop baseline maps of moderate to large scale water body features, with a high degree of accuracy. 
The simplicity of the methodology renders it a highly accessible technique which can be implemented by 
government and hazard mapping agencies as a means of developing a pre-event map database. While the ALOS 
satellite is no longer operational, the extensive existing PALSAR data archive is an ideal tool for mapping and 
cataloguing perennial water bodies as part of such a pre-hazard assessment. However, this technique has limited 
application potential for post-event flood mapping. Mixed pixels, which can arise from the presence of surface 
water in conjunction with emergent vegetation, as illustrated in this study, or from the presence of infrastructure 
and man-made features, result in higher backscatter values. As a result, the classification may under-predict the 
extent of surface water in flooded areas. 

PALSAR-2 is currently under development and its enhanced spatial and temporal resolutions will improve the 
sensor’s ability to discriminate finer scale hydrographic features, and therefore may improve classification 
accuracies. This study highlighted the necessity for an improved methodology aimed at addressing the issue of 
mixed pixels. One possible approach is to incorporate RADAR surface texture measurements with the 
thresholding technique, to develop a more robust classification of land cover features. Additionally, conducting 
pre and post-event RADAR image comparisons would enable practitioners to observe changes in backscatter 
values due to the effects of rainfall and coastal storm surge. The applications of RADAR data for post-event 
flood mapping in the Caribbean should continue to be investigated by researchers, as the need within the region 
is great. RADAR data has the potential to be a valuable tool for such purposes, particularly as higher resolution 
sensors are developed, improving the effectiveness of the data for detecting water in a variety of environments. 
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